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Abstract: This paper developed a quantitative evaluation necessary to ensure ground stability, so a
quantitative indicator (bearing capacity). A homogeneous axisymmetric model was generated, con-
sidering China’s stress field and the Karst topography characteristics, simultaneously obtaining stress
component expression. We then determined the bearing capacity calculation formula by combining
the strength theory of shear failure and the stress component expressions. Finally, the comparison
of the bearing capacity calculation results between theoretical analysis and a numerical simulation
indicated that the error was less than 5%, and the result verified the rationality of the formula.
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1. Introduction

In recent years, a series of strategies promoted the development of the regional econ-
omy, including the “Western Development Strategy”, “the Belt and Road Initiatives”, and
so on [1]. As a result, the scale of infrastructure construction has dramatically increased
in mantled Karst regions, and ground collapse has become a typical engineering prob-
lem [2,3]. To a certain extent, the number of ground collapse events decreased with the
progress of control measures and science, but the economic loss increased [4,5]. Therefore,
a quantitative evaluation of ground stability is essential to social security and engineering
construction operations.

Bearing capacity is an important indicator to ensure the safety and stability of the
limestone strata roof, which contains a shallowly buried Karst cave. To obtain an accurate
bearing capacity calculation formula, a series of related studies have been made. They
mainly focus on two aspects: elastic theoretical analysis and ultimate analysis [6]. In
the process of elastic theoretical analysis, mathematical models are generated, including
sheet models, beam models, rectangular plates, circular plates, and so on, and the stress
component’s formula was gained. For example, Goodier [7] and Howland et al. [8] gener-
ated a thin plate containing circular holes, and the inverse method was used to solve the
problem. Considering the variety of Karst caves and the complexity of loading conditions,
Xu et al. [9–11] performed a novel method and vision measurement system to monitor
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the component of stress. Taking into the spatial geometric characteristics of Karst caves,
Xie et al. [12,13] provided an analytical solution which could represent the spatial charac-
teristics of stress distribution around a shallow buried Karst cave containing fill materials
in limestone strata. Furthermore, to ensure the stability of the strata roof containing a
cave, the bear capacity of the strata roof was explored under different conditions. Zhao
et al. [14] deduced stress distribution around the cave on the basis of elastic theory, and the
stability of the rock foundation was analyzed. Xie et al. [15] also deduced stress distribution
around the cave on the basis of elastic theory, and the stability of the rock foundation was
analyzed. The limit equilibrium method includes the method of limit equilibrium, the slip
line field method, and the upper and lower bound limit analysis method. The basic idea
of ultimate analysis is to deduce the solution which meets both the yield condition and
condition of equilibrium [16]. For example, the finite element limit analysis (FELA) was
induced [17–20].

As mentioned above, many researched bearing capacities were obtained. Compared
with the limit equilibrium method, theoretical analysis was the mathematical analysis
method, and a general solution is much closer to field experimental conditions using the
mechanical analysis method. Nevertheless, there is still some shortage. For example, the
three-dimensional geometry characteristics of the strata neglected the effect of internal
filling, and the technique was relatively singularly simple (complex function method).
Therefore, considering limestone strata’s spatial geometry and an interior filling of buried
Karst caves, a bearing capacity formula was developed in this paper using the Love dis-
placement function [21]. Firstly, considering China’s stress field and the Karst topography
characteristics, a homogeneous axisymmetric model was produced. Concurrently, stress
component expressions were obtained. Then, combining the strength theory of shear failure
and the stress component expressions, the bearing capacity formula was determined. Fi-
nally, to verify the rationality of the formula, a numerical simulation was performed using
FLAC3D software. During the simulation process, horizontal constraints were applied
to vertical boundaries. Moreover, the displacements of the bottom border were fixed in
both the vertical and horizontal directions. The Mohr-Coulomb constitutive model was
employed, and linear computation was used to solve the problem. In addition, the ex-
cavation of the void was performed. The comparison of the bearing capacity calculation
results between theoretical analysis and a numerical simulation indicated that the error was
less than 5%, so the research result would provide theoretical support for infrastructure
construction in the mantled Karst region in China.

2. Theoretical Analysis of Spatial Stress Distribution
2.1. Mathematical Model and Boundary Conditions
2.1.1. Mathematical Model

Based on China’s stress field and the Karst topography characteristics (Figure 1), a
three-dimensional model was generated (Figure 2), and the cylindrical coordinates, as well
as the spherical coordinates, were selected as the coordinate system (Figure 3). The basic
assumptions are (a) the mathematical model was axisymmetric, (b) the spherical Karst cave
was shallowly buried (h < 2.5 D) and the inner space was filled completely, and (c) the
limestone strata were homogeneous, continuous, and isotropic.

