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Abstract: Nowadays, much of the world has a regional air pollution strategy to limit and decrease
the pollution levels across governmental borders and control their impact on human health and
ecological systems. Environmental protection is among the leading priorities worldwide. Many
challenges in this research area exist since it is a painful subject for society and a fundamental topic
for the healthcare system. Sensitivity analysis has a fundamental role during the process of validating
a large-scale air pollution computational models to ensure their accuracy and reliability. We apply the
best available stochastic algorithms for multidimensional sensitivity analysis of the UNI-DEM model,
which plays a key role in the management of the many self-governed systems and data that form the
basis for forecasting and analyzing the consequences of possible climate change. We develop two
new highly convergent digital sequences with special generating matrices, which show significant
improvement over the best available existing stochastic methods for measuring the sensitivity indices
of the digital ecosystem. The results obtained through sensitivity analysis will play an extremely
important multi-sided role.

Keywords: air pollution modeling; sensitivity analysis; multidimensional integrals; Monte Carlo
methods; digital sequences

MSC: 60J22; 62P12; 65C05; 68W20

1. Introduction

Mathematical models [1,2] are utilized in many areas as compelling instruments for
studying composite processes, but our understanding is generally restricted by uncer-
tainties: inexact data, imperfect understanding, and subjective estimates, etc. Because of
that, tools are necessary to estimate how uncertainties [3] in the input affect certain output
model results.

The goal of our work is in the field of environmental security [4–6]. To establish
itself as a reliable simulation tool, modern mathematical models of remote transport of air
pollutants should involve lots of chemical and photochemical reactions [7]. Monte Carlo
algorithms [8–11] are the best apparatus for multidimensional air pollution modeling [6].

By definition, Sensitivity analysis (SA) [12–15] is the study of how much the uncer-
tainty in the input data of a model (because of inaccurate evaluations, estimations, and
data compression, etc.) is reflected in the accuracy of the output results.

SA is a powerful procedure that verifies and improves the mathematical models [16,17].
It specifies the key role of SA when mathematical modeling is frequently the only strategy
to investigate a complicated phenomenon. Furthermore, the authentic explanation of SA
calculations relies on the effectiveness of methods supplying SA.

The input data for SA has been derived during runs of a large-scale model of long-
range transport of pollutants in the air—Unified Danish Eulerian Model (UNI-DEM) [18–21]),
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which includes a large geographical region (4800 × 4800 km) covering the whole Mediter-
ranean, Europe, and parts of Asia and Africa.

The main physical, chemical and photochemical processes between the investigating
species, contaminations, and rapidly changing meteorological conditions are taken into
account by UNI-DEM. The reason for selecting it is because, in UNI-DEM, the chem-
ical processes are taken into account in a very precise way. UNI-DEM is described
mathematically [19,21] by the following system of partial differential equations:

∂cs

∂t
= −∂(ucs)

∂x
− ∂(vcs)

∂y
− ∂(wcs)

∂z

+
∂

∂x

(
Kx

∂cs

∂x

)
+

∂

∂y

(
Ky

∂cs

∂y

)
+

∂

∂z

(
Kz

∂cs

∂z

)
+Es + Qs(c1, c2, . . . , cq)− (k1s + k2s)cs, s = 1, 2, . . . , q,

where

cs—pollutant concentrations,

u, v, w—wind components along the coordinate axes,

Kx, Ky, Kz—diffusion coefficients,

Es—space emissions,

k1s, k2s—dry and wet deposit coefficients, (s = 1, . . . , q),

Qs(c1, c2, . . . , cq)—nonlinear functions expressed the reactions between pollutants.

A fundamental role in UNI-DEM is played by the chemical reactions, and they connect
the equations in the model in the system precisely. The presence of chemical processes
determines the nonlinearity and the ’stiffness’ property of the system of equations (see [7]).
The model’s chemical scheme is the condensed CBM-IV (Carbon Bond Mechanism) pro-
posed in [1] and improved in [19]. UNI-DEM involves 35 pollutants and 116 chemical
reactions—69 are time-dependent and 47 are time-independent.

Let us assume that the model can be introduced by a model function [22]:

u = f (x), x = (x1, x2, . . . , xd) ∈ Ud ≡ [0; 1]d.

