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Abstract: Increasing energy needs, pollution of nature, and eventual depletion of resources have
prompted humanity to obtain new technologies and produce energy using clean sources and re-
newables. In this paper, we design an advanced method to improve the performance of a sliding
mode controller combined with control theory for a photovoltaic system. Specifically, we decouple
the controlled output of the system from any perturbation source and assess the effectiveness of the
results in terms of solution quality, closed-loop control stability, and dynamical convergence of the
state variables. This study focuses on the climatic conditions that may affect the behavior of a solar
energy plant to supply a motor with the highest possible efficiency and nominal operating conditions.
The designed method enables us to obtain an optimal performance by means of advanced control
techniques and a slime mould stochastic optimization algorithm. The efficiency and performance
of this method are examined based on a benchmark model of a photovoltaic system via numerical
analysis and simulation.

Keywords: control theory; feedback linearization; metaheuristic optimization; numerical analysis;
perturbations; simulations; solar energy; state variables; stochasticity

MSC: 93C83

1. Introduction

Increasing global energy needs, pollution of nature, and eventual depletion of fossil
fuels have prompted humanity to explore new technologies to produce electrical energy
using clean sources and renewables, such as solar and wind power [1,2]. However, systems
based on wind or solar energies are not stable due to seasonal and daily variations. Indeed,
renewable energy systems utilizing a single intermittent source, such as a photovoltaic (PV)
system or wind energy, are not stable due to these variations [3–5].

PV systems present problems related to nonlinear characteristics and energy produc-
tion that depends on climatic conditions which are highly random. Therefore, the design
of an optimized PV system becomes difficult. Consequently, the development of efficient
techniques to overcome these problems is of paramount importance [6,7].

The use of intelligent techniques [8–10] is currently experiencing a great boom in
complex and ill-defined systems for their modeling, optimization, identification, and
control. This is a product of their adaptability to changes in system parameters and their
robustness in response to disturbances, as well as to modeling errors.
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Intelligent techniques are a viable and efficient solution to the problem of optimizing
PV systems [8,9]. The literature shows that these systems and metaheuristic techniques are
highly related to each other in several research areas. Indeed, metaheuristic optimization
techniques have been implemented in problems of parameter determination for solar PV
systems [1]. In addition, they have been utilized in problems of maximum power point
tracking techniques for PV plants subjected to partial shading conditions and random
disturbances [9,10]. Moreover, they have been used in problems of heuristic operation
strategy [4], problems of power control and energy management and storage [6], as well as
in problems of advanced control for grid-connected PV systems [1,5]. One can combine
analytical and metaheuristic methods to enhance the performance and features of a PV
generation source mainly used in a remote area.

Thus, intelligent, innovative methods are of interest and widely employed. Their
utilization enables us to improve the efficiency of PV systems and provide better perfor-
mance than those obtained with classical algorithms. This can be conducted regardless of
the variation in climatic conditions (such as sunshine and temperature), even in the most
severe and unfavorable cases. One can propose a technique that combines intelligent slime
mould optimization (SMO), feedback linearization (FBL), and sliding mode control (SMC)
with different architectures and metaheuristic optimization algorithms.

The SMC is one of the techniques that are applied to solve the problem of parametric
variation. This controller ensures a zero static error, guarantees a fast response, and obtains
a stable, robust system [10–13]. Its main fields of application are robotics [14–16] and
control of electric machines [17–20]. The SMC is considered one of the best ordering
approaches for nonlinear systems due to its multiple advantages. They include high
precision, fast dynamic response, stability, simplicity of the design and implementation,
as well as robustness with respect to variation of internal/external parameters [20–22].
However, the SMC has some disadvantages, such as the appearance of chattering caused by
the corresponding discontinuous part, which can have a detrimental effect on the actuators.
Furthermore, with the SMC, the system is always subject to high control to ensure its
convergence to the desired state, which is not desirable [23–26].