The parameters in Figures 2 and 3 are
pz—vertical stress caused by the external load;
p0—horizontal stress surrounding the Karst cave caused by lateral earth pressure,

p0 = k0[pz + γ(h + z)];
pi—radial stress caused by internal fillings;
h—the vertical distance from the ground surface to the center of the sphere;
r—cylindrical radius;
R—the spherical Karst cave’s radius, and R1 is a certain constant for a case;
k0—the coefficient of lateral earth pressure, k0 = µ/(1 − µ), and µ is Poisson’s ratio.
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2.1.2. Boundary Conditions

(1) z = −h, σz = pz;
(2) r → ∞ , σr = [pz + γ(h + z)]µ/(1− µ);
(3) r → ∞ , σθ = [pz + γ(h + z)]µ/(1− µ);
(4) R = R1, σR = pi.

2.2. Theoretical Analysis
2.2.1. The Basic Theory

Considering the effect of gravity, the equilibrium differential equations are [21]

∂σr
∂r + ∂τzr

∂z + σr−σθ
r = 0

∂σz
∂z + ∂τzr

∂r + τzr
r + γ = 0

}
(1)

Using the Love displacement method, the stress component’s expressions are [21]

σr =
∂
∂z (µ∇

2 − ∂2

∂r2 )ϕ(r, z)

σθ = ∂
∂z (µ∇

2 − 1
r

∂
∂r )ϕ(r, z)

σz =
∂
∂z [(2− µ)∇2 − ∂2

∂z2 ]ϕ(r, z)

τrz =
∂
∂r [(1− µ)∇2 − ∂2

∂z2 ]ϕ(r, z)


(2)

where ∇2 is Laplace operator.
The transformation of the stress components’ expression in different coordinates

(between the spherical coordinate and cylindrical coordinate)

σR = σr sin2 ϕ + σz cos2 ϕ + 2τrz sin ϕ cos ϕ

σθ = σθ

σϕ = σr cos2 ϕ + σz sin2 ϕ− 2τrz sin ϕ cos ϕ

τRϕ = (σr − σz) sin ϕ cos ϕ− τrz(sin2 ϕ− cos2 ϕ)


(3)

2.2.2. The General Solution

The Love displacement function (Equation (2)) generated in the spherical coordinate
system [15,21] was

ϕ = A1r4 + A2z3 + A3z2r2 + A4zr2 + A5zR−1 (4)

where, Ai(i = 1, 2, 3, 4, 5) was the unknown coefficients.
Using the Love displacement function, the stress components are

σr = 4[(2µ− 1)A3]z + 2[3µA2 + (2µ− 1)A4] + A5[15r2z2R−7 + 3(2µ− 1)z2R−5 − 3r2R−5 + (1− 2µ)R−3] (5)

σθ = 4[(2µ− 1)A3]z + 2[3µA2 + (2µ− 1)A4] + A5[3(2µ− 1)z2R−5 + (1− 2µ)R−3 (6)

σz = 8[(2− µ)A3]z + 2[3(1− µ)A1 + 2(2− µ)A3] + A4[15z4R−7 − 6(1 + µ)z2R−5 + (2µ− 1)R−3] (7)

τrz = 4[8(1− µ)A1 − µA3]r + A5[15rz3R−7 − 3(1 + 2µ)rzR−5] (8)

In spherical coordinates, the stress components were

σR =
{

4[16(1− µ)A1 − A3] sin2 ϕ cos ϕ + 8[(2− µ)A3] cos3 ϕ
}

R +
{

2[3µA2 + (2µ− 1)A4] sin2 ϕ +

2[3(1− µ)A2 + 2(2− µ)A4] cos2 ϕ
}
+ A5[15 cos6 ϕ + 15 sin4 ϕ cos2 ϕ + 30 sin2 ϕ cos4 ϕ− 3 sin4 ϕ−

6(1 + µ) cos4 ϕ− 3(3 + 2µ) sin2 ϕ cos2 ϕ + (1− 2µ) sin2 ϕ + (2µ− 1) cos2 ϕ] 1
R3

(9)

σθ = {4[(2µ− 1)A3] cos ϕ}R + 2[3µA2 + (2µ− 1)A4]A5[3(2µ− 1) cos2 ϕ + (1− 2µ)]
1

R3 (10)
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σϕ =
{

4[(2µ− 1)A3 cos3 ϕ + 8[−8(1− µ)A1 + 2A3] sin2 ϕ cos ϕ
}

R +
{

2[3µA2 + (2µ− 1)A4] cos2 ϕ +

2[3(1− µ)A2 + 2(2− µ)A4] sin2 ϕ
}
+ A5[3(2µ− 1) cos2 ϕ + (1− 2µ)(cos2 ϕ− sin2 ϕ)] 1