The concept of the Sobol approach is given by the following representation of f (x)
and a constant f0 [22]:

f (x) = f0 +
d

∑
ν=1

∑
l1<...<lν

fl1 ...lν(xl1 , xl2 , . . . , xlν). (1)

The description (1) is noted to as the ANOVA-representation of f (x) if [22]:∫ 1

0
fl1 ...lν(xl1 , xl2 , . . . , xlν)dxlk = 0, 1 ≤ k ≤ ν, ν = 1, . . . , d.

It guarantees that the right-hand side functions of (1) are determined in a distinctive

way, where f0 =
∫

Ud
f (x)dx. The quantities

D =
∫

Ud
f 2(x)dx− f 2

0 , Dl1 ... lν =
∫

f 2
l1 ... lν dxl1 . . . dxlν

are called total and partial variances [22]. An analogical decomposition is fulfilled for the
total variance:

D =
d

∑
ν=1

∑
l1<...<lν

Dl1 ...lν .
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Sobol global sensitivity indices [22,23] are determined by:

Sl1 ... lν =
Dl1 ... lν

D
, ν ∈ {1, . . . , d}.

Then the total sensitivity index (TSI) of input parameter xi, i ∈ {1, . . . , d} is deter-
mined by [24]:

TSI(xi) = Si + ∑
l1 6=i

Sil1 + ∑
l1,l2 6=i,l1<l2

Sil1l2 + . . . + Sil1 ...ld−1
,

where Sil1 ...lj−1
is the j-th order SI for xi (2 ≤ j ≤ d).

By definition [13], if j = 1, then the quantity Si is named the main effect of xi; if j = 2,
then Sij are named two-way interactions (second-order SIs); if j = 3, then Sijk are the three-way
interactions (third-order SIs) and so on. The set of input parameters is categorized with
respect to their TSI [13]: very important if 0.8 < TSI; important if 0.5 < TSI < 0.8;
unimportant if 0.3 < TSI < 0.5 and irrelevant if TSI < 0.3.

To introduce the total sensitivity of the output variance to an input parameter xi,
i ∈ {1, . . . , d} one can exhibited its TSI: STi = Si + ∑

j 6=i
Sij + ∑

j 6=i,k 6=i,j<k
Sijk + . . . (see [2]).

Therefore, performance SA using Sobol’s approach is turned into a problem for high-
dimensional numerical integration [25].

2. Algorithms and Methods

Let us examine the following high-dimensional problem:

S( f ) := I =
∫

Us
f (x)dx, (2)

x ≡ (x1, . . . , xd) ∈ Us ⊂ Rs and f ∈ C(Us).
Let 0 ≤ t ≤ m be two integers. By definition [26,27], an elementary s-interval

in base b as a subset of Us of the form Es = ∏s
j=1

[ aj

bdj
,

aj+1

bdj

]
, aj, dj ≥ 0, aj < bdj for

all j ∈ {1, ..., s}. A (t, m, s)-net in base b is a sequence x(i) of bm points of Us such
that Card E ∩ {x(1), . . . , x(b

m)} = bt of λ(E) = bt−m. A (t, s)-sequence in base b is an
infinite points sequence x(i) in such a way that for all k ≥ 0, m ≥ t, the sequence
{x(kbm), . . . , x((k+1)bm−1)} is a (t, m, s)-net in base b.

I. M. Sobol [26] determines the Πτ-meshes and ΛΠτ sequences, which are (t, m, s)-nets
and (t, s)-sequences in base 2, introduced in 1988 by H. Niederreiter [27].

Now let us introduce the first algorithm that we are going to use; the well-known
Sobol sequence (SOBOL-SEQ) [28,29]. To generate its j-th component, we will choose a
polynomial: Pj = xsj + a1,jx

sj−1 + a2,jx
sj−2 + . . . + asj−1,jx + 1, and a1,j, . . . , asj−1,j are either

0 or 1. The sequence {m1,j, m2,j, . . .} is defined by

mk,j = 2a1,jmk−1,j ⊕ 22a2,jmk−2,j ⊕ · · · ⊕ 2sj mk−sj ,j ⊕mk−sj ,j,

⊕ is the bit-by-bit exclusive-or operator. For the merits m1,j, . . . , msj ,j is fulfilled in that

every mk,j2k, 1 ≤ k ≤ sj is odd. The direction numbers {v1,j, v2,j, . . . } are determined with

vk,j =
mk,j

2k . Then the j-th component of the i-th point in a SOBOL-SEQ, is determined with

xi,j = i1v1,j ⊕ i2v2,j ⊕ . . . , where ik is the k-th binary digit of i = (. . . i3i2i1)2. For generating
the SOBOL-SEQ, the algorithm with Gray code implementation [30] and SIMD-oriented
Fast Mersenne Twister (SFMT) [31] has been used.

