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Abstract: Continuing investigations initiated by the first author, we associate relational structures for
metric spaces and investigate their model theoretic properties. In this paper, we consider ultrametric
spaces. Among others, we show that any elementary substructure of the relational structure associated
with a totally bounded ultrametric space X is dense in X. Further, we provide an explicit upper
bound for a splitting chain of atomic types in ultrametric spaces of a finite spectrum. For ultrametric
spaces, these results improve previous ones of the present authors and may have further practical
applications in designing similarity detecting algorithms.
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1. Introduction

Let X = 〈X, $〉 be a metric space. First, we recall a well-known method that associates
a relational structure A(X ) to X . If d is a distance of X , that is, d ∈ ran($), then the binary
relation Rd is defined to be

Rd = {〈a, b〉 ∈ X2 : $(a, b) ≤ d}.

Thus, the relational structure A(X ) := 〈X, Rd〉d∈ran($) completely describes X and, at
the same time, it can be treated as a first order relational structure.

We also recall that the metric space X = 〈X, $〉 is an ultrametric space if and only if

$(a, b) ≤ max{$(a, c), $(c, b)}

holds for all a, b, c ∈ X. Furthermore, a metric space X = 〈X, $〉 is defined to be totally
bounded iff, for all ε ∈ R+, there exists a finite set Cε ⊆ X such that, for all a ∈ X, there
exists c ∈ Cε with $(a, c) < ε, or in another words, the union of the finitely many open
ε-balls centered in the elements of Cε covers X.

Investigations related to the present work have been initiated and motivated in [1,2].
The present results may have practical applications e.g., in designing similarity detecting
algorithms. More concretely, consider the following setting:

• X is a set of instances of an abstract data type and
• $ is a distance function on X measuring similarity of elements of X (that is, if $(a, b) is

small for some a, b ∈ X, then a and b are “similar”).

The similarity detecting problem is the following. We are given a fixed set A ⊆ X and,
for an input x ∈ X, we would like to find some (or all) elements a ∈ A which are “similar
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enough to x”, that is, for which $(x, a) is smaller than a previously fixed ε ∈ R+. Very often,
X may be infinite and A is finite but huge. The challenge is how to represent A. In these
problems, usually the metric space is compact or at least totally bounded and often, it has
an ultrametric distance function. For further details, we refer to [2,3]. More applications of
finite metric spaces can be found in [4–6].

Structural investigations of A(X ) may help to find suitable representations for finite
subspaces of X . In particular, “small” substructures of A(X ) similar to the whole A(X )
play a central role. Hence, elementary substructures of A(X ), reflection principles and
model theoretic stability for formulas of low complexity (atomic formulas, universal for-
mulas, etc.) are particularly interesting.

From the results of [1], one can easily obtain that, ifX is a totally bounded metric space,
thenA(X ) is ∆-stable in the model theoretic sense (where ∆ is the set of all atomic formulas
of the language of A(X )). The proof of this was reconstructed in [7] (see Theorem 2.3
therein), where, similarly to [8], we find an “almost isometry” from our space into a finite
dimensional Euclidean space. In addition, in Theorem 2.4 of [7], we also characterized
dense in itself, totally bounded metric spaces in terms of stability properties of their associ-
ated relational structures. Moreover, by [9], stability of generalized Urysohn spaces can be
charactized by ultrametrizability.

In the present work, we will investigate totally bounded ultrametric spaces. As we
mentioned at the end of the previous paragraph, according to Theorem 2.4 of [7], for a
dense in itself metric space X , certain stability properties of A(X ) are equivalent with total
boundedness of X . Hence, this assumption seems to be reasonable. Furthermore, as we
mentioned above, from the point of view of applications, total boundedness of X seems to
be a mild assumption as well.

