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Abstract: More than 10-billion physical items are being linked to the internet to conduct activities
more independently and with less human involvement owing to the Internet of Things (IoT) tech-
nology. IoT networks are considered a source of identifiable data for vicious attackers to carry out
criminal actions using automated processes. Machine learning (ML)-assisted methods for IoT security
have gained much attention in recent years. However, the ML-training procedure incorporates large
data which is transferable to the central server since data are created continually by IoT devices at
the edge. In other words, conventional ML relies on a single server to store all of its data, which
makes it a less desirable option for domains concerned about user privacy. The Federated Learning
(FL)-based anomaly detection technique, which utilizes decentralized on-device data to identify
IoT network intrusions, represents the proposed solution to the aforementioned problem. By ex-
changing updated weights with the centralized FL-server, the data are kept on local IoT devices
while federating training cycles over GRUs (Gated Recurrent Units) models. The ensemble module
of the technique assesses updates from several sources for improving the accuracy of the global
ML technique. Experiments have shown that the proposed method surpasses the state-of-the-art
techniques in protecting user data by registering enhanced performance measures of Statistical Anal-
ysis, Energy Efficiency, Memory Utilization, Attack Classification, and Client Accuracy Analysis for
the identification of attacks.

Keywords: federated learning; security; DDoS attack; Internet of Things

MSC: 68P25; 68P30

1. Introduction

Internet of Things (IoT) technology represents an inter-network of digitally intercon-
nected sensors that can automate a wide range of functions. Smart solutions based on
artificial intelligence (AI) are quickly becoming the norm in today’s digital world. Sev-
eral industrial machine learning (ML) solutions rely on IoT’s micro-service architecture
because it is an effective platform for application deployment. Incorporating ML into
mini-compatible hardware architectures in IoT allows it to support AI-enabled services.
Intelligent digital assistants, smart homes, and the Industrial IoT (IIoT) are all examples of
how IoT devices are improving services in several industries. It has been demonstrated that
IoT devices are excellent at delivering AI-empowered decision-making. Notably, however,
IoT relies on sensitive end-user information. Because IoT devices must operate with little
power consumption, traditional security firewalls can not be used to protect them, leaving
them vulnerable to a variety of attacks. As described by Kolias et al. [1], malware bots
such as Mirai can take advantage of IoT device vulnerabilities to gain control of their AI
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functions. As a result, access to non-IoT systems inter-connected with IoT devices can
be granted.

1.1. Research Domain

Unprotected IoT devices pose significant vulnerability to the entire network. Physical
devices and the digital world must be connected via a network protocol in IoT networks.
An investigation of IoT security vulnerabilities has been conducted by Neshenko et al. [2],
Zhou et al. [3], and Panchal et al. [4] to discuss numerous attack-types and the correspond-
ing impact on IoT sub-systems. There has been a rapid increase in vulnerable activities
that exploit the security gaps of IoT networks [5]. Moreover, there is a huge demand
for IoT devices owing to the popularity of microdevices that provide intelligent digital
assistance and have been demonstrated to minimize manual labor. Many IoT devices have
been produced with poor design choices, which has resulted in vulnerable hardware and
extremely insecure IoT devices providing and exchanging digital information. It is difficult
to set up an ML-based anomaly detection approach because of the wide variety of IoT sen-
sors and regular training requirements to ensure performance optimality. Conspicuously,
both developers and end-users are concerned about IoT security. IoT networks have been
considered a core research domain by several authors in recent years. As a result, ML-based
solutions for analyzing network breaches have become increasingly commonplace.

1.2. Research Motivation

Due to disadvantages (such as the requirement that all training data be stored on
a centralized repository), security issues associated with transmitting acquired data from
IoT sensors to the server, and computational costs associated with training large volumes
of data on a unified server, ML-inspired decision-making is rarely preferred. The Federated
Learning (FL) technique is one of the most promising and adaptable ways to address
shortcomings of the ML-based approach. Decentralized ML model training in the FL
technique preserves the data over the edge device and transfers the trained ML attributes to
the centralized server. Comparative to conventional FL systems, the method of FL is proved
to protect user data, making it the preferable option. Conspicuously, an ensemble-based so-
lution to anomaly detection for IoT networks is proposed in the current study. It is possible
to train ML models for anomaly detection on IoT networks using the presented technique,
which does not require network data to be sent to a centralized server. Specifically, Long
Short-Term Memory (LSTM) and Gated Recurrent Units-Neural Network (GRU-NN) mod-
els are employed for training ML effectively over the Modbus data to achieve effective
outcomes in detecting IoT intrusion. In comparison with the state-of-the-art ML technique,
the presented experimental findings show a reduced error in attack prediction with minimal
false alarms. Some of the main contributions of the presented study are:

1. Federated Learning (FL)-based procedure has been proposed to ensure IoT-device
security.

2. Attribute migration from a local node to a global node in the IoT framework has been
proposed for effective attack identification.

3. Attack detection has been performed using the proposed FL mechanism based
on the deep learning technique of Long Short-term memory (LSTM)

4. The performance of the proposed model has been assessed in terms of Statistical
Analysis, Energy Efficiency, Memory Utilization, Attack Classification, and Client
Accuracy Analysis.

Based on the aforementioned aspects, Figure 1 shows a generic overview of the pro-
posed technique at the architectural level.
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Figure 1. Conceptual View of IoT-Edge-Cloud for Anomaly Detection.

Paper Organization

Section 2 reviews some of the related studies in the current domain. Section 3 presents
the proposed approach based on FL for attack classification. Section 4 summarizes the ex-
perimental results for validation purposes. Finally, Section 5 concludes the paper with
future research directions.

2. Related Work

IoT microarchitecture design has been demonstrated to be successful in delivering ML
solutions. As IoT has grown in popularity and usage, several research directions have been
explored by researchers. The detection and classification of IoT network attacks represents
one such research direction. Numerous research efforts have been presented to protect
IoT networks from harmful attacks. In the current section, state-of-the-art research has
been reviewed that proposes ML-inspired approaches to enhance the security of IoT net-
works. Waqas et al. [6] suggested that malicious Mirai-infected IoT devices can be detected
by auto-learning sub-systems called BoTs, which are built on FL-inspired methods with
an adaptive learning approach for IoT networks in the smart home. IoT security services
and gateways are part of BoT’s architectural framework. IoT relies on security gateways to
connect IoT devices to the internet. The updated weights from IoT sensors are aggregated
by a security module, which formulates device-specific storage for anomaly identification
techniques. Based on the experimental simulation, enhanced accuracy and specificity
were registered for the proposed model. Thom et al. [7] proposed a technique to monitor
the IoT network’s traffic using device-specific anomaly identification when new devices
are added. A self-learning algorithm eliminates the need for an attack labeling since BoT
learns the pattern associated with each attack type. False alarms in the detection of attacks
are decreased, according to evaluation findings. However, there was no deep learning
framework for FL, and the method was restricted to single (Mirai) attack types. Moreover,
limited performance was registered for the presented approach in terms of battery power
management. Deepfed, an FL-inspired intrusion identification system, was introduced by
Li et al. [8] to identify risks in the internet-connected framework. GRU and Convolutional
Neural Networks (CNN) are utilized to identify threats, while Paillier cryptosystems are
employed to assure the privacy of both global and local models during learning. Based
on experimental simulations, performance was comparatively better in terms of statisti-
cal measures. FedAGRU, an FL-based attention-gated recurrent unit, was proposed by
Chen et al. [9]. To combat poisoning attacks, FedAGRU is designed to discover and discard
minimal updates for an effective global model that minimizes communication costs. How-
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ever, energy consumption was maximized for the presented approach in the simulation
trials. An FL-based technique for wireless intrusion detection (WID) was also proposed
by Cetin et al. [10] using a large data set. Two FL techniques were implemented using
a mimic learning technique, which was combined with the ML-based intrusion detection
system by Al-Athba et al. [11]. Experimental validation depicted enhanced performance for
the proposed approach. The TensorFlow federated (TFF3) framework is another FL-based
solution proposed in Rahman et al. [12]. However, the solution lacks in cost minimization
and data loss. ML-inspired intrusion identification provided in Rouzbahani et al. [13] is
comparable to the current work, which proposes a TensorFlow-based DL system for cen-
tralized anomaly detection. A threat detection algorithm employs six LSTMs as presented
by Breux et al. [14]. Deep learning with PySyft by Ryffel et al. [15] implements FL and GRU,
which further boosts the model’s efficiency. Mothukuri et al. [16] proposed an ML-inspired
anomaly identification method based on the detection of abnormalities in intelligent home
sensors. To detect attacks, the authors recommended the logistic regression technique and
the basic ANN classification algorithm. The authors focused on discovering data attack
trends and utilizing a simple categorization technique that is non-adaptive to an ever-
changing spectrum of IoT sensors. Significant performance was registered in comparison
to the state-of-the-art decision-making models. To identify abnormalities in temporal data
of industrial IoT applications, Li et al. [17] employed the attention-based CNN with LSTM.
FL is implemented using the PySyft (Source: https://blog.openmined.org/install/, ac-
cessed on 28 April 2022) and PyTorch (Source: https://pytorch.org/, accessed on 28 April
2022). A gradient compression approach is presented to increase communication efficiency.
Comprehensively, the state-of-the-art research on anomaly detection in IoT networks lacks
an effective decentralized communication infrastructure. Henceforth, these constraints are
incorporated to propose an FL-based method for IoT security threats. Moreover, Table 1
has been formulated to depict the comparative analysis with state-of-the-art research works
in the current domain.