We now briefly describe the three algorithms based on modified Sobol sequences. They
produced the best results for the problem under consideration up to now [32]. We use the
shortcut MCA-MSS for the Monte Carlo algorithms based on Modified Sobol Sequences.
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In the first algorithm MCA-MSS-1 [32], we choose a Sobol point (SP) x and a pseudo-
random point (p.p.) ξ ∈ Us uniformly distributed (u.d.) over the sphere. The sphere has a
centrum x and a radius ρ < 1. If the i-th SP is

xi = (xi,1, xi,2 . . . xi,d) ∈ Es
i , i = 1, . . . , n,

then ξi(ρ) with a p.d.f. p(x) is determined in the following way

ξi(ρ) = xi + ρωi,

where ωi is a unique u.d. vector in Us and ρ is the shaking radius.
It is assumed that n = ms, m ≥ 1. The unit cube Us is divided into ms disjoint

sub-domains:

Us =
ms⋃
j=1

Kj, where Kj =
s

∏
i=1

[a(j)
i , b(j)

i ),

with b(j)
i − a(j)

i =
1
m

for all i = 1, . . . , s.

Now in every s-dimensional sub-domain Kj exactly one ΛΠτ point x(j) is taken and
ξ(j)(ρ) = x(j) + ρω(j) ∈ Kj. Then MCA-MSS-1 gives the following approximate value of (2):

I( f ) ≈ 1
ms

n

∑
j=1

f (ξ(j)).

For the second algorithm MCA-MSS-2 [33], two SP ξ(j) and ξ(j)′ are taken so that ξ(j)

is chosen in the same way as used in MCA-MSS-1. The ξ(j)′ is selected to be symmetric to
ξ(j) in correspondence with the central point s(j) in Kj. Now there are exactly 2md points.
Now, we evaluate all f (ξ(j)) and f (ξ(j)′), for j = 1, . . . , md, and MCA-MSS-2 gives the
following approximate value of (2) :

I( f ) ≈ 1
2ms

2n

∑
j=1

[
f (ξ(j)) + f (ξ(j)′)

]
.

For MCA-MSS-1 and MCA-MSS-2, the Box–Muller transform is applied for the s-
dimensional vector y [34]: if s is even, then

y2i−1 =
√
−2 ln γ2i−1 cos (2 π γ2i), y2i =

√
−2 ln γ2i−1 sin (2 π γ2i), i = 1, . . . , s/2,

and γ is a random point in (0, 1)s. Therefore, a random point ξ over the s-dimensional
sphere is determined by ξ = x + ρ y/| y |.

In the third algorithm MCA-MSS-2-S [35], the original domain of integration is di-
vided into ms disjoint subdomains with equal volumes Ks

i , i = 1, . . . , ms. Now, the first
p.p. ξi is generated u.d. inside the subdomain Ks

i . The second point ξ
′
i is computed to

be symmetric to ξi in correspondence with the central point si in Ks
i . This is similar to

MCA-MSS-2 as the shaking is with different radiuses ρ in each subdomain. This algorithm
is similar to the stratified symmetrized Monte Carlo [26], which is why we use the notation
MCA-MSS-2-S. The value of (2) obtained approximately with MCA-MSS-2-S is given by:

I( f ) ≈ 1
2ms

ms

∑
i=1

[
f (ξi) + f (ξ

′
i)
]
.

The algorithms MCA-MSS-2 and MCA-MSS-2-S have an optimal rate of convergence
(n−

1
2−

2
s ) for the class of continuous functions with continuous first derivatives and bounded

second derivatives [35].
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Now to introduce lattice rules, let z ∈ Ns, and N is a natural number. By definition [36],
the point set P = x1, . . . , xN in Us with xk = kz/N for all 1 ≤ k ≤ N is named a lattice
point set and z is named its generating vector. The algorithm that uses a lattice point set is
named a lattice sequence [37].

We will use this rank-1 lattice sequence [38]:

xk =

{
k
N

z
}

, k = 1, . . . , N,

where N ≥ 2 is an integer, z = (z1, z2, . . . zs) is the generating vector and {z} denotes the
fractional part of z.