The main results of the present work are as follows. In Theorem 1, we prove that, if X
is a totally bounded metric space and Y is an elementary substructure of A(X ), then Y is
dense in X. According to the remark right after the proof of Theorem 1, this theorem is not
true in general (total boundedness cannot be deleted from the hypotheses). In Theorem 3,
we give an explicit upper bound for the length of a splitting chain of atomic types; this may
be used to design and analyze similarity detecting algorithms for ultrametic spaces with
finite spectrum (we postpone related investigations later). In Corollary 3, we show that, if
X is totally bounded, then one-point extensions of ℵ0-saturated elementary substructures
of A(X ) remain (ℵ0-saturated) elementary substructures. As a byproduct statement, in
Corollary 2, we show that, for a totally bounded X , the associated relational structure
A(X ) is not only ∆-stable, but, in fact, stable in the model theoretical sense. For ultrametric
spaces, this improves the results presented in [7]. We do not know if Corollary 2 remains
true without assuming that X is totally bounded.

The structure of the paper is rather simple: we close this section by fixing our notation.
Section 2 contains general model theoretical investigations and Section 3 is devoted to
investigate ultrametric spaces of the finite spectrum.

Notation

Our notation is mostly standard, but the following list may help. In general, for
topological or model theoretic notions not recalled here, we refer to [10] (and respectively
to [11] or [12]).

Throughout this, N denotes the set of natural numbers. In addition, R and R+ denote
the set of real numbers, and the set of positive real numbers, respectively.

Let X = 〈X, $〉 be a metric space, a ∈ X and let γ be a non-negative real number. As
usual, the open γ-ball B(γ, a) at a is the set

B(γ, a) = {x ∈ X : $(a, x) < γ}.

If L is a first order language, then FormL denotes the set of formulas of L.



Mathematics 2022, 10, 2144 3 of 9

2. Stability

Studying combinatorial and model theoretic properties of metric and ultrametric
spaces has a great tradition (see, e.g., Section 6.4 of [13], [14,15], and the references therein).
In this section, we investigate model theoretic stability of certain ultrametric spaces.

In this section, unless otherwise stated, ∆ and Γ denote finite sets of formulas. As
usual, we do not make a strict distinction between logically equivalent (but syntactically
different) formulas.

We assume that the reader is familiar with the notion of structures, types, partial types,
etc. For related definitions, we refer to [11,12].

Definition 1. Let A be a structure, let X ⊆ Y ⊆ A and let p be a partial type over Y. We recall
from [12] that, by definition, p is (∆, Γ)-splitting over X iff there are b, b

′ ∈ Y and ϕ(v, w) ∈ Γ
such that tp∆(b/X) = tp∆(b

′
/X) but ϕ(v, b),¬ϕ(v, b

′
) ∈ p.

Furthermore, p splits over X iff it (FormL, FormL)-splits over X where FormL denotes the
set of all formulas of the language L of A.

Remark 1. Keeping the notation of Definition 1, the following properties of splitting are immediate.

(1) If p (∆, Γ)-splits over X and ∆′ ⊆ ∆, Γ ⊆ Γ′, then p (∆′, Γ′)-splits over X.
(2) If p (∆, Γ)-splits over X and X′ ⊆ X, then p (∆, Γ)-splits over X′.

Lemma 1. SupposeA is a structure, X ⊆ Y ⊆ A and ā ∈ A−Y. Suppose φ, ψ ∈ Γ are formulas.

(1) If tp{¬φ}(ā/Y) (∆, {¬φ})-splits over X, then tpΓ(ā/Y) (∆, Γ)-splits over X.
(2) If tp{φ∧ψ}(ā/Y) (∆, {φ ∧ ψ})-splits over X, then tpΓ(ā/Y) (∆, Γ)-splits over X.

Proof. To show (1) assume tp{¬φ}(ā/Y) (∆,¬φ)-splits over X. Then, there exist b̄, b̄′ ∈ Y
such that

tp∆(b̄/X) = tp∆(b̄′/X) and ¬φ(ā, b̄),¬¬φ(ā, b̄′) ∈ tp{¬φ}(ā/Y).

Thus, ¬φ(ā, b̄), φ(ā, b̄′) ∈ tpΓ(ā/Y) showing that tpΓ(ā/Y) (∆, Γ)-splits over X.