Table 1. State-of-the-art Comparison (Yes: Available, –: Not Available).

References [14] [18] [12] [11] [16] [17] [10] Proposed

Security Yes Yes Yes Yes Yes Yes Yes Yes

IoT – Yes Yes – Yes No – Yes

Quantification Yes Yes Yes Yes Yes – Yes Yes

Data Repository Yes Yes Yes Yes – – Yes Yes

Energy Efficiency – – – – – Yes Yes Yes

Federated Learning – Yes Yes – Yes – – Yes

Anomaly Prediction – Yes – – – – – Yes

3. Proposed Model

Figure 2 shows the conceptual architecture of the proposed model [16]. Several
important components have been formulated for effective classifications of the attacks
in the IoT scenarios. The detailed functionality of each component has been provided
ahead in detail.

https://blog.openmined.org/install/
https://pytorch.org/
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Figure 2. FL-based Attack Classification.

3.1. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs)

The short-term memory/vanishing gradients problem can be addressed using the het-
erogeneous LSTM and GRUs models. Long-term dependencies can be learned by using
LSTMs and GRUs, which include gates for monitoring data transmission and control-
ling the training procedure. Gates operate as switches, preserving both short-term and
long-term data. LSTMs and GRUs have been used in a variety of real-time applications,
including anomaly identification, voice detection, speech synthesis, and textual production.
Both GRUs and LSTM models were tested during the assessment of the presented strategy,
with GRUs models showing a greater accuracy rate and being less computationally expen-
sive than LSTMs in the early FL training rounds. Some of the important aspects of GRU
and LSTM are detailed ahead.

1. Sigmoid Function: Provides a means of determining whether or not any data should
be retained or destroyed. Data in the network can be forgotten if a value close to 0
is generated, whereas data that must be maintained for future updates can only be
generated when the value is greater than 1.

2. Tangent Hyperbolic (tanh): It is possible to obtain values between 0 and 1 by using
an activation function. This assures that non-positive measures are mapped severely,
whereas non-negative values are mapped from 0 to 1. As the mean value of the tanh
function for the hidden layers makes learning considerably easier for subsequent
layers, it is chosen for neural networks (NN).

3. Cell State: This is a representation of the data that have been stored in the LSTM’s
memory block. The respective cell state is represented by Du, while the prior cell state
is represented by Du−1. LSTMs are presented as memory cells inspired by the human
propensity to remember a similar pattern, where linked memory cells gather and store
long-term reference information.

4. LSTM’s gates: Memory cells are controlled by gates, which are used to regulate data
storage, retrieval, and deletion. There are three gates in LSTMs including input gate,
forget gate, and output gate. Each gate has several specific attributes. It is important to
understand how the LSTM network discards information that does not contribute to
the network’s learning.
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(a) Forget Gate: The data that are non-essential to the training process for one cell
are analyzed by this gate. Mathematically,

gu = π(Xg[gu−1, yu + cg])

where gu is the recent input measure of forget gate, yu is the current input to
memory cell Xg, c is bias value, and gu−1 is the last data value of the cell.