Among the solutions proposed to problems of parametric variation, we can mention
the control stated by a sliding mode band limit, which consists of replacing the switching
function with a saturation. Nevertheless, this solution is only a special case of the SMC.
Hence, there exists an interest in using a control method that combines FBL and SMC to
achieve a sturdy and smooth drive.

To obtain the control input, the gains are optimized by an intelligent SMO. The SMO
is one of the approaches that have been most explored to improve the capacities of learning
systems and combine different systems for the same task. Nonetheless, to the best of our
knowledge, the use of a stochastic SMO method for determining the controller gains of a
PV system has not been explored until now.

The main objective of this study is to design an advanced approach for solving the
problem of improving the efficiency of an SMC combined with FBL control theory in a PV
system. Specifically, we decouple the controlled output of the system from any perturbation
sources and assess the results’ effectiveness in terms of solution quality, closed-loop control
stability, and dynamical convergence of the state variables. We focus on climatic conditions
that can affect the behavior of a solar energy plant to extract the maximum power supplied
by a PV generator at the highest possible efficiency. This approach allows an optimal
performance to be obtained using advanced control techniques and an SMO algorithm. We
examine efficiency and performance of this approach utilizing a benchmark model of a PV
system via numerical analysis and simulation.

Therefore, the main contributions of the designed approach originate from the benefits
of employing the capability of the SMO to have adaptive weights in its process of searching
for the global optimum. This impacts the accuracy of the controller gain selection and
attenuates the chattering of the SMC. Closed-loop system stability is guaranteed with a
well-filtered voltage feeding the motor direct current (DC) pump load.
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The novelty of the present work can be summarized in the following points:

(i) The FBL, used as a main control technique, is implemented to enable high local
performance.

(ii) The SMC technique is then combined with the FBL to attenuate the effects of random
and matched disturbances. This combination is expected to improve the dynamic
performance of the controlled system.

(iii) Due to the uncertainties in the model, it is impossible to fully eliminate the distur-
bances utilizing only the conventional SMC. To overcome this problem, a method
associated with an SMO technique is implemented to allow fine-tuning of the con-
troller gains ensuring the efficiency of the PV system as a stand-alone power generator
in a remote area.

In terms of PV process benefits, the designed approach aims at preserving the nominal
operating condition for the DC motor pump, while considering a varying irradiance during
the day coupled with a random environmental disturbance and a matched electric default.

After this introduction, the paper is structured as follows. In Section 2, some elemen-
tary characteristics of input–output FBL (I/O FBL) and SMC are presented. In addition, in
this section, to strengthen the tracking controller, an advanced nonlinear control strategy
that combines I/O FBL and SMC is introduced. In Section 3, the fundamentals of the SMO
algorithm are provided. Section 4 is dedicated to the application of the above approaches
to a PV system. Concluding remarks and perspectives of our work are given in Section 5.

2. Background and Problem Formulation
2.1. Robust Nonlinear Control Strategy

The basic factors concerning the I/O FBL technique can be found in [27–29]. Further
information, regarding the structural specifications of this technique, may be sourced by
referring to [30–32].

Generally, the standard formula of a nonlinear system is expressed as{ .
X = F(X) + G(X) U + Y(X) D,

y = H(X),
(1)

where X ε <n is the state vector; U ε < is the control input; y ε < is the output; D ε <m is
the disturbance; F : <n → <n , G : <n → <n , and Y : <m → <n represent C∞ vector fields;
and H : <n → < is a C∞ function, with C∞ denoting infinitely differentiable functions.

Definition 1 ([30]). The system stated in (1) is assumed to have a local relative degree denoted by r
at an operating point X0 if:

(i) LGLk
F H(X) = 0, for all X around X0 and for all k < r− 1;

(ii) LGLr−1
F H(X0) 6= 0,

where Lk
F H(X) denotes the k-th Lie differential operator of the scalar field H(X) with respect to the

vector field F(X).