The proof of (2) is similar: assume tp{φ∧ψ}(ā/Y) (∆, {φ ∧ ψ})-splits over X. Then,
there exist b̄, b̄′ ∈ Y such that

tp∆(b̄/X) = tp∆(b̄′/X) and (φ ∧ ψ)(ā, b̄),¬(φ ∧ ψ)(ā, b̄′) ∈ tp{φ∧ψ}(ā/Y).

In particular, A |= ¬(φ(ā, b̄′)) ∨ ¬(ψ(ā, b̄′)). By symmetry, we may assume

A |= ¬φ(ā, b̄′),

that is, ¬φ(ā, b̄′) ∈ tpΓ(ā/Y). However, then φ, b̄ and b̄′ show that tpΓ(ā/Y) (∆, Γ)-splits
over X.

We will use the following notation. If Ω is a set of formulas, then

∃Ω := Ω ∪ {∃vϕ : ϕ ∈ Ω and v is a variable occurring in ϕ}.

Lemma 2. Suppose A is a structure, X ⊆ Y ⊆ A, X is finite and ā ∈ A−Y. Suppose

(a) if b̄ ∈ Y , φ ∈ Γ and A |= ∃vφ(v, ā, b̄), then there exists c ∈ Y such that A |= φ(c, ā, b̄) and
(b) for all finite Y0 ⊆ Y, each ∆-type over Y0 can be realized in Y.

If tp∃Γ(ā/Y) (∃∆, ∃Γ)-splits over X, then tpΓ(ā/Y) (∆, Γ)-splits over X.
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Proof. Assume tp∃Γ(ā/Y) (∃∆, ∃Γ)-splits over X. Then, there exist b̄, b̄′ ∈ Y and φ ∈ Γ
such that

tp∃∆(b̄/X) = tp∃∆(b̄′/X) butA |= ∃vφ(v, ā, b̄) ∧ ¬∃vφ(v, ā, b̄′). (1)

By (a), there exists c ∈ Y with A |= φ(c, ā, b̄). Let p(v, w̄) = tp∆(cb̄/X) (where
the variable v corresponds to c and w̄ corresponds to b̄). Then, c witnesses that ∃v ∧
p(v, w̄) ∈ tp∃∆(b̄/X). Furthermore, as tp∃∆(b̄/X) = tp∃∆(b̄′/X), we obtain ∃v ∧ p(v, w̄) ∈
tp∃∆(b̄′/X). Then, p(v, b̄′) is a ∆-type over X ∪ b̄′.

Hence, (b) implies that there exists a realization c′ ∈ Y of p(v, b̄′), in particular,

p(v, w̄) = tp∆(cb̄/X) = tp∆(c′ b̄′/X).

However, then cb̄, c′ b̄′ and φ show that tpΓ(ā/Y) (∆, Γ)-splits over X (we note that
A |= ¬φ(c′, ā, b̄′) because of the last part of (1)).

Theorem 1. Suppose X = 〈X, $〉 is a totally bounded metric space. If Y is an elementary
substructure of A(X ), then Y is dense in X.

Proof. Since X is assumed to be totally bounded, it follows that, for each ε ∈ ran($), there
exists n ∈ N and

there exist a0, ..., an−1 ∈ X such that {B(ε, ai) : i < n} is an ε-net. (2)

However, (2) can be formalized in the language of A(X ). Hence,

there are a′0, ..., a′n−1 ∈ Y such that {B(ε, a′i) : i < n} is an ε-net in Y .

Finally, as Y is an elementary substructure of A(X ), it follows that {B(ε, a′i) : i < n} is
an ε-net in X as well.

It is natural to ask if Theorem 1 remains true without assuming that X is totally
bounded. The following example shows that this condition cannot be completely elim-
inated, that is, some extra conditions for X must be assumed in order to reach the
desired conclusion.

Let A be any uncountably infinite set and let X be the set of all functions from N into
A. For any f , g ∈ X, define $( f , g) to be

$( f , g) =
{

0 if f = g,
1

n+1 if f 6= g and n is the smallest number for which f (n) 6= g(n).