R3

(11)

τRϕ =
{

4[8(1− µ)A1 + (3µ− 5)A3] sin2 ϕ cos2 ϕ− 4[8(1− µ)A1 − µA3] sin3 ϕ
}

R + [6(2µ− 1)A2+

2(4µ− 5A4] sin ϕ cos ϕ + 2A5(1 + µ) 1
R3 sin ϕ cos ϕ

(12)

Equation (1) is satisfied, so

8A1 + 2A3 =
γ

8(µ− 1)
(13)

Using boundary condition (1)

− 8[(2− µ)A3]h + 2[3(1− µ)A2 + 2(2− µ)A4]− A5
1
h3 [15 cos7 ϕ− 6(1 + µ) cos5 ϕ + (2µ− 1) cos3 ϕ] = pz (14)

Using boundary conditions (2) and (3), respectively

4(2µ− 1)A3 =
µ

1− µ
γ (15)

6µA2 + 2(2µ− 1)A4 =
µ

1− µ
(pz + γh) (16)

Combining boundary condition (4) with Equation (9){
4[16(1− µ)A2 − A4] sin2 ϕ cos ϕ + 8[(2− µ)A4] cos3 ϕ

}
R1 +

{
2[3µA3 + (2µ− 1)A5] sin2 ϕ + 2[3(1− µ)A3+

(2− µ)A5] cos2 ϕ
}
+ A9[15 cos6 ϕ + 15 sin4 ϕ cos2 ϕ + 30 sin2 ϕ cos4 ϕ− 3 sin4 ϕ− 6(1 + µ) cos4 ϕ−3

(3 + 2µ) sin2 ϕ cos2 ϕ + (1− 2µ) sin2 ϕ + (2µ− 1) cos2 ϕ] 1
R1

3 = pi

(17)

Combining Equations (13)–(17), the equations of the stress components are

σR =
{

4[16(1− µ)A1 − A3] sin2 ϕ cos ϕ + 8[(2− µ)A3] cos3 ϕ
}

R +
{

2[3µA2 + (2µ− 1)A4] sin2 ϕ +

2[3(1− µ)A2 + 2(2− µ)A4] cos2 ϕ
}
+ A5[15 cos6 ϕ + 15 sin4 ϕ cos2 ϕ + 30 sin2 ϕ cos4 ϕ− 3 sin4 ϕ−

6(1 + µ) cos4 ϕ− 3(3 + 2µ) sin2 ϕ cos2 ϕ + (1− 2µ) sin2 ϕ + (2µ− 1) cos2 ϕ] 1
R3

(18)

σθ = {4[(2µ− 1)A3] cos ϕ}R + 2[3µA2 + (2µ− 1)A4] + A5[3(2µ− 1) cos2 ϕ + (1− 2µ)]
1

R3 (19)

σϕ =
{

4[(2µ− 1)A3 cos3 ϕ + 8[−8(1− µ)A1 + 2A3] sin2 ϕ cos ϕ
}

R +
{

2[3µA2 + (2µ− 1)A4] cos2 ϕ +

2[3(1− µ)A2 + 2(2− µ)A4] sin2 ϕ
}
+ A5[3(2µ− 1) cos2 ϕ + (1− 2µ)(cos2 ϕ− sin2 ϕ)] 1

R3

(20)

τRϕ =
{

4[8(1− µ)A1 + (3µ− 5)A3] sin2 ϕ cos2 ϕ− 4[8(1− µ)A1 − µA3] sin3 ϕ
}

R + [6(2µ− 1)A2+

2(4µ− 5)A4] sin ϕ cos ϕ + 2A5(1 + µ) 1
R3 sin ϕ cos ϕ

(21)

where

A1 = (6µ−1)
64(1−µ)(1−2µ)

γ, A2 = − B1
6B2

, A3 = µγ
4(1−µ)(2µ−1) , A4 = − B3

2B2
, A5 = − B4

B2

B1 = 2(2µ− 1)h3[(1− µ)(2µ− 1)pz + 2µ(2− µ) cos2 ϕ]− µ(2µ− 1)R1
3(pz + γh)[2(2− µ) cos2

ϕ+(2µ− 1) sin2 ϕ][15 cos7 ϕ− 6(1 + µ) cos5 ϕ + (2µ− 1) cos3 ϕ]− 4µh3(2− µ)(2µ− 1)(pz+

γh)[2(2− µ) cos2 ϕ− (1 + µ) sin2 ϕ] + (2µ− 1)R1
3[15 cos7 ϕ− 6(1 + µ) cos5 ϕ + (2µ− 1) cos3 ϕ]