If a system has a finite relative degree, the determination of a state variable coordinate
transformation, denoted by Z = Φ(X), is achievable through consecutive differentiations
of the output. In the altered coordinates, the system can be formulated in a regular
arrangement. When disturbances are not part of the model, the conventional form generates
a controllability canonical form given by
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

.
Z1 = Z2 = LF H(X),
.
Z2 = Z3 = L2

F H(X),
...

.
Zr−1 = Zr = Lr−1

F H(X),
.
Zr = v,

.
Zi = ϑ(Z), r + 1 ≤ i ≤ n,

y = Z1 = H(X),

(2)

where v defined in (2) is the new control (external) input of the equivalent linear system
and Z =

[
Π1 Π2

]T, with “T” denoting the transpose of a matrix, Π1 = [H(X) LF H(X)

L2
F H(X) . . . Lr−1

F H(X)] and Π2 =
[
ψ1(X) . . . ψn−r(X)

]
being the dynamic compen-

sator, such that ψ1(X), . . . , ψn−r(X) are variables that can be determined by solving the
equations stated as

〈∂ψi(X)

∂X
, G(X)〉 = LGψi(X) = 0, i ε {1, . . . , n− r}. (3)

The reader can consult [29] for further details on the compensator characteristics.
Note that if r < n, the system seems to decompose into a linear sub-system with

dimension r (which is attributable to the I/O performance) and a nonlinear sub-system of
dimension n− r (whose activity does not have influence over the output). This nonlinear
sub-system is considered a zero dynamic linear system.

For a system with a local relative degree to be I/O linearized, it must be at the
minimum phase, with the zero dynamics being asymptotically constant. Observe that
the configuration of the feedback control law is determined by the characteristics of the
problem. To decouple the output from measurable fluctuations [14,33–36], external inputs
are considered, giving rise to the relative degree concept, regarding the disturbances.

Definition 2 ([30]). The relative degree ci of the output y(t), in relation to the disturbance, is
expressed as the least integer ci such that

LYLci−1
F H(X) 6= 0. (4)

The array of measurable disturbances can be categorized as follows [14]:

(i) When ci > r, the impact of the disturbance is not as straightforward as the control
input, with ci being given in (4). The entire information from the disturbance is
accessible through the system states, and as such, the decoupling of y(t) from the
disturbance D is rendered unnecessary.

(ii) When ci = r, the disturbance and control input have a similar influence on the system
output, and feedforward performance is essential to perform decoupling.

(iii) When ci < r, the disturbance influences the output more straightforwardly than
the control output. Some form of predictive activity is required to perform distur-
bance rejection.

It is considered ideal that the output y(t) tracks some reference signal. As indicated by
the coordinate transformation [27–32], the control input U defined in (1) is determined as

U =
v− Lr

F H(X)

LGLr−1
F H(X)

+ T(X, D), (5)

where T(X, D) expressed in (5) is an analytic component (that will be defined in the next
theorem) and that serves to decouple the output from the measured disturbances; and υ
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represents, as mentioned in (2), an external input that can be employed to design precise
features for eigenvalues of the closed-loop system. Consequently, this external input is
defined as

v = KZ = [K1 . . . Kn]Z, (6)

where K represents the linear controller gain vector. The decoupling function T(X, D) is
acquired from the principal outcomes [14], which are summarized in the following theorem.
Comprehensive outcomes are provided in [14].

Theorem 1 ([14]). Consider the nonlinear system stated in (1) and assume ci to be the relative
degree specified in Definition 2. Then, the function T(X, D) that facilitates the independence of
y(t) from D is formulated as

T(X, D) = − 1
LGLr−1

F H(X)

r−ci

∑
k=0

dk

dtk

(
LYLr−k−1

F H(X)D
)

. (7)

Note that PV modeling involves two main stages. First, the electrical model of the PV
cell is devised. Then, second, by an approximation of the values of the different parameters,
this model is postulated. Next, we describe the PV models and corresponding formulations
of the problems to conduct their optimization.