It is straightforward to check that 〈X, $〉 is an ultrametric space. As ran($) ⊆ Q, the
language of A(X ) is countable. Hence, there exists a countable elementary substructure Y
of A(X ). Finally, we show that Y is not dense in X. To do so, let R = { f (0) : f ∈ Y}. Since
Y is countable, so is R and hence there exists a ∈ A− R. Let g ∈ X be such that g(0) = a.
However, then, clearly, Y and B( 1

2 , g) are disjoint (recall that B( 1
2 , g) denoting the open ball

centered at g with radius 1
2 ).

Lemma 3. Suppose X = 〈X, $〉 is a metric space and let ∆ be the set of atomic formulas of the
language of A(X ). Let A0 ⊆ A1 ⊆ B ⊆ X and a, b ∈ X− B. Let f : B ∪ {a, b} → B ∪ {a, b} be
the function interchanging a and b and leaving all elements of B fixed. Suppose in addition that

(1) tp∆(a/A1) = tp∆(b/A1);
(2) the types tp∆(a/B) and tp∆(b/B) do not split over A0;
(3) if a ∆-type over A0 can be realized in B, then it also can be realized in A1.
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Then, f is a partial isomorphism of A(X ) (that is, f is an isomorphism between the substruc-
tures of A(X ) generated by its domain and range).

Proof. Let x ∈ ran($), c, d ∈ B ∪ {a, b} be arbitrary. If c, d ∈ B or {c, d} = {a, b},
then, clearly,

A(X ) |= $(c, d) ≤ x iff A(X ) |= $( f (c), f (d)) ≤ x.

Hence, without loss of generality, we may assume that c = a and d ∈ B.
By (3), there is an element d′ ∈ A1 such that tp∆(d/A0) = tp∆(d′/A0). In addition,

we have
tp∆(a/d)

by (2)
= tp∆(a/d′)

by (1)
= tp∆(b/d′)

by (2)
= tp∆(b/d)

hence A(X ) |= $(a, d) ≤ x iff A(X ) |= $( f (a), f (d)) ≤ x, as desired.

Lemma 4. Suppose X = 〈X, $〉 is an ultrametric space and let ∆ be the set of atomic formulas of
the language of A(X ). Suppose A ⊆ X and a, b ∈ X are such that

$(a, b) < in f {$(a, c) : c ∈ A}.

Then, tp∆(a/A) = tp∆(b/A).

Proof. Let c ∈ A be arbitrary. Then,

$(b, c) ≤ max{$(b, a), $(a, c)} = $(a, c).

Furthermore, suppose seeking a contradiction that $(b, c) < $(a, b). Then, we
would have

$(a, c) ≤ max{$(a, b), $(b, c)} = $(a, b),

which is impossible. It follows that $(a, c) = $(b, c) holds for any c ∈ A, as desired.

Notational Convention. In order to make our notation more reader friendly, till the
end of the present section, we will apply the following notational conventions. If X is
a metric space, then, for simplicity, we will denote A(X ) by A and the underlying set
of A(X ) by A. Furthermore, ∆ will denote the set of atomic formulas of the language
of A(X ).

Lemma 5. Let X be a totally bounded ultrametric space. With the above notational convention,
suppose, for each Y ⊆ A and a ∈ A−Y, there exists a finite X ⊆ Y such that tp∆(a/Y) does not
(FormL, ∆)-split over X.

If Y is the universe of an ℵ0-saturated elementary substructure of A and a ∈ A, then Y ∪ {a}
generates an ℵ0-saturated elementary substructure of A.

Proof. If a ∈ Y, then the statement is obvious. Hence, in the rest of the proof, we assume
a ∈ A− Y. Throughout this proof, if U ⊆ A, then the substructure of A generated by U
will be denoted by A|U .