[(1− µ)(2µ− 1)pi + (6µ− 1)(1− µ)γR1 sin2 ϕ cos ϕ− 2(2− µ)R1γ cos3 ϕ + µR1γ sin2 ϕ cos ϕ]
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B2 = (1− µ)(2µ− 1)
{

R1
3(1− 2µ)[µ sin2 ϕ + (1− µ) cos2 ϕ][15 cos 7ϕ− 6(1 + µ) cos5 ϕ + (2µ− 1)

cos3 ϕ]+R1
3µ[2(2− µ) cos2 ϕ + (2µ− 1) sin2 ϕ][15 cos7 ϕ− 6(1 + µ) cos5 ϕ + (2µ− 1) cos3 ϕ]

+4µh3(2− µ)[2(2− µ) cos2 ϕ− (1 + µ) sin2 ϕ] + 2h3(1− µ)(1− 2µ)[2(2− µ) cos2 ϕ− (1 + µ) sin 2 ϕ]
}

B3 = −2µh3[(1− µ)(2µ− 1)pz + 2µ(2− µ)γh][2(2− µ) cos2 ϕ− (1 + µ) sin2 ϕ] + µ(2µ− 1)R1
3

(pz + γh)[µ sin2 ϕ + (1− µ) cos2 ϕ][15 cos7 ϕ− 6(1 + µ) cos5 ϕ + (2µ− 1) cos3 ϕ] + 2µh3(1− µ)

(2µ− 1(pz + γh)[2(2− µ) cos2 ϕ− (1 + µ) sin2 ϕ]− µ[15 cos7 ϕ− 6(1 + µ) cos5 ϕ + (2µ− 1) cos3 ϕ]

[(1 + µ)(2µ− 1)R1
3 pi + (6µ− 1)(1− µ)R1

4γ cos3 ϕ + µR1
4γ sin2 ϕ cos ϕ]

B4 = h3{(1− µ)R1
3[(1− µ)(2µ− 1)pz + 2µ(2− µ)γh][µ sin2 ϕ + (1− µ) cos2 ϕ] + γR1

3[(1− µ) (2µpz+

2µ(2− µ)γh][2(2− µ) cos2 ϕ + (2µ− 1) sin2 ϕ] + 2µ(2− µ)(2µ− 1)R1
3(pz + γh)[µ sin2 +

(1− µ) cos2 ϕ]− µ(1− µ)(2µ− 1)R1
3(pz + γh)[2(2− µ) cos2 ϕ + (2µ− 1) sin2 ϕ]− 2µ

(2− R1
3[(1− µ)(2µ− 1)pi + (6µ− 1)(1− µ)γR1 sin2 ϕ cos ϕ− 2(2− µ)R1γ cos3 ϕ+

µR1γ sin2 ϕ cos ϕ]+(1− µ)(2µ− 1)R1
3[(1− µ)(2µ− 1)pi + (6µ− 1)(1− µ)γR1 sin2 ϕ cos ϕ−

2(2− µ)R1γ cos3 ϕ+µR1γ sin2 ϕ cos ϕ]
}

3. Bearing Capacity of Limestone Strata Roof
3.1. Failure Mechanism of Ground Collapse

In general, soil arch theory explains ground collapse. Figure 4 shows that the vertical
pressure of the roof increases due to the influence of external vertical load and gravity.
Concurrently, a radical shear zone appears. Furthermore, rock mass in high the pressure-
zone expands laterally to low-pressure areas. Eventually, collapse formed along sliding
surfaces (AB, CD) (Figure 3).
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3.2. Theoretical Analysis of Bearing Capacity
3.2.1. The Basic Theory
Mohr-Coulomb Strength Theory

O. Maurs (1910) proposed that the failure of materials is the shear strength of the
material (Figure 5).

When a micro-unit is taken (Figure 6), the limit equilibrium condition of the material
can be obtained (Equation (22) or Equation (23)).

σ1 = σ3 tan2(45◦ +
ϕ1

2
) + 2c tan(45◦ +

ϕ1

2
) (22)

σ3 = σ1 tan2(45◦ − ϕ1

2
)− 2c tan(45◦ − ϕ1

2
) (23)
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Principle Stress of Any Point

Principle stress of any point calculated using the Equation

σ3 − I1σ2 + I2σ− I3 = 0

where
I1 = σ11 + σ22 + σ33 = σx + σy + σz

I2 =

∣∣∣∣σ22 σ23
σ32 σ33

∣∣∣∣ + ∣∣∣∣σ11 σ13
σ31 σ33

∣∣∣∣ + ∣∣∣∣σ11 σ12
σ21 σ22

∣∣∣∣= ∣∣∣∣ σy τyz
σzy σz

∣∣∣∣ + ∣∣∣∣ σx τxz
τzx σz

∣∣∣∣ + ∣∣∣∣ σx σxy
σyx σy

∣∣∣∣
I3 =

∣∣∣∣∣∣
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

∣∣∣∣∣∣ =
∣∣∣∣∣∣

σx τxy τxz
τyx σy τyz
τzx τzy σz

∣∣∣∣∣∣
Transformation of Stress Components in Different Coordinate Systems

According to the relationship among different coordinate systems (Figure 7), a trans-
formation of stress components in various coordinate systems are