There exists an optimal choice of z according to [39]:∣∣∣∣∣∣∣
1
N

N

∑
k=1

f
({

k
N

z
})
−

∫
[0,1)s

f (u)du

∣∣∣∣∣∣∣ ≤ cd(s, α)
(log N)β(s,α)

Nα
,

for the function f ∈ Eα
s (c) [39], α > 1 and d(s, α), β(s, α) do not depend on N.

When s = 2, the following optimal construction exists [40].
Consider the following generating vector [38]:

z = (1, F(s)
n (2), . . . , F(s)

n (s)), (3)

using F(s)
n (j) := F(s)

n+j−1 −
j−2

∑
i=0

F(s)
n+i and F(s)

n+l (l = 0, . . . , j− 1, j is an integer, 2 ≤ j ≤ s) is the

corresponding number of the generalized Fibonacci series [38]. Then

F(s)
n (2) = F(s)

n+1 − F(s)
n = (F(s)

n + F(s)
n−1 + . . . + F(s)

n−s+1)− F(s)
n = F(s)

n−1 + . . . + F(s)
n−s+1.

Our generating vector (3) is transformed into [40]:

z = (1, F(s)
n−1 + F(s)

n−2 + . . . + F(s)
n−s+1, . . . , F(s)

n−1 + F(s)
n−2, F(s)

n−1). (4)

We construct a special lattice sequence with the generating vector (4), namely LATTICE-
FIBO.

Now we will improve the convergence of the lattice sequence using the recently
developed component and the Component Fast Construction method (CBC) [41–43]. Now
we construct a special lattice sequence LATTICE-CBC with an optimal generating vector
following the idea in [44,45]. At the first step of LATTICE-CBC, z = (z1, z2, . . . zs) is
generated by the CBC. After that, the points of LATTICE-CBC are obtained by the formula

xk =

{
k
N

z
}

, k = 1, . . . , N.

The approximate value IN of (2) is evaluated in the following way:

IN =
1
N

N

∑
k=1

f
({

k
N

z
})

.

Let Fb be the finite field with b elements for a prime power b (when b is a prime, Fb
is the residue class ring modulo b) [46] . Using Fb and a bijection φ : 0, . . . , b− 1 → Fb
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with φ(0) = 0̄, we generate a digital (t, s)-sequence over Fb. Now we take N × N matrices
C1, . . . , Cs over Fb. The matrices are of the form

c11 c12 c13 . . .
c21 c22 c23 . . .
c31 c32 c33 . . .
. . . . . . . . . . . .

 ∈ FN×N
b .

To now generate one of the points xn = (xn,1, . . . , xn,s), of the (t, s)-sequence, we
record n in its b-adic (i.e., base b) expansion

n =
∞

∑
i=0

aibi

with ai ∈ 0, . . . , b− 1 and ai = 0 for all i large enough. Now we choose the column vector
φ(a0)
φ(a1)
φ(a2)

. . .

 ∈ (FN
b )>

To generate the point xn = (xn,1, . . . , xn,s), for the i-th coordinate xn,i, the value of xn,i is
derived by multiplying the i-th matrix Ci by n in Fm

b , which derives a column vector over Fb:

Cin

 ȳn,i,1
ȳn,i,2
. . .

 ∈ (FN
b )>

The elements φ−1ȳn,i,j ∈ 0, ..., b− 1, for j ∈ N, are now the b-adic digits of xn,i, i.e.

xn,i =
φ−1ȳn,i,1

b
+

φ−1ȳn,i,2

b2 + . . .

Now the sequence derived in this way (x0, x1, . . . ) defines a digital sequence by
generating matrices C1, . . . , Cs [47].

Now we will consider two possible choices for the generating matrices. The first digital
sequence is generating matrices based on an implementation of the Sobol sequence from [48]
with 21201 dimensions, and we called it DIGITAL-SOBOL. The second digital sequence
uses the construction of Xing and Niederreiter [49]. This sequence was implemented by
Pirsic [50] and can be considered as the currently optimal low-discrepancy sequences with
a rate of convergence O(s logb s). We will call this sequence DIGITAL-XINGN.

3. Calculations and Results

The efficient stochastic algorithms, namely SOBOl-SEQ, MCA-MSS-1, MCA-MSS-
2, MCA-MSS-2-S, LATTICE-FIBO, LATTICE-CBC, DIGITAL-SOBOL and DIGITAL-
XINGN, have been applied to sensitivity studies with respect to emission levels and
some chemical reactions rates of the concentration variations of UNI-DEM pollutants. The
estimated quantity is denoted by EQ and its reference value by RV. The relative error is
denoted by RE and the approximate evaluation by AE.