2.2. PV Model Description

In what follows, we present an efficient system for pumping water, which is straight-
forwardly attached to a PV system. Figure 1 portrays the fundamental block diagram of the
examined PV system. This water pumping system comes with a PV generator, a DC/DC
buck converter, and a DC motor pump.
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Figure 1. Structure of the studied PV system, where IPV and VPV denote its current and voltage.

Now, we formulate the model of the PV generator. A diode model is frequently
utilized to describe the electric behavior of a PV cell (or generator). In this model, an electric
generator represents the PV cell. The generator is comparable to a current source parallel to
a diode. Like a junction diode, the current–voltage connection is nonlinear in nature [37,38].
It also contains a shunt parallel resistance RP originating from tiny electric shorts through
the PN junction of the PV cell and small series resistance RS simulating the internal losses
of the PV module. (Note that a PN junction is an interface or a boundary between two
semiconductor material types, namely P and N types, inside a semiconductor.) In Figure 2,
the Kirchhoff law is applied. The output current I is obtained by the expression stated as
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IPV = IPI − ID − IRP , (8)

where IPI is the photocurrent, ID is the current of the diode, and IRP is the current flowing
in the parallel resistor, which can be computed as

IRP =
VPV + RS IPV

RP
, (9)

which is proportional to the saturation current and where VPV represents the PV generator
input voltage. An equation formulated as

ID = ISD

(
exp

(
q(VPV + RS IPV)

n KB T

)
− 1
)

(10)

expresses the value of this magnitude, where ISD is the reverse saturation single diode
current in amperes (A), q is the electron charge (1.6 × 0−19 C), KB is the Boltzmann constant
(1.38 × 10−23 J/K), T is the cell temperature in Kelvin degrees (◦K), and n is the ideality
factor of the diode. Replacing the expressions given in (9) and (10) in (8), we obtain

IPV = IPI − ISD

(
exp

(
q(VPV + RS IPV)

n T KB

)
− 1
)
− VPV + RS IPV

RP
. (11)
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Note that the photocurrent depends mainly on the solar radiation and operating
temperature of the cell, as described by

IPI = (ISC + KI(T − Tref))
E

Eref
, (12)

where ISC is the short-circuit current of the cell at standard test conditions (25 ◦C and
1000 W/m2), KI is the temperature coefficient of the cell short-circuiting current, Tref is the
reference temperature of the cell (in ◦K, with ◦K = 25 ◦C + 273), E is the solar radiation
in (W/m2), and Eref is the reference insolation of the cell, which is equal to 1000 W/m2.
In addition, the cell saturation current varies with the temperature of the cell, which is
described as

ISD = IRS

(
T

Tref

)
exp

(
q EG

(
T

Tref
− 1

T

)
/(n KB)

)
, (13)

where IRS is the reverse saturation current of the PV cell and EG is the gap energy of the
semiconductor used in the PV cell (in eV). The reverse saturation current is given by

IRS =
Isc

exp
(

q Voc
n T KB NS

)
− 1

, (14)

where VOC is the open-circuit voltage and NS is the number of cells connected in series.
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Next, the buck converter model is formulated. The solar generator, which is a nonlinear
mechanism, is only capable of delivering maximum power, at precise levels of voltage
and current. To compel the delivery of maximum power, from the PV generator to the
load, the DC–DC buck converter is integrated between the PV generator and DC motor
pump. The PV array presented in Figure 3 is a group of several PV modules electrically
connected in series (NS cells) and in parallel (Np columns) to generate the required current
and voltage. Accordingly, the current–voltage (IV) characteristic equation of a PV module
becomes stated as

IPV = NP IPI − NP ISD

exp

 q
(

VPV
NS

+ RS IPV
NP

)
n KB T

− 1

− NP VPV
NS

+ RS

RP
. (15)
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Figure 3. Electrical scheme of the studied system, where C is a capacitor, L is an inductor, IL is the
inductor current, and ST, SD are a transistor and a diode of the step-down converter, respectively.

Table 1 reports the parameters of the PV module used in this work. The PV and IV
characteristics are represented in Figure 4.