σc = [βc][σd][βc]
T (24)

σs = [βs][σd][βs]
T (25)
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where

σd =

 σx τyx τzx
τxy σy τyz
τxz τyz σz

 σc =

 σr τθr τzr
τrθ σθ τzθ

τrz τθz σz

 σs =

 σR τθR τRϕ

τRθ σθ τϕθ

τRϕ τθϕ σϕ


βc =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 βs =

 cos θ sin ϕ sin θ sin ϕ cos ϕ
cos θ cos ϕ sin θ cos ϕ − sin ϕ
− sin ϕ cos ϕ 0


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3.3. General Solution of Bearing Capacity Calculation Formula

Based on the explanation in the Section 3.1, shear failure was caused by ground
collapse, which was generated from points A and C. The shear failure of points A and C
was determined as the basis of ground instability, and Mohr-Coulomb strength theory was
the shear failure criteria.

According to Equations (18)–(21), stress components of points A and C are

σR = pi (26)

σθ =
3µ

2(1 + µ)(1− µ)
pz +

3µγ

2(1 + µ)(1− µ)
h− (1− 2µ)

2(1 + µ)
pi (27)

σϕ =
(2− µ)

2(1 + µ)(1− µ)
pz +

9µγ

2(1 + µ)(1− µ)(2µ− 1)
h +

(1− 2µ)

2(1 + µ)
pi (28)

τR ϕ =
(6µ− 1)

2(2µ− 1)
γR1 +

µ2

(1− µ)(2µ− 1)
γR1 (29)

Therefore
σ3 − I1σ2 + I2σ− I3 = 0 (30)

where

I1 = 1
1−µ pz +

3µγ
(1−µ)(2µ−1)h + pi I2 = 3µ(2−µ)

4(1+µ)2(1−µ)2 pz
2 − (2µ2−8µ−1)pi

2(1+µ)2(1−µ)
pz−

3µγ(µ2−7µ+1)
2(1+µ)2(1−µ)2(2µ−1)

pzh+ 27µ2γ2

4(1+µ)2(1−µ)2(2µ−1)
h2 + 27µ2γpi

2(1+µ)2(1−µ)(2µ−1)
h−

(1−2µ)2

4(1+µ)2 pi
2 − [ 3µ

2µ−1 γR1 − 1
2(2µ−1)γR1 +

µ2

(1−µ)(2µ−1)γR1]
2 I3 = 0
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So

σ1 =
I1 +

√
I1

2 − 4I2

2
σ3 = 0

where

I1 = 1
1−µ pz +

3µγ
(1−µ)(2µ−1)h + pi

I2 = 3µ(2−µ)

4(1+µ)2(1−µ)2 pz
2 − (2µ2−8µ−1)pi

2(1+µ)2(1−µ)
pz − 3µγ(µ2−7µ+1)

2(1+µ)2(1−µ)2(2µ−1)
pzh+

27µ2γ2

4(1+µ)2(1−µ)2(2µ−1)
h2 + 27µ2γpi

2(1+µ)2(1−µ)(2µ−1)
h− (1−2µ)2

4(1+µ)2 pi
2−

[ 3µ
2µ−1 γR1− 1

2(2µ−1)γR1 +
µ2

(1−µ)(2µ−1)γR1]
2

I3 = 0

Combing Equations (26)–(30) with Equation (22)

3µ(2−µ)

(1+µ)2(1−µ)2 pz
2 − [ 2(2µ2−8µ−1)

(1+µ)2(1−µ)
pi +

6µγh(µ2−7µ+1)
(1+µ)2(1−µ)2(2µ−1)

+ 8
1−µ c′ tan(π

4 +
ϕ1
2 )]pz +

27µ2γ2

(1+µ)2(1−µ)2(2µ−1)
h2 + 54µ2γpi

(1+µ)2(1−µ)(2µ−1)
h

− (1−2µ)2

(1+µ)2 pi
2 − 4[γR1

6µ−1
2(2µ−1) +

µ2

(1−µ)(2µ−1)γR1]
2 − 24µγ

(1−µ)(2µ−1)hc tan(π
4 + ϕ1

2 )

−8pic tan(π
4 + ϕ1

2 )+16c2 tan2(π
4 + ϕ1

2 ) = 0

(31)