In the case of the sensitivity studies with respect to emission levels, we will study
the sensitivity of the model output (in terms of mean monthly concentrations of several
important pollutants—in our case, this is ammonia in Milan) with respect to a variation
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of input emissions from the anthropogenic pollutants, which consists of four different
components E = (EA, EN, ES, EC) as follows:

EA − ammonia (NH3); ES − sulphur dioxide (SO2);
EN − nitrogen oxides (NO + NO2); EC − anthropogenic hydrocarbons.

The output of the model is the mean monthly concentration of the following three
pollutants:

s1—ozone (O3);
s2—ammonia (NH3);
s3—ammonium sulfate and ammonium nitrate (NH4SO4 + NH4NO3).

In the case of the sensitivity studies with respect to emission levels, the results for
REs for the AE of the f0, D, Si and Stot

i , using SOBOl-SEQ, MCA-MSS-1, MCA-MSS-
2, MCA-MSS-2-S, LATTICE-FIBO, LATTICE-CBC, DIGITAL-SOBOL and DIGITAL-
XINGN are shown in Tables 1–5, respectively. The quantity f0 is represented by a four-
dimensional integral, whereas the rest are represented by eight-dimensional integrals.

Table 1. RE for AE of f0 ≈ 0.048.

n DIGITAL-SOBOL LATTICE-CBC LATTICE-FIBO DIGITAL-XINGN

Rel. Rel. Rel. Rel.
Error Error Error Error

210 3e-04 4e-04 2e-04 2e-06
214 1e-05 2e-05 2e-05 1e-06
216 4e-06 4e-06 9e-06 3e-10

Table 2. RE for AE of f0 ≈ 0.048.

# of Points n SOBOL-SEQ MCA-MSS-1 MCA-MSS-2 MCA-MSS-2-S

Rel. ρ Rel. ρ Rel. Rel.
Error Error Error Error

28 2e-03 2e-02 5e-04
2× 28 8e-05 3e-03 1e-05

210 4e-04 7e-04 3e-05
2× 210 7e-04 1e-04 4e-06

214 3e-05 1e-04 3e-06
2× 214 1e-05 4e-05 2e-07

216 7e-06 1e-04 6e-07
2× 216 9e-05 8e-04 2e-08

Table 3. RE for AE of D ≈ 0.0002.

# of Points n SOBOL-SEQ MCA-MSS-1 MCA-MSS-2 MCA-MSS-2-S

Rel. ρ Rel. ρ Rel. Rel.
Error Error Error Error

210 4e-03 7e-04 9e-03
(2× 210) 7e-04 3e-04 3e-04

214 4e-04 1e-04 3e-04
(2× 214) 1e-05 2e-04 2e-05

216 4e-05 1e-04 2e-05
(2× 216) 9e-05 7e-04 2e-06
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Table 4. RE for AE of D ≈ 0.0002.

n DIGITAL-SOBOL LATTICE-CBC LATTICE-FIBO DIGITAL-XINGN

Rel. Rel. Rel. Rel.
Error Error Error Error

210 3e-04 8e-03 2e-01 1e-04
214 1e-05 6e-04 3e-03 9e-07
216 2e-06 4e-05 3e-04 1e-06

Table 5. RE for AE of SIs (n = 216).

EQ RV SOBOL-
SEQ

MCA-
MSS-

1

MCA-
MSS-

2

MCA-
MSS-
2-S

DIGIT-
SOBOL

LAT-
CBC

LAT-
FIBO

DIGIT-
XINGN

S1 9e-01 8e-05 8e-05 6e-06 5e-04 4e-07 6e-05 4e-04 1e-06
S2 2e-04 3e-02 3e-02 4e-03 7e-02 4e-06 4e-02 2e-01 6e-03
S3 1e-01 8e-04 8e-04 7e-05 1e-02 2e-06 3e-05 3e-03 1e-05
S4 4e-05 7e-02 7e-02 1e-02 6e-01 2e-04 8e-03 5e-01 1e-05

Stot
1 9e-01 8e-05 8e-05 1e-05 1e-03 3e-07 2e-05 5e-04 1e-06

Stot
2 2e-04 5e-03 2e-03 1e-03 3e-03 1e-05 5e-02 3e-01 3e-04

Stot
3 1e-01 7e-04 7e-04 4e-05 4e-03 3e-06 6e-04 2e-03 2e-06

Stot
4 5e-05 6e-02 6e-02 1e-02 1e-01 4e-04 3e-02 5e-01 1e-06

In the case of the sensitivity studies with respect to chemical reactions rates, we will
study the ozone concentration in Genova according to the rate variation of these chemical
reactions: ## 1, 3, 7, 22 (time-dependent) and 27, 28 (time-independent) of the CBM-IV
scheme ([19]) given as follows:

[#1] NO2 + hν =⇒ NO + O; [#22] HO2 + NO =⇒ OH + NO2;
[#3] O3 + NO =⇒ NO2; [#27] HO2 + HO2 =⇒ H2O2;
[#7] NO2 + O3 =⇒ NO3; [#28] OH + CO =⇒ HO2.