Table 1. PV module parameters.

Description Parameter

Power at the maximum power point (Pmpp) 190 W
Voltage at the maximum power point (Vmpp) 24.3 V
Current at the maximum power point (Impp) 7.82 A
Open-circuit voltage (VOC) 30.6 V
Short-circuit current (ISC) 8.5 A
Number of cells per module 50
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Figure 4. PV (a) and IV (b) characteristics of the PV module.

The buck converter comprises a power transistor (ST) and a free-wheeling diode (SD).
The power transistor ST is engaged as a switch, which is turned on and off intermittently
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by an external driver circuit of pulse width modulation. The establishment of the average
output voltage is achieved through an expression given by

VA = ρ VPV, (16)

where VA is the DC–DC converter voltage, related to armature, that is identical to the
system output voltage (DC motor feeding voltage), while ρ is the duty cycle of the switch
ST, with 0 < ρ < 1 also being an alterable turn ratio. As deduced from the formula given
in (16), control of the output voltage is achievable through alterations in the chopper duty
cycle ρ. Note that the pulse width modulation is employed to fluctuate ρ [39–41]. The
supply power (PV power) is deemed equivalent to the load power if less loss is assumed.
Then, we have

VA IA = VPV IP, (17)

and
VPV

VA
=

IA

IP
= ρ, (18)

where IA is the armature current. Observe that the expressions stated in (17) and (18) evolve
such that the chopper can be regarded as a DC transformer, with an alterable turn ratio ρ,
and a PV generator output current IA that supplies the DC motor load.

Next, the model of the DC motor pump is formulated. The DC motor is the simplest
form of a permanent magnet machine. Assume that, for each operating point (disregarding
the magnetic reaction), the flux remains consistent. With respect to the DC machine model,
R and L depict the armature resistance and inductance, respectively. The transference of
energy, from the electrical component towards the mechanical component, corresponds to
the proportionality between the finite element Ea and the angular speed Ω stated as

EA = KB Ω. (19)

The DC motor propels a centrifugal pump, which, for the purpose of simplification, is
expressed as a torque Γ proportional to the angular speed given by

Γ = KT Ω, (20)

where KT stated in (20) is a torque constant.

2.3. Nonlinear Control Design

Here, we formulate and synthesize an analytical second-order SMC of a PV water
pumping system. The recommended procedure is derived from a state feedback controller,
which is centered on a linearizing conversion of the closed-loop system.

The I/O FBL is the basis for the nonlinear controller, which is dependent on differenti-
ations in the output of interest, until the input is straightforwardly linked to an offshoot of
the output. This facilitates the commencement of a linearization [27,28].

A differential geometry-based procedure is employed to calculate the control variable
(duty cycle of the DC–DC converter) by means of the following:

(i) Determining the PV system’s state space equations [38,39] as

.
IA = VA

L −
KB
L Ω− R

L IA + d1,
.

Ω = KB
J IA − KT+F

J Ω− d2,
.
IL = −VA

L + VPV
L (U − sin(VA)),.

VA = IL
C −

VA
R C ,

(21)

where C is a capacitor, L is an inductor, IL is the inductor current, and the mechanical
losses are denoted by torques J and F in (21), which indicate the DC machine’s inertia
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and viscous friction coefficients, respectively; U = ρ; J is also the motor’s moment of
inertia; and d1, d2, and d3 denote random disturbance vector components.

(ii) Expressing the system in the conventional standard configuration given by{ .
X = F(X) + G(X) U + Y(X)D,

y = H(X),
(22)

where X stated in (22) is defined as

X =


X1
X2
X3
X4

 =


IA
Ω
IL
VA

,

which denotes the state vector that considers the motor current, motor angular posi-
tion, inductance current, and DC motor supply voltage. In addition, we have that

F(X) =


VA
L −

KB
L Ω− R

L IA
KB
J IA − KT+F

J Ω
−VA

L −
VPV

L sin(VA)
IL
C −

VA
R C

, G(X) =


0
0

VPV
L
0

,

Y(X) =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0

,D =


d1
d2
d3
0

, U = ρ, y = H(X) = VA.