So

pz1 =
M2 +

√
M22 − 4M1M3

2M1
(32)

pz2 =
M2 −

√
M22 − 4M1M3

2M1
(33)

where M1 = 3µ(2−µ)

(1+µ)2(1−µ)2

M2 = 2(2µ2−8µ−1)
(1+µ)2(1−µ)

pi +
6µγh(µ2−7µ+1)

(1+µ)2(1−µ)2(2µ−1)
+ 8

1−µ c tan(π
4 + ϕ1

2 ) · 1
(2µ−1)−

M3 = 27µ2γ2h2

(1+µ)2(1−µ)2(2µ−1)
+ 54µ2γhpi

(1+µ)2(1−µ)
· 1
(2µ−1) −

(1−2µ)2

(1+µ)2 pi
2−4[ γR1(6µ−1)

2(2µ−1) −

24µγhc
(2µ−1)

1
(1−µ)

tan(π
4 + ϕ1

2 )− 8pi c tan(π
4 + ϕ1

2 )+

16c2 tan2(π
4 + ϕ1

2 ) + 16c2 tan2(π
4 + ϕ1

2 )

Among pz1 and pz2, the positive value and the smaller one is the solution.

4. Application and Validation Test

We performed a numerical simulation to validate the rationality of the bearing capacity
calculation formula. According to the site investigation, the numerical simulation model
was generated (Figure 8). The number of elements for the entire calculation model was
2496, and the spatial geometry parameter and the attribute parameter are as in Table 1.
During the simulation process, horizontal constraints were applied to vertical boundaries.
Moreover, the displacements of the bottom border were fixed in both the vertical and
horizontal directions. The Mohr-Coulomb constitutive model was employed, and linear
computation was used to solve the problem. In addition, the excavation of the void was
performed. Finally, the vertical load was applied step-by-step from 2 MPa to 38 MPa at an
interval of 2 MPa, and the vertical subsidence of point B was monitored (Figure 9, Table 2).

Figure 10 is the P-S curve using monitoring data (B point in Figure 9), which shows
the relationship between vertical load and vertical subsidence. When the applied vertical
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load reaches 36 MPa (red point in Figure 10), the small change of vertical load will bring
a sudden shift of vertical subsidence. So, the value of 36 MPa is the value of the bearing
capacity. In addition, the value of the bearing capacity is 37.94 MPa using the bearing
capacity calculation formula. A value comparison indicates that the error is less than 5%,
and the results verified the rationality of the formula.
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Table 1. The spatial geometry parameter and the attribute parameter.

Parameters γ
(kN/m3)

E
(GPa)

c
(MPa)

ϕ
(◦)

µ R1
(m)

pz
(KPa)

pi
(KPa)

h
(m)Materials

Limestone strata 26,500 35 7.8 42.3 0.25 0.5 0 0 2
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Table 2. Applied load and corresponding subside of the critical point.

Serial Number External Vertical P (MPa) Subsidence S (mm)

1 2 0.437865
2 4 0.874118
3 6 1.12011
4 8 1.3118
5 10 2.19316
6 12 2.61823
7 14 3.05638
8 16 3.5
9 18 3.91891
10 20 4.36046
11 22 4.80857
12 24 5.2625
13 26 5.7035
14 28 6.1208
15 30 6.5762
16 32 7.10112
17 34 7.89486
18 36 8.22704
19 36.1 9.28338
20 36.2 13.3104
21 36.3 22.0348

5. Discussion
5.1. Bearing Capacity Change Caused by Various Factors

The diagrams were drawn to study the effect of different influencing factors (Figure 11).
Bearing capacity values increase with the increase in parameters, including γ (unit weight),
c (cohesion strength), ϕ1 (internal friction angle), µ (Poisson’s ratio), and h (the vertical
distance from the ground surface to the center of the sphere). However, the curve has a
reverse trend for R (the spherical Karst cave’s internal radius). In addition, the effect of
pi (radial stress caused by fill materials) was neglected. Nevertheless, the trend of value
change suggests that the bearing capacity calculation formula is reasonable [17–20].

5.2. General Solution of Stress Components

An accurate general solution of stress components is the precondition to obtaining
the rational bearing capacity calculation formula. Figure 12 presents the general solution
of stress components that could reflect the spatial distribution characteristic surrounding
a Karst cave, but still, there is an error (the maximum value is not more than 5.0%).
To improve the accuracy of the general solution, further research performed on these
three aspects is needed: (1) increasing the type of displacement function component;
(2) introducing various analysis methods; (3) using a non-linear constitutive model.
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Figure 11. The curves of the bear capacity of limestone strata caused by a single influencing factor.
(a) The range of γ value is from 2 kN/m3 to 4 MPa. (b) The range of c value is from 3.5 MPa to
25 kN/m3. (c) The range of ϕ1 value is from 0.43 rad to 0.63 rad (d) The range of µ value is from
0.25 to 0.31. (e) The range of h value is from 0.1 m to 0.5 m (f) The range of R1 value is from 0.5 m to
1.0 m. (g) The range of pi value is from 0 kPa to 100 kPa.
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6. Conclusions

The generated homogeneous axisymmetric model was based on China’s stress field and
the Karst topography characteristics. Meanwhile, we obtained the stress component expressions.