First, we shall show that

A|Y is an elementary substructure ofA|Y∪{a}. (3)

To do so, assume d ∈ Y, u ∈ Y ∪ {a} and ϕ is a formula such that A|Y∪{a} |= ϕ(u, d).
It is enough to check that there exists v ∈ Y such that A|Y∪{a} |= ϕ(v, d). If u ∈ Y, then we
are done, so we may assume u = a.
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Observe that, by assumption, there exists a finite subset A0 ⊆ Y such that tp∆(a/Y)
does not (FormL, ∆)-split over A0. We claim that, in fact,

tp∆(a/A− {a})does not (FormL, ∆)-split over A0. (4)

To check this, assume, seeking a contradiction, that there are x, y ∈ A− {a} such that
tp(x/A0) = tp(y/A0) but $(a, x) 6= $(a, y). Let

ε := in f
(
{$(a, e) : e ∈ A0 ∪ {x, y}}

)
.

Since A0 ⊆ Y and a ∈ A−Y, we have ε > 0. Furthermore, by Lemma 1, there exists
a′ ∈ Y such that $(a, a′) < ε

2 . By Lemma 4, $(a, x) = $(a′, x) and $(a, y) = $(a′, y). As A|Y
is an elementary substructure of A, there exist x′, y′ ∈ Y such that

tp(x/A0 ∪ {a′}) = tp(x′/A0 ∪ {a′})

and
tp(y/A0 ∪ {a′}) = tp(y′/A0 ∪ {a′}).

In particular, tp∆(a′/A0 ∪ {x′, y′}) (FormL, ∆)-splits over A0. However, then, by
Lemma 4, tp∆(a/A0 ∪ {x′, y′}) would (FormL, ∆)-split over A0, which is impossible by the
choice of A0 (and because x′, y′ ∈ Y). Hence, (4) is true.

Note that there are finitely many ∆-types over A0 and each of them can be realized in
A, hence in A|Y as well. Let A1 ⊆ Y be finite such that all ∆-types over A0 can be realized
in A1. For each finite set, s ⊆ Y, let bs be a realization of

tpA(a/A1 ∪ s)

in A|Y. Finally, let fs : Y ∪ {a} → Y ∪ {a} be the function interchanging a and bs and
leaving all elements of Y− {bs} fixed. We claim that, for all s,

fs is an automorphism ofA|Y∪{a}. (5)

To check this, observe that the conditions of Lemma 3 are satisfied by our construction.
Now, consider the case when s = ∅. By (5), f∅ is still an automorphism of A|Y∪{a}. It

follows that A|Y∪{a} |= ϕ( f∅(a), f∅(d)). However, by construction, f∅(a) = b∅ ∈ Y and
f∅(d) = d. Thus, (3) has been established.

It remains to show that A|Y∪{a} is an elementary substructure of A. To do so, assume
d ∈ Y and ϕ is a formula such that A |= ϕ(a, d). We shall show

A|Y∪{a} |= ϕ(a, d). (6)

Let s be any finite subset of Y containing the range of d. Then, by construction, bs ∈ Y
and A |= ϕ(bs, d). Since Y generates an elementary substructure of A, we also have
A|Y |= ϕ(bs, d). Furthermore, by (3), A|Y is an elementary substructure of A|Y∪{a} hence
A|Y∪{a} |= ϕ(bs, d). Finally, by (5), fs is an automorphism of A|Y∪{a} mapping bs onto a
and leaving d fixed. Therefore, A|Y∪{a} |= ϕ(a, d), that is, (6) holds, as desired.

To show that A|Y∪{a} is ℵ0-saturated, assume s ⊆ Y is finite and p is a type over
s ∪ {a}. We shall show that p can be realized in A|Y∪{a}. By the previous parts, fs(p) is
a type over s ∪ bs ⊆ Y. Since A|Y is assumed to be ℵ0-saturated, there exists c ∈ Y that
realizes fs(p). However, then fs(c) realizes p and we are done.

Now, for certain ultrametric spaces, we can improve Lemma 2.