(iii) Stating R = 1.072 Ω and L = 0.05H, which denote the armature resistance and in-
ductance, as mentioned, respectively; J = 476× 10−6 kg m2 and F = 88× 10−5 m2/s,
which denote the DC machine’s inertia and viscous friction coefficients, as also men-
tioned, respectively; and C = 4000 × 10−6 F, which represents the capacitor, as
mentioned.

(iv) Computing the relative degree r by deriving y up to the point, when the control
variable U materializes to equations given by

y = VA,
.
y =

.
VA = IL

C −
VA
R C ,

..
y =

..
VA = − 1

L C VA + VPV
L C U − VPV

L2 sin(VA)− 1
C d3 − 1

R C

(
IL
C −

VA
R C

)
,

(23)

which is attained from r = 2. Note that this approach emphasizes developing a control
output that promotes the capacity of the PV system for output trajectory tracking, as
well as for disturbance decoupling.

(v) Expressing the input controller as

U =
L C v + VA + L

R

(
IL
C −

VA
R C

)
+ L2 sin(VA)

VPV
+ T(X, D), (24)

where v is the control input.

As the relative degree of disturbance is nil, which is below the system’s relative
degree, it follows that the disturbance influences the output more straightforwardly than
the control output. This brings the need for some form of predictive activity to perform
disturbance rejection. Nevertheless, this control method is hampered by the fact that only
local effectiveness is guaranteed. Note that, so far, both modeling defects and parameter
variability are not considered. There are indications that this method generates globally
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vigorous outputs under parametric ambiguity, as well as disturbance upon integration with
the sliding mode formalism [14]. In the following section, we delve into control approaches
based on the second-order sliding mode (SOSM) technique to achieve a significantly
dynamic output tracking quality.

3. Linearization, Sliding Modes, and Control Input Synthesis Methodology
3.1. Input/Output Linearization and Second-Order Sliding Modes

The downside to the control technique recommended above has to do with the fact
that only local robustness is assured. In addition, note that, at this point, both modeling
inaccuracies and parameter ambiguities are not considered. It is taken for granted that
the nonlinear conversion is precisely identified and that all states are obtainable. The
recommended technique is expected to bring in more globally vigorous results if it is
merged with SMC [11–13]. This considers the issue of unmeasured disturbances and states
to arrive at a solution for the I/O linearization problem. However, it is known that in
a situation where certain disturbances and states are unmeasured, disturbance rejection
may not be performed, although bounding of the output may still occur. We recommend
that an SOSM technique [10], in a nonlinear approximation framework, is brought into the
picture to overcome this problem. This renders the controller to be robust in the presence
of unmeasured disturbances, while subduing the distinctive SMC chattering activity of
the SMO.

The expression for assuming the sliding surface S to be a differential operator respond-
ing to an error function e is stated as

S(t) =

(
dr−1e(t)

dtr−1 + θr−1e(t)

)
, (25)

where d is the differential operator and θ symbolizes the bandwidth of error dynamics,
assessing the system’s operation on the sliding surface, when the system is away from
the sliding surface S defined in (25). It is essential that the condition under which the
system moves towards, and arrives at the surface, is clearly distinguished. Known as the
attractiveness equation or reaching condition, it can be harnessed to directly identify the
dynamics of the switching performance. The reaching condition is expressed as

.
S(t) ≤ ϑ|S(t)|γsgn(S(t)), γ > 0, (26)

where “sgn” used in (26) denotes the sign function.
When the sliding surface S is distinguished, the requirement involves reaching it with

zero speed. Then, the derivative of S with respect to t,
.
S(t) namely, in correlation to the

surface, ought to be zero. Our recommendation for obtaining
(

S(t),
.
S(t)

)
= (0, 0) is to

apply the Lyapunov function stated as

λ(t) = γS(t)2 + ϕ
.
S(t)2, γ, ϕ > 0. (27)