Here, “hv” represents the sunlight in the photochemical reactions and indicates that a
photon is proportional to its frequency by Plank’s constant.

In the case of the sensitivity studies with respect to chemical reactions rates, the
results for REs for the AE of the f0, D, Si, Sij and Stot

i , using SOBOl-SEQ, MCA-MSS-1,
MCA-MSS-2, MCA-MSS-2-S, LATTICE-FIBO, LATTICE-CBC, DIGITAL-SOBOL and
DIGITAL-XINGN, are shown in Tables 6–10, respectively. As in the first case study, the
quantity f0 is represented by a six-dimensional integral, whereas the rest are represented
by twelve-dimensional integrals.

Table 6. RE for AE of f0 ≈ 0.27.

n DIGITAL-SOBOL LATTICE-CBC LATTICE-FIBO DIGITAL-XINGN

Rel. Rel. Rel. Rel.
Error Error Error Error

212 1e-05 3e-04 1e-04 3e-08
214 5e-06 3e-05 4e-04 7e-11
216 1e-06 3e-06 3e-04 6e-11
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Table 7. RE for AE of f0 ≈ 0.27.

# of points n SOBOL-SEQ MCA-MSS-1 MCA-MSS-2 MCA-MSS-2-S

Rel. ρ Rel. ρ Rel. Rel.
Error Error Error Error

212 5e-05 3e-02 6e-06
2× 212 4e-04 7e-05 3e-06

214 2e-05 2e-04 1e-05
2× 214 2e-04 9e-06 9e-08

216 2e-06 2e-04 2e-07
2× 216 2e-05 4e-06 5e-07

Table 8. RE for AE of D ≈ 0.0025.

# of Points n SOBOL-SEQ MCA-MSS-1 MCA-MSS-2 MCA-MSS-2-S

Rel. ρ Rel. ρ Rel. Rel.
Error Error Error Error

26 1e-02 7e-04 1e-02
(2× 26) 7e-03 9e-03 8e-03

212 6e-04 4e-03 3e-05
(2× 212) 4e-04 4e-04 5e-04

214 1e-04 2e-04 1e-04
(2× 214) 2e-04 2e-04 6e-06

216 2e-05 2e-04 7e-05
(2× 216) 2e-05 2e-05 1e-04

Table 9. RE for AE of D ≈ 0.0025.

n DIGITAL-SOBOL LATTICE-CBC LATTICE-FIBO DIGITAL-XINGN

Rel. Rel. Rel. Rel.
Error Error Error Error

212 3e-04 8e-03 5e-01 2e-03
214 6e-05 3e-03 1e-01 4e-05
216 1e-05 2e-04 2e-03 2e-05

Table 10. RE for AE of SIs (n = 216).

EQ RV SOBOL-
SEQ

MCA-
MSS-

1

MCA-
MSS-

2

MCA-
MSS-
2-S

DIGIT-
SOBOL

LAT-
CBC

LAT-
FIBO

DIGIT-
XINGN

S1 4e-01 1e-04 4e-04 2e-04 2e-02 5e-06 1e-03 4e-02 2e-05
S2 3e-01 3e-05 2e-04 3e-04 6e-02 6e-06 4e-04 1e-02 2e-05
S3 5e-02 2e-04 2e-03 9e-04 8e-02 1e-04 1e-03 5e-01 1e-05
S4 3e-01 3e-04 2e-05 2e-04 4e-03 1e-05 5e-04 1e-02 1e-05
S5 4e-07 3e-01 7e+00 7e-02 2e+02 7e-02 3e+01 3e+03 4e-01
S6 2e-02 3e-04 1e-03 3e-04 4e-02 4e-06 1e-02 1e+00 3e-05