(b) Input Gate: Assists in the determination of how relevant current information is
for storage in the cell state. The input gate’s value is determined by multiplying
it by the aggregate of the forget gate gu and the last cell state du−1, as well as
the input gate’s current state.

ju = π(Xj[iu−1, yu + cj])

ccu = tanh (Xd[iu−1, yu + cd])

cu = gu ∗ du−1 + ju ∗ ccu

du is an activating function that arises from the sigmoid layer. Information that
is expected to be relevant for storage as future reference is calculated by using
the current cell value in conjunction with du−1, the prior timestamp memory
cell state established by the tanh layer.

(c) Output Gate: It is here that the network’s ultimate output is determined.
The tanh activation function is used to determine iu from pu.

pu = π(Xp[iu−1, yu + cp])

iu = pu ∗ tanh(du)

where iu is the output measure of the current cell and pu is the output gate
measure, which is adjusted to a non-negative measure below 1 by utilizing
the sigmoid function.

5. GRU: Compared to LSTMs, the construction of GRUs is simpler. Only two gates are
needed to operate the memory cells: Reset gate and Update gate.

(a) Reset Gate: GRUs are more cost-effective and time-efficient to train. In the same
way that LSTMs discard information that is irrelevant for future learning or
reference, Reset Gates do the same.

su = π(Xs[iu−1, yu])

where the output of the sigmoid function for the memory cell of the reset gate
is su, the information from the preceding memory cell is iu−1, and the current
input for the memory cell is yu.

(b) Update Gate: GRUs utilize an update gate to determine whether information
from the current state requirement is to be retained.

au = π(Xz[iu−1, yu])

icu = tanh(X[su ∗ iu−1, yu])

iu = (1 − au ∗ iu−1 + au ∗ icu)

where au is the output of the sigmoid layer, iu is the vector obtained from
the tanh function, and iu−1 is the preceding measure of the cell state.

The input of LSTM/GRU varies depending on the window size. The quantity of
information varies for every window, which helps the ML model perform better,
making window size selection critical. The training time is impacted by increasing
the window size because the information kept in every storage cell of the NN also rises.
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There is no established correlation between the window size and model performance
that can be verified. Gonzalez et al. [19] suggested that the effect of the size of
the window and LSTM layers is based on the amount of data.

3.2. Framework Design

To discover AI-enabled anomalies in IoT networks, an FL-based technique has been
proposed. For a better-performing ML model, it is critical to select the appropriate window
size because the number of data changes depending on the window size. The training time is
affected by increasing the window size length since the amount of information stored in each
neural network memory cell also grows [16]. In the current paper, seven different window
sizes have been used. For each window size, a global DL model and an Ensemble technique
composed of a Random Forest Decision Tree (RFDT) make up the approach’s high-level
architecture as shown in Figure 3. It comprises logical instances that represent networked
sensors. A local DL model is also included for copying training data for every logical instance.
In the current section, a detailed procedure is presented to implement the proposed strategy.
In practice, there is no need to create virtual instances or pre-process recorded data on a central
server because actual data are already available at the end-devices for training.

1. Logical Instances: PySyft is used to create virtual instances of the IoT network. The fln
endpoints are virtualized, and a special instance called flaverage is created to emulate
the central server, allowing the learned ML model parameters to be shared between
the fln endpoints and the central FL server. There are n virtual instances for each piece
of data in the data collection.

2. Preprocessing Acquired Data: The CICFlowmeter (Source: https://github.com/ahlashkari/
CICFlowMeter, accessed on 28 April 2022) utility is used to convert .pcap files to .csv files
for pre-processing at every gateway that acts as a bridge between the sensing component
and cloud. To remove aspects that are unnecessary for the learning process, the .csv file
is transformed multiple times. Afterward, n pieces of the processed data are split up and
dispersed across the IoT end-device’s virtual instances.