Lemma 6. Assume the hypotheses of Lemma 5. Let Γ and Φ be any finite set of formulas. With the
notational convention before Lemma 5, suppose X ⊆ Y ⊆ A, X is finite and ā ∈ A−Y. Suppose
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Y generates an ℵ0-saturated substructure of A.
If tp∃Γ(ā/Y) (∃Φ, ∃Γ)-splits over X, then tpΓ(ā/Y) (Φ, Γ)-splits over X.

Proof. By Lemma 5, Y ∪ {ā} generates an ℵ0-saturated elementary substructure of A,
hence Lemma 2(a) and (b) are satisfied.

Theorem 2. Assume the hypotheses of Lemma 5. With the notational convention before Lemma 5,
let X ⊆ Y ⊆ A and ā ∈ A − Y such that Y is the universe of an ℵ0-saturated elementary
substructure of A.

If tp∆(ā/Y) does not (FormL, ∆)-split over X, then tp(ā/Y) does not split over X.

Proof. Let ∆0 = ∆, and, if ∆n has already been defined for some n ∈ N, then let

∆n+1 = ∆ ∪ {¬φ, φ ∧ ψ : φ, ψ ∈ ∆n} ∪ ∃∆n.

To complete the proof, we shall show that, for all n ∈ N,

tp∆n(ā/Y)does not (FormL, ∆n)-split over X. (7)

We apply induction on n. For n = 0, (7) holds by assumption. Next, assume (7)
is true for some n ∈ N. Let φ, ψ ∈ ∆n be arbitrary. Then, (the contrapositive forms of)
Lemmas 1 and 6 imply respectively that

• tp¬φ(ā/Y) does not (FormL, {φ})-split over X;
• tpφ∧ψ(ā/Y) does not (FormL, {ψ ∧ ψ})-split over X and
• tp∃∆n(ā/Y) does not (FormL, ∃∆n)-split over X.

Consequently, (7) remains true for n + 1, and the induction is complete.
Finally observe that, if tp(ā, Y) would split over X, then, for some n ∈ N, tp∆n(ā/Y)

would (FormL, ∆n)-split over X. Hence, the proof is complete.

The next corollary, in our context, is a kind of converse of Lemma 2.7 of Chapter I.2
of [12]. The idea of the proof is similar to the methods applied in [16].

Corollary 1. Assume the hypotheses of Lemma 5. Then, A is stable.
In more detail, suppose X is a totally bounded ultrametric space and with the notational

convention before Lemma 5, suppose, for each Y ⊆ A and a ∈ A−Y, there exists a finite X ⊆ Y
such that tp∆(a/Y) does not (FormL, ∆)-split over X. Then, A is stable.

Proof. It is enough to show that, if A′ is an elementary extension of A and Y ⊆ A′ is
the universe of an ℵ0-saturated elementary substructure of A′ with |Y| = 22ℵ0 , then the
number of types over Y is at most (in fact, precisely) |Y|. Without loss of generality, we
may assume that A′ is |Y|+-saturated.

For each finite subset X ⊆ Y, choose YX ⊆ Y with X ⊆ YX and which is the universe
of an ℵ0-saturated elementary substructure of A′ with cardinality 2ℵ0 . By assumption, for
all a ∈ A′ −Y, there exists a finite X(a) ⊆ Y such that

tp∆(a/Y)does not (FormL, ∆)-split over X(a). (8)

For each a ∈ A−Y, let γ(a) = 〈X(a), tp(a/YX(a))〉. Clearly,

|ran(γ)| ≤ |[Y]2ℵ0 | · 22ℵ0 = |Y|.

Combining this with our saturation assumption on A′, it is enough to show that

for all a, b ∈ A−Y if γ(a) = γ(b), then tp(a/Y) = tp(b/Y).
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To do so, assume a, b ∈ A − Y and γ(a) = γ(b). By Theorem 2, tp(a/YX(a)) does
not split over X(a) and similarly (by γ(a) = γ(b)), tp(b/YX(a)) does not split over X(a).
Suppose φ(v, b̄) ∈ tp(a/Y); we shall show φ(v, b̄) ∈ tp(b/Y). Let c̄ be a realization
of tp(b̄/X(a)) in YX(a) (such a realization exists because YX(a) is ℵ0-saturated). Since
tp(a/Y) does not split over X(a), it follows that φ(v, c̄) ∈ tp(a/YX(a)). Combining this
with γ(a) = γ(b), we obtain φ(v, c̄) ∈ tp(b/YX(a)). However, tp(b/YX(a)) does not split
over X(a), whence φ(v, b̄) ∈ tp(b/Y), as desired.