Combing the strength theory of shear failure and the stress components surrounding
the Karst cave, the limestone strata roof‘s bearing capacity calculation formula is deter-
mined, containing a shallowly buried spherical Karst cave. Bearing capacity values increase
with the increase in parameters, including γ (unit weight), c (cohesion strength), ϕ1 (internal
friction angle), µ (Poisson’s ratio), and h (the vertical distance from the ground surface to
the center of the sphere). However, the curve has a reverse trend for R (the spherical Karst
cave’s internal radius). In addition, the effect of pi (radial stress caused by fill materials)
was neglected. Nevertheless, the trend of value change suggests that the bearing capacity
calculation formula is reasonable.

A value comparison indicated the maximum error was less than 5% between theo-
retical calculation and numerical simulation, and the result verified the rationality of the
bearing capacity calculation formula. To improve the accuracy of the general solution,
further research performed on these three aspects is needed: (1) increasing the type of
displacement function component; (2) introducing various analysis methods; (3) using a
non-linear constitutive model.

Author Contributions: Conceptualization, C.Y.; methodology, P.X. and H.W.; software, P.X.; valida-
tion, P.X. and H.D.; formal analysis, P.X. and H.D.; investigation, Z.Y.; resources, Z.Y.; data curation,
H.D.; writing—original draft preparation, P.X.; writing—review and editing, H.W.; supervision, C.Y.
and H.W.; project administration, Z.Y.; funding acquisition, P.X.; Z.Y. and S.M. All authors have read
and agreed to the published version of the manuscript.

Funding: The research on which this article is based has been supported by grants: The Systematic
Project of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area (China Three Gorges
University), Ministry of Education (No. 2020KDZ04); Hainan Provincial Natural Science Foundation
of China (Grant No: 422RC599, 520QN229, 122RC541); The Systematic Project of State Key Laboratory
of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao
University (Grant No: KF2022-03); the Scientific Research Startup Foundation of Hainan University
(Grant No: KYQD(2R)1969); National Natural Science Foundation of China (42002293); and National
Natural Science Foundation of China (52068019).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 2149 14 of 14

References
1. Xie, P.; Wen, H.J.; Zhang, Y.Y.; Zhang, X.X.; Hu, J. A method for identification and reconstruction of hard structural planes, weak

interlayer, and cavities in the limestone near surface. Eur. J. Environ. Civ. Eng. 2020, 24, 2489–2511. [CrossRef]
2. Gutierrez, F.; Parise, M.; Dewaele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in karst.

Earth-Sci. Rev. 2014, 138, 61–88. [CrossRef]
3. Xie, P.; Wen, H.; Xiao, P.; Zhang, Y. Evaluation of ground-penetrating radar (GPR) and geology survey for slope stability study in

mantled karst region. Environ. Earth Sci. 2018, 77, 122. [CrossRef]
4. Xiao, X.X.; Gutiérrez, F.; Guerrero, J. The impact of groundwater drawdown and vacuum pressure on sinkhole development.

Physical laboratory models. Eng. Geol. 2020, 279, 105894. [CrossRef]
5. Wang, X.L.; Lai, J.X.; He, S.Y.; Garnes, R.S.; Zhang, Y.W. Karst geology and mitigation measures for hazards during metro system

construction in Wuhan, China. Nat. Hazards 2020, 103, 2905–2927. [CrossRef]
6. Yin, J.F.; Lei, Y.; Chen, Q.N. Summary about researches on the calculation method for the bearing capacity of cave roof. J. Hunan

Univ. Arts Sci. 2017, 29, 68–72. (In Chinese)
7. Goodier, J.N. Concentrations of stress around spheroidal and cylindrical inclusions and flaws. Trans. ASME J. Appl. Mech. 1933,

55, 39–44. [CrossRef]
8. Howland, R.C.J.; Knight, R.C. Stress functions for a plate containing groups of circular holes. Philos. Trans. R. Soc. A 1939, 238,

357–392.
9. Xu, X.; Fallahi, N.; Yang, H. Efficient CUF-based FEM analysis of thin-wall structures with Lagrange polynomial expansion.