3. FL training: IoT instances are accessible for FL training at any given time, and the train-
ing is performed asynchronously. Flaverage aggregating instance collects the weights
from each node’s trained local ML model and distributes them with the other nodes.
Flaverage aggregation is used since it is an efficient algorithm for distributed training
with an enormous number of clients [20]. Moreover, Ratio Loss is used as the repre-
sentative method aiming to address the local imbalance by analyzing the local data
distribution [21]. The ratio loss function is computed mathematically as

Ratio-Loss = (β + αR) ∗ p ∗ (−p ∗ log(s))

where (−p ∗ log(s) is the cross-entropy loss function which has the true measure
of p and probabilistic result S. β and α are the hyper-parameters. Furthermore,
the utilization of the ratio loss function does not require users/clients to upload their
overall sample quantities which ensures privacy. Additionally, the privacy protection
in FL training is also guaranteed by secure aggregation protocols and differential
privacy techniques [22]. Two types of GRUs have been employed in the current
research as shown in Table 2. Training rounds in FL have been described in terms
of the number of epochs executed by every terminal device. The FL training logic
along with several stages of the proposed solution are presented in Algorithm 1 of
Figure 4. An IoT end-device can be represented as an fli virtual instance. Finally,
for each window size, Xi defines the model parameters GRU-ML for the network.
GRU-ML is distributed to each fli virtual instance. Fli’s local ML model updates
are communicated with flaverage throughout each training cycle on GRU-ML using
the secure socket layer protocol for data protection. Training grounds have been
formulated on a multiprocessor to mimic the real-world situation. Fli training rounds
are performed on different processors, and the learned local model weights (mwi) are

https://github.com/ahlashkari/CICFlowMeter
https://github.com/ahlashkari/CICFlowMeter
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regularly shared with the average virtual instance. For example, the central server
uses flaverage virtual instance to collect and listen for local model updates (mwi) from
clients. Local ML model weights are combined to produce the global ML model (Mwi)
for each window size. Every terminal device should receive a copy of Mwi.

Figure 3. Illustration for Attack Classification.

4. Ensemble Learning Technique: An effective method for combining the results of many
machine learning models is provided by Ensemble Learning [23]. It is typically
linked to the well-established idea that integrating several ML models yields bet-
ter results than using a single ML model. Ensembles of seven global ML models
(Mwi) are constructed using the random forest decision tree classifier. Each Mwi
forecasts the probability values i1, i2, . . . , in of each label Z for the given input Y,
for example, Y = Y1, . . . , Yn. To make an ensemble prediction function, the Ensemble
uses the probability values of Mwi to construct an ensemble prediction function g(y).
Mathematically.

ij = zcj(Nxj(Y))

g(y) = arg max ∑K
k=1 J(z = ik(y))

A total of seven ML models Mwi were used to forecast each label Z = ZClean, ZMITM,
. . . ZpingDDos which indicate the class of the attack in the data set, and the prediction
probabilities of each model were compared. There are many machine-learning models
in use, and each one employs its probabilities to cast its vote on the final label.
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Figure 4. Algorithm 1: Proposed Technique of Attack Classification.
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Table 2. GRUs used in the proposed model.

GRU Model Layer Dropout (in %) Inter-Layer Size

1 3 2 128

2 1 1 256

4. Experimental Set-Up

The current section presents a data set and assessment measures that compare the per-
formance of the proposed approach with state-of-the-art deep learning (DL) techniques.
The HP laptop system (with a graphics processing unit bearing a 3.1 GHz clock cycle),
running Ubuntu 18.1.0 LTS with 16 GB RAM and 1 TB hard disk is used for the federated
environment. PySyft has been utilized for FL features and GRUs as the proposed ML
neural network for DL. The Pytorch DL framework was utilized for the classic ML tech-
nique. FL uses Algorithm 1 with datasets for training. For comparative analysis, numerous
state-of-the-art studies/techniques have been used. Specifically, three challenging deep
learning studies/techniques have been utilized for performance assessment including
Campos et al. [18] Ferrag et al. [24], and Friha et al. [25].

4.1. Data Set

TON_IOT datasets (Dataset 1) were used to test the performance of the proposed
technique [26]. For Dataset 1, Train_Test_Dataset was used in CSV format for evaluating
the efficiency of the proposed technique. The number of records includes normal and
attack types for testing and training the ML algorithm. Moreover, several instances were
bootstrapped to 60,259. Modbus is utilized to establish communication between IoT
devices and server [27]. To abstract ML-readable CSV from collected networked data,
CICFlowmeter is utilized. The following types of attacks have been considered for validating
the performance assessment of the proposed model.