Stot
1 4e-01 1e-04 4e-05 2e-04 5e-02 8e-07 8e-04 8e-02 4e-05

Stot
2 3e-01 4e-05 5e-04 2e-04 3e-02 3e-06 1e-03 3e-02 3e-05

Stot
3 5e-02 3e-04 2e-03 8e-04 4e-02 1e-04 2e-03 1e+00 3e-05

Stot
4 3e-01 2e-04 5e-04 2e-04 4e-02 2e-05 1e-03 4e-01 2e-05

Stot
5 2e-04 7e-03 1e-02 4e-03 1e+00 9e-03 1e-01 9e+01 6e-03

Stot
6 2e-02 4e-04 1e-03 3e-04 4e-02 1e-05 1e-02 2e+00 7e-06

S12 6e-03 2e-04 5e-03 1e-03 7e-01 1e-04 4e-02 3e+00 3e-04
S14 5e-03 2e-03 2e-02 2e-03 1e+00 2e-05 9e-02 8e+00 6e-04
S24 3e-03 1e-03 2e-02 6e-03 1e+00 2e-04 6e-03 1e+01 1e-03
S45 1e-05 4e-02 1e-01 2e-02 4e+00 1e-02 9e-01 4e+01 2e-02
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4. Discussion of the Results

In the case of the sensitivity studies with respect to emission levels, a detailed discus-
sion has been made with the previous best available approaches described in [51–53].

For the number of samples n = 216 for the model function f0, the best algorithm is
the DIGITAL-XINGN, followed by MCA-MSS-2-S and MCA-MSS-1—see the results in
Tables 1 and 2 for the maximum number of samples. A big improvement over the older
best available result is obtained—the new result is 3e-10 vs. 2e-08 [32,35]. For a number
of samples n = 216 for the total variance D, the best algorithm is the DIGITAL-XINGN,
followed by MCA-MSS-2-S and DIGITAL-SOBOL—see the results in Tables 3 and 4 for the
maximum number of samples [32,35].

Our discussion here includes a detailed comparison with the previous results in the
field in [54,55]. For the total and first-order sensitivity indices in Table 5, it can be seen that
the two digital sequences improve the results produced by the best available approaches
up to now [32,33]. The DIGITAL-SOBOL gives the best results for S1, S2, S3, Stot

1 and Stot
2 ,

while the DIGITAL-XING gives the best results for S4, Stot
3 and Stot

4 . The general conclusion
is that our methods significantly improved the accuracy of the sensitivity indices described
in [56]. According to [33,54,56], the best available approaches up to now were the SOBOL-
SEQUENCE and MCA-MSS-1 for S4, Stot

1 (these two give exactly the same result for all
quantities except Stot

2 ), and MCA-MSS-2 was the best available algorithm for S1, S2, S3,
Stot

2 , Stot
3 , Stot

4 . From Table 5, one can conclude that between the two lattice sequences,
LATTICE-CBC is more accurate by at least 1. Furthermore, we can observe that the worst
are MCA-MSS-2-S and LATTICE-FIBO, and the last method gives unsatisfactory relative
errors. According to [32,54,56], the best improvements for the sensitivity indexes are
obtained for S2, the new result is 4e-06 vs. 4e-03; for S4, the new result is 1e-05 vs. 1e-02. For
all total sensitivity indices, there are serious improvements over the existing best available
results. For Stot

1 , the new result is 3e-07 vs. 1e-05; for Stot
2 , 1e-05 vs. 1e-03; for Stot

3 , 2e-06 vs.
4e-05; and for Stot

4 , 1e-06 vs. 1e-02. In [24], it is mentioned that having the smallest possible
sensitivity indices is the most important aspect of the model. In our case, these are S4 and
Stot

4 , and the improvement is with three and four orders, respectively, which will be crucial
for taking into account the reliability of the results of the model.

The performance of the algorithms can be generalized in such a way: the two digital
sequences proposed by the authors yield the smallest relative errors for all sensitivity
indices; algorithm MCA-MSS-2 is after that, followed by SOBOL-SEQUENCE, MCA-
MSS-1 and LATTICE-CBC. The worst results are produced by the MCA-MSS-2-S and
LATTICE-FIBO. Comparing our results with the results obtained in [32,35,54,56] the main
advantages of our methods include the significant improvement in the accuracy and lower
computational complexity.

In the case of sensitivity studies with respect to chemical reaction rates, a precise
discussion has been made with the previous best available approaches from [4,57,58].