Mech. Adv. Mater. Struct. 2020, 29, 1316–1337. [CrossRef]
10. Xu, X.; Yang, H. Vision Measurement of Tunnel Structures with Robust Modelling and Deep Learning Algorithms. Sensors 2020,

20, 4945. [CrossRef] [PubMed]
11. Xu, X.; Shi, P.; Zhou, X.; Liu, W.; Yang, H.; Wang, T.; Yan, M.; Fan, W. A novel vision measurement system for health monitoring

of tunnel structures. Mech. Adv. Mater. Struct. 2020, 29, 2208–2218. [CrossRef]
12. Xie, P.; Ma, S.K.; Wen, H.J.; Li, L.Y.; Jie, S.L.; Li, R.B. Theoretical analysis on stress distribution characteristics around a shallow

buried cylinder Karst cave containing filling in limestone strata. Arab. J. Geosci. 2022, 15, 224. [CrossRef]
13. Xie, P.; Ma, S.K.; Wen, H.J.; Li, L.Y. Theoretical analysis on stress distribution characteristics around a shallow buried spherical

Karst cave containing fill materials in limestone strata. Environ. Earth Sci. 2022, 81, 97. [CrossRef]
14. Zhao, H.; Xiao, Y.; Zhao, M.H.; Yang, C.W. Stability assessment method for subgrade with underlying rectangular cavity. China J.

Highw. Transp. 2018, 31, 165–180.
15. Xie, P.; Wen, H.J.; Ma, S.K.; Yue, Z.R.; Li, L.Y.; Liu, J.F.; Li, R.B.; Cui, J. The bearing capacity analysis of limestone strata roof

containing a shallow buried cylinder Karst cave. Mech. Adv. Mater. Struct. 2021, 1–8. [CrossRef]
16. Lei, Y.; Deng, J.Z.; Liu, Z.Y.; Li, J.J.; Zou, G. A method to calculate ultimate bearing capacity of rock foundation with cavities

considering load position offset. Rock Soil Mech. 2020, 41, 3326–3332. (In Chinese)
17. Keawsawasvong, S.; Ukritchon, B. Undrained stability of a spherical cavity in cohesive soils using finite element limit analysis.

J. Rock Mech. Geotech. Eng. 2019, 11, 1274–1285. [CrossRef]
18. Keawsawasvong, S.; Ukritchon, B. Design equation for stability of shallow unlined circular tunnels in Hoek-Brown rock masses.

Bull. Eng. Geol. Environ. 2020, 79, 4167–4190. [CrossRef]
19. Keawsawasvong, S. Limit analysis solutions for spherical cavities in sandy soils under overloading. Innov. Infrastruct. Solut. 2021, 6, 33.

[CrossRef]
20. Keawsawasvong, S.; Shiau, J. Stability of Spherical Cavity in Hoek–Brown Rock Mass. Rock Mech. Rock Eng. 2022, 1–12. [CrossRef]
21. Timoshenko, S.; Goodier, J.N. Theory of Elasticity; Xu, Z.; Wu, Y., Translators; Higher Education Press: Beijing, China, 1965.

http://doi.org/10.1080/19648189.2018.1512902
http://doi.org/10.1016/j.earscirev.2014.08.002
http://doi.org/10.1007/s12665-018-7306-9
http://doi.org/10.1016/j.enggeo.2020.105894
http://doi.org/10.1007/s11069-020-04108-3
http://doi.org/10.1115/1.4012173
http://doi.org/10.1080/15376494.2020.1818331
http://doi.org/10.3390/s20174945
http://www.ncbi.nlm.nih.gov/pubmed/32882882
http://doi.org/10.1080/15376494.2020.1854908
http://doi.org/10.1007/s12517-022-09445-0
http://doi.org/10.1007/s12665-021-10112-y
http://doi.org/10.1080/15376494.2021.1900466
http://doi.org/10.1016/j.jrmge.2019.07.001
http://doi.org/10.1007/s10064-020-01798-8
http://doi.org/10.1007/s41062-020-00398-5
http://doi.org/10.1007/s00603-022-02899-4

	Introduction 
	Theoretical Analysis of Spatial Stress Distribution 
	Mathematical Model and Boundary Conditions 
	Mathematical Model 
	Boundary Conditions 

	Theoretical Analysis 
	The Basic Theory 
	The General Solution 


	Bearing Capacity of Limestone Strata Roof 
	Failure Mechanism of Ground Collapse 
	Theoretical Analysis of Bearing Capacity 
	The Basic Theory 

	General Solution of Bearing Capacity Calculation Formula 

	Application and Validation Test 
	Discussion 
	Bearing Capacity Change Caused by Various Factors 
	General Solution of Stress Components 

	Conclusions 
	References