3. Ultrametric Spaces of Finite Spectrum

In somewhat different contexts, variants of the next theorem appear in [1].

Theorem 3. Let X = 〈X, $〉 be an ultrametric space of finite spectrum, let Y ⊆ A and let ∆ =
{Rα : α ∈ ran($)} be the set of atomic formulas of A(X ). Then, for each a ∈ A−Y, there exists a
finite B ⊆ Y such that tp∆(a/Y) does not (∆, ∆)-split over B. In addition, |B| ≤ 2 · (|ran($)|−1

2 ).
If X is an ultrametric space with an arbitrary spectrum, then the same conclusion holds for all

finite reducts of A(X ).

Proof. Fix a ∈ A−Y and assume, seeking a contradiction, that there is no B satisfying the
conclusion of the theorem. For each i ≤ 1 + (

|ran($)|−1
2 ), we define finite subsets Bi ⊆ Y and

ci, di ∈ Y by recursion such that the following stipulations are satisfied:

(a) Bi+1 = Bi ∪ {ci+1, di+1} is finite;
(b) tp∆(ci+1/Bi) = tp∆(di+1/Bi);
(c) $(a, ci+1) > $(a, di+1) > 0.

Let B0 = ∅; then, clearly, (a)–(c) are satisfied. Assume i ≤ (
|ran($)|−1

2 ) and Bj, cj, dj
have already been defined for all j ≤ i, such that (a)–(c) are satisfied. According to the
indirect assumption in the first sentence of the present proof,

tp∆(a/Y) (∆, ∆)-splits over Bi.

It follows that there exist ci+1, di+1 ∈ Y such that tp∆(ci+1/Bi) = tp∆(di+1/Bi) but
$(a, ci+1) > $(a, di+1). Define Bi+1 to be Bi+1 = Bi ∪ {ci+1, di+1}. Clearly, (a)–(c) re-
main true.

In this way, Bi, ci, di has been defined for all i ≤ 1 + (
|ran($)|−1

2 ). Let

T = {〈α, β〉 : α > β > 0, α, β ∈ ran($)}.

Clearly, |T| ≤ (
|ran($)|−1

2 ) and for each i ≤ 1 + (
|ran($)|−1

2 ), we have 〈$(a, ci), $(a, di)〉 ∈
T. However, then, by the pigeon hole principle, there exist α > β ∈ ran($) − {0} and
j < k ≤ 1 + (

|ran($)|−1
2 ) such that

α = $(a, cj) = $(a, ck) and β = $(a, dj) = $(a, dk).

Now, observe that

$(dj, dk) ≤ max{$(dj, a), $(a, dk)} = β

hence, by (b), we obtain $(ck, dj) ≤ β. In addition,

$(ck, dk) ≤ max{$(ck, dj), $(dj, dk)} ≤ β.

Therefore,
α = $(ck, a) ≤ max{$(ck, dk), $(dk, a)} ≤ β,
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which is impossible because, by stipulation (c) of our construction, α > β. This con-
tradiction completes the proof.

The last sentence of the theorem can be proved similarly.

Corollary 2. Totally bounded ultrametric spaces are stable.

Proof. SinceA(X ) is stable if and only if all of its finite reducts are stable, one can combine
Corollary 1 and Theorem 3.

Corollary 3. If X is a totally bounded metric space, Y is an ℵ0-saturated elementary substructure
of A(X ) and a ∈ X is arbitrary, then Y ∪ {a} generates an ℵ0-saturated elementary substructure
of A(X ).

Proof. Combine Lemma 5 and Theorem 3.
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