1. Man in the Middle Attack: As the term indicates, it involves a third-party entity (the
attacker) that pretends to be either the sender or recipient during a conversation and
attempts to steal information or execute activities as the sender or receiver to gain
access to sensitive data. Having gained access to traffic control, the attacker can then
generate bogus transactional data.

2. Ping DDoS Flood Attack: This is the most popular type of Distributed Denial-of-Service
(DDoS) attack, in which the server is overwhelmed with pings from the attacker,
forcing it to go offline and block any further connections.

3. Query Flood Attack: When an attacker delivers a flood of messages to overload an end
device and prevents it from serving legitimate communications.

4. SYN DDoS Attack: It is possible to use a Syn DDoS attack to block the server from
accepting any new connections by repeatedly sending syn packets to the server to
begin a connection handshake and keep all ports busy. The SYN DDoS attack is often
carried out by a bot that makes a large number of connection requests disguised as
fake IP addresses.

4.2. Model Training

The proposed model was trained for more than 400 rounds with 2 epochs for each
training round. It is a hyperparameter that determines how many epochs a learning
algorithm will run over the complete training dataset for each client. During a single epoch,
each training dataset sample is only used once to update the model’s internal parameters.
It is also implemented using the sci-kit-learn SGDClassifier to build the logistic regression
algorithm. As mentioned earlier, Flaverage is the aggregation function used in the current
study. The data are normalized before the ML/DL is applied. In addition, the training and
testing sets were divided into an 85/15 split.
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4.3. Metrics for Assessment

It is common practice in ML to compare model predictions against actual values,
to determine the proportion of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) in the data. The number of times the ML model’s predictions
match up with genuine labels or actual values is represented by TP and TN, whereas FP
and FN show the number of times the ML model’s predictions are erroneous. The following
measures have been used to evaluate the proposed strategy and compare it with state-of-
the-art techniques.

1. Statistical Analysis

(a) Accuracy = TP+TN
TP+TN+FP+FN

(b) Precision = TP
TP+FP

(c) Recall = TP
TP+FN

(d) F1 = 2∗Precision∗Recall
Precision+Recall = 2∗TP

2∗TP+FP+FN

2. Energy Efficiency: Amount of power utilized over time
3. Memory Utilization: Memory utilization over large datasets
4. Attack Classification Analysis
5. Client Accuracy Analysis
6. Non-Independent and Identically Distributed (Non-IID) and Independent and Identically

Distributed (IID) Analysis.

To evaluate the trained ML models, Skorch (Source: https://github.com/skorch-
dev/skorch, accessed on 28 April 2022) and Scikit-learn (Source: https://scikit-learn.org/
stable/, accessed on 28 April 2022) have been utilized. As the proposed technique is
based on the Pytorch DL framework, the skorch wrapper is used to access the Scikit-learn
evaluation packages.

4.4. Results

The proposed model is validated based on the three types of GRU models as shown
in Table 2. As mentioned earlier, numerous statistical parameters have been calculated
in comparison to state-of-the-art studies of Logistic Regression (LR [18]), Recurrent Neural
Network (RNN [24]), and Deep Neural Network (DNN [25]) to determine the performance
enhancement of the proposed approach. The window size is considered for different
scenarios using linear-quadratic-linear functions for better assessment of the proposed
model. A detailed explanation of the results is described ahead. However, only the average
of the results is depicted for various window sizes for effectiveness.

1. Statistical Results

(a) GRU-Model 1: Figure 5 shows the results for comparison for GRU-Model 1.
Statistical parameters of accuracy, precision, recall, and F1-measure have been
calculated. It can be seen that the proposed FL-based attack classification is
more accurate by registering an enhanced measure of 95.65% in comparison
to LR (94.65%), RNN (92.36%), and DNN (90.26%). For precision analysis,
the proposed technique of GRU-LSTM can outperform the deep learning
techniques of LR (93.78%), RNN (92.01%), and DNN (89.16%) by registering
an enhanced measure of 93.65%. Similarly, the f-measure and recall measure
were analyzed for the proposed model. In the current scenario, the proposed
model registered enhanced values of 94.65% and 93.26% for f-measure and
recall, respectively. On the other hand reduced values for LR (92.65%, 93.54%),
RNN (90.12%, 89.99%), and DNN (88.21%, 87.59%) were acquired. This shows

https://github.com/skorch-dev/skorch
https://github.com/skorch-dev/skorch
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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that the proposed model is more effective in statistical parameters as compared
to other techniques.