For the number of samples n = 216 for the model function f0, the best algorithm
is the DIGITAL-XINGN, followed by MCA-MSS-2-S and MCA-MSS-1—see the results
in Tables 6 and 7 for the maximum number of samples. There is a huge improvement
according to the sensitivity studies in [32,35]—the new result is 6e-11 vs. 2e-07. For the
number of samples n = 216 for the total variance D, the best algorithm is the DIGITAL-
SOBOL, followed by DIGITAL-XINGN, MCA-MSS-2 and SOBOL-SEQUENCE—see the
results in Tables 8 and 9 for the maximum number of samples [4].

The discussion in this case includes a comparison between our obtained results with
other studies and other papers already published [32,59,60]. For all sensitivity indices in
Table 10, it can be seen that the two digital sequences improve the results produced by
the best available approaches except for the sensitivity index Stot

5 obtained in [32,33]. The
DIGITAL-SOBOL gives the best results for S1, S2, S4, S5, S6, Stot

1 , Stot
1 , Stot

2 , Stot
4 , S12, S14, S24

and S45, while the DIGITAL-XING gives the best results for S3, S4, Stot
3 , Stot

4 and Stot
6 . The

general conclusion is that our methods show a significant improvement in the accuracy vs.
the other calculations in this field [61]. According to [4,33,59], the best available approaches
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up to now were the SOBOL-SEQEUNCE for S1, S2, S6, Stot
2 , Stot

3 , Stot
4 , S12, S14, S24, MCA-

MSS-1 was the best for S4 and Stot
1 , and MCA-MSS-2 was the most accurate for S5, S6, Stot

4 ,
Stot

5 , Stot
6 , S14, S45. According to [35,59,60], the best improvement for the relative error is

that for the sensitivity index S6, the new result is 4e-06 vs. 3e-04; for Stot
1 , the new is 8e-07

vs. 4e-05; and for S14, the new result is 2e-05 vs. 2e-03. From Table 10, focusing on the
relative errors, one can conclude that between the two lattice sequences, LATTICE-CBC is
more accurate by at least two orders. Furthermore, we can observe that MCA-MSS-2-S is
one order better than LATTICE-FIBO and one order worse than the LATTICE-CBC.

We can conclude that the two digital sequences proposed by the authors yield the
smallest relative errors for all sensitivity indices except Stot

5 , and DIGITAL-SOBOL has the
edge; the algorithm MCA-MSS-2 is closely behind them, followed by SOBOL-SEQUENCE,
MCA-MSS-1, LATTICE-CBC and MCA-MSS-2-S. The lattice sequence LATTICE-FIBO gives
unsatisfactory relative errors for most of the quantities.

Based on the described comparison with other sensitivity studies and other papers
already published in the field [16,17,62,63], the general conclusion from our discussion
is that the main advantages of the proposed methods LATTICE-FIBO, LATTICE-CBC,
DIGITAL-SOBOL and DIGITAL-XINGN for the very important large-scale air pollution
model UNI-DEM are the much higher accuracy and lower computational complexity.

5. Conclusions

The present study is in a very important area of environmental safety. High levels of
pollution can damage ecosystems and harm plants, animals and humans, and it is of great
importance to study the levels of pollution precisely. That is why it is of great importance to
recognize whether the pollution levels are below some critical values and, if so, to establish
a well-founded control system to retain the pollution levels within these limits. These
problems can be accomplished successfully by the proposed highly efficient stochastic
approaches for studying the sensitivity of various pollution-related processes.

The computational efficiency in terms of relative error of one of the best available
stochastic methods for high-dimensional integration has been performed for the sensitivity
of the UNI-DEM model output to find the variation of rate constants of chosen chemical
reactions and the variation of selected input emissions of the anthropogenic pollutants.

The two proposed digital sequences based on Sobol and Xing-Niederreiter matri-
ces show an essential improvement over the existing best available results produced by
the modified Sobol sequences. The proposed approaches by the authors LATTICE-CBC,
DIGITAL-SOBOL and DIGITAL-XNING are established as the new best available stochastic
methods for this particular very important large-scale air pollution model UNI-DEM.

The obtained results will help test and improve the mathematical models and enable a
well-founded explanation by the relevant specialists. By recognizing the main chemical
reactions that influence the performance of the system, physicists and chemists will be able
to gather important information to improve the model, which will increase the reliability
and sustainability of forecasts. Therefore, through our sensitivity results, the mathematical
model will contribute to a more accurate evaluation of losses in agriculture and, most
importantly, enable an estimation of the effects of harmful emissions on human health.
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