(b) GRU-Model 2: Figure 6 shows the performance comparison for GRU-Model 2
for various window sizes. It can be seen that in the current scenario, the pro-
posed FL-based model for attack detection is more effective and efficient.
Specifically, statistical performance of 93.10% (accuracy), 93.12% (recall), 94.96%
(precision), and 95.45% (F1-Measure) was registered for the proposed technique
for variable window sizes. On the other hand, the LR model was able to regis-
ter an average measure of 90.23% (accuracy), 89.15% (recall), 88.12% (precision),
and 90.32% (F1-Measure). Similarly, for RNN and DNN techniques, 89.56%,
and 88.23% values were acquired for accuracy, 87.78%, and 87.34% values were
registered for recall, 86.89%, and 87.00% values were acquired for precision,
and 87.14% and 87.96% values were registered for F1-measure. Henceforth,
in the current scenario, the proposed model is better and more effective at clas-
sifying attacks in the IoT scenario using the GRU-LSTM technique.

2. Energy Efficiency: The energy efficiency pertains to the effectiveness of the proposed
model in terms of power consumption. The proposed model was deployed over
the computing system with monitored energy utilization. The comparative analysis
was performed with different state-of-the-art techniques as shown in Figure 7. It can
be seen that in the current scenario for GRU-Model 1, the proposed model can utilize
a minimal average energy of 365.56J in comparison to LR (400.56J), RNN (456.59J),
and DNN (499.58J) over the variable number of data instances. Similarly, for GRU-
Model 2, the presented approach is more effective as it utilizes a minimal energy of
655.56J in comparison to LR (756.89J), and RNN (865.78J), and DNN (956.78J). This is
because the proposed model incorporates the LSTM model that can compute results
faster in comparison to other techniques. Henceforth, the proposed model is more
energy-efficient and significantly better.

3. Memory Utilization: The memory utilization provides insight into CPU utilization
of the system for execution of the DL model for attack classification. In the current
study, numerous techniques were implemented and the corresponding utilization
of processing units was analyzed. The results are shown in Figure 8. It can be seen
that the average memory utilization for GRU-Model 1 is 25.56%. In comparison, LR
(35.56%), RNN (46.58%), and DNN (65.58%) were able to utilize more memory for
execution. A similar trend was observed for GRU-Model 2 in which the proposed
model can register 35.69% memory in comparison to LR (49.58%), RNN (58.35%),
and DNN (75.19%). Based on the results, it can be concluded that the presented model
is much better than state-of-the-art techniques for attack classification.

4. Attack Classification Analysis Attack classification analysis depicts the performance
of the proposed classification of attack types. In the current student, four types of
attacks have been classified including Man-in-the-middle attack, DDoS, Query Flood
Attack, and SYN DDoS attack. For assessment, different statistical measures have
been identified. However, it is important to mention that during the attack classifi-
cation, only the DL technique is altered while the remaining model is kept identical.
The results for statistical analysis are shown in Table 3 (Man-in-the-middle attack),
Table 4 (DDoS), Table 5 (Query Flood Attack), and Table 6 (SYN DDoS attack). Table 7
shows the overall generalized confusion matrix. It can be seen that in the current
scenario, the proposed model can outperform state-of-the-art models in terms of
Recall, Precision, Accuracy, Specificity, F1 Measure, and Log Loss. This is because
the presented approach tends to learn and store the recent values in the local memory
thereby reducing the loss of data. Moreover, the identification of specific attacks
further enhances the overall accuracy of the presented approach.

5. Client Accuracy Analysis: Figure 9 depicts the user/IoT nodes distribution for the pro-
posed technique and the comparative method in terms of final accuracy. An increase
in the number of high-precision distribution users and a drop in the number of
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low-precision users have been observed. More users can benefit from training with
the proposed approach since it is more equitable. Federated Learning tends to favor
particular users in the training process. In other words, some clients are unwilling or
unable to increase their participation in the training process or the accuracy. To achieve
a more equitable distribution of accuracy, the proposed strategy takes into account
the frequency and precision with which users participate.

6. Weight Divergence Analysis for Non-Independent and Identically Distributed (Non-IID)
and Independent and Identically Distributed (IID) Data: When moving from IID to non-
IID, the weight divergence of all layers rises. As a result, it is hypothesized that
there is a correlation between the weight divergence and the data skewness. Weight
divergence measures the change in weights between two training procedures with
the same weight initialization. Figure 10 shows the results for the divergence of
weights based on the data analysis. It can be seen that the proposed model can register
minimal divergence for weights during testing. Henceforth, it can be concluded that
the proposed model is better and more efficient.

Table 3. Attack Classification Analysis: Man-in-the-Middle Attack.

Algorithms Recall
(%)

Precision
(%)

Accuracy
(%)

Specificity
(%)

F1 Measure
(%)

Log Loss
(%)

Proposed 96 96 95.65 97.25 97.25 2.15

RNN 92 89 94 92 92 4.78

DNN 95 92 92 87 94.45 4.99

LR 96 95 95 96 95 3.54

Table 4. Attack Classification Analysis: Ping DDoS.

Algorithms Recall
(%)

Precision
(%)

Accuracy
(%)

Specificity
(%)

F1 Measure
(%)

Log Loss
(%)

Proposed 95 94.23 94.65 95.25 95.25 3.15

RNN 90 88 84 85 88 5.78

DNN 91 93 92.2 89 92.45 4.89

LR 94 93 93 92 94 4.54

Table 5. Attack Classification Analysis: Query Flood Attack.

Algorithms Recall
(%)

Precision
(%)

Accuracy
(%)

Specificity
(%)

F1 Measure
(%)

Log Loss
(%)

Proposed 94.45 94.98 94.35 96.25 96.25 2.67

RNN 92 86 92 91 91 4.34

DNN 92 91 91 83 92.45 5.89

LR 92 92 91 91 92 5.54

Table 6. Attack Classification Analysis: SYN DDoS Attack.

Algorithms Recall
(%)

Precision
(%)

Accuracy
(%)

Specificity
(%)

F1 Measure
(%)

Log Loss
(%)

Proposed 95 94 93.65 94.25 93.25 2.90

RNN 90 86 90 90 93 5.34

DNN 91 90 87 89 90.45 5.15

LR 92 92 92 93 92 3.98
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Table 7. Confusion Matrix.

True 0 (No-Attack) Attack 1 Attack 2 Attack 3 Attack 4

Attack 0 (no-Attack) 50 10 10 30 10

Attack 1 20 1142 10 10 10

Attack 2 10 10 44,541 30 30

Attack 3 10 10 20 55,785 40

Attack 4 10 10 10 145 57,688

(a) (b)

(c) (d)

Figure 5. GRU-Model 1: Statistical Analysis. (a) Accuracy, (b) Precision, (c) Recall, (d) F1-measure.

(a) (b)

(c) (d)

Figure 6. GRU-Model 2: Statistical Analysis. (a) Accuracy, (b) Precision, (c) Recall, (d) F1-measure.
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(a) (b)

Figure 7. Energy Consumption Analysis. (a) GRU-Model 1, (b) GRU-Model 2.

(a) (b)

Figure 8. Memory Consumption Analysis. (a) GRU-Model 1, (b) GRU-Model 2.

(a) (b)

Figure 9. User Testing Analysis. (a) GRU-Model 1, (b) GRU-Model 2.

(a) (b)

Figure 10. Weight Divergence Analysis. (a) GRU-Model 1, (b) GRU-Model 2.

Based on the aforementioned results, it can be concluded that in the current scenario,
the proposed technique is more effective and efficient for the classification of IoT attacks.

5. Conclusions

The current research proposes that IoT network attacks can be accurately identified
and classified using Federated Learning-based anomaly detection. Specifically, on-device
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training and several layers of GRUs enable improved statistical performance rates of
accuracy, precision, recall, and F1 measure in categorizing attacks. The ensemble technique,
which integrates predictions from various GRU layers, greatly improves the performance.
IoT devices become more dependable due to the FL advantages of user data privacy.
The evaluation findings show that the suggested intrusion detection method surpasses
the state-of-the-art deep learning techniques for attack detection. Using a challenging IoT
testbed, the suggested technique can be further improved in the future by using real-time
information concerning all known and unknown vulnerabilities in IoT devices.
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