To regard the objective accomplished, the assurance that
.
λ(t), with the function λ

defined in (27), is negative must be deemed sufficient by means of

2
(

γ S(t) + ϕ
..
S(t)

)
< 0. (28)

Achieving
(

S(t),
.
S(t)

)
= (0, 0), within a distinguishable time, with predetermined

dynamics, is attainable through an alteration in the relation stated in (28) reaching

2
(

γ S(t) + ϕ
..
S(t)

)
≤ −ϑ sgn(S(t)), (29)
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where
..
S(t) defined in (28) and (29) denotes the second derivative of S with respect to t.

The focus of this proposal is on using the sliding mode approach to acquire the required
values of the unverified states and identify the control formula for the I/O FBL. It is a
requirement that the sliding surface must be fixed to stay equivalent to the approximation
error. The employment of the system state-space representation, together with the condition
formulated in (28), facilitates the establishment of the relationship for the unknown values,
that is, unmeasured disturbances or parameter uncertainties.

In the interest of combining SMC and I/O linearization, the surface is defined as a
stable linear operator of order r− 1 by means of

S =
r−1

∑
k=0

(
dke(t)

dtk

)
. (30)

From (25) and (26), the modified control law is obtained as

U = − 1
LGLr−1

F H(x)

[
Lr

F H(X)− dryd(t)
dtr +

r−1

∑
k=0

(
Lk

F −
dkyd(t)

dtk

)
− ϑ|S(t)|γsgn(S(t))

]
. (31)

The formula stated in (31) establishes the relationship between I/O linearization and
the sliding mode approach when the error dynamics on the sliding surface is chosen to be
linear and time-invariant.

3.2. Implementation of the Disturbance-Free Control Model

The development of a control input that promotes the capacity of the PV system’s
desired output to display satisfactory output trajectory tracking, as well as disturbance
eradication qualities, represents the purpose of our approach.

The implementation of the state compensator, as expressed in (24), calls for the mea-
surements of the system variable states. Of particular importance are the prevailing
requirements, which need to be identified for the I/O FBL control law stated in (24) when
producing results. The PV model serves as a monitor for the supply of duty cycle values to
the control input. It is essential to note that the disturbance D and the matched disturbance
term −sin(Va) continue to stay unmeasured.

While the disturbance D and term −sin(Va) are initially considered for the process,
they are not applied to the PV model. Furthermore, as the output has already been
identified, the information acquired is utilized for the model. Observe that extraction of the
manipulated variable signal to the system is performed so that the process and model are
supplied with similar inputs. Consequently, the system and model are naturally influenced
by bounds over the input.

It is relevant that a pre-ascertained trajectory is assumed by the voltage towards the
steady state. Then, a radiance trajectory defined by an intermission is considered. This
trajectory, which advances in the form of crenels, portrays a realistic physical behavior of
the PV system under study (escalating sunlight irradiation attributed to a sandstorm). The
dynamics of the radiance trajectory, in terms of time, is illustrated in Figure 5.
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Figure 5. PV system’s physical characteristic radiance trajectory simulation.
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An opening simulation examination considers the state variable responses at the start-
up phase. The closed-loop stabilization in the vicinity of the focused equilibrium point,
during the employment of the feedback control design stated in (24), is shown in Figure 6.
When the measurable disturbance exists, modification is performed solely to the extent of
the control law, while the decoupling features render the output unchanged.
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Figure 6. System dynamics using I/O linearization controller for: (a) Motor pump current, (b) motor
pump angular speed, (c) motor pump voltage, (d) DC converter inductance current, and (e) control
input stabilization.

3.3. Control Implementation in Presence of Model Disturbances

In the present study, data concerning the disturbance D and matched disturbance term
− sin(Va), related to the inductor current IL and matched with control input U, are not fully
retrievable from the model variables, as the current measurement has not been acquired.
Consequently, the decoupling of this unmeasured disturbance is rendered unachievable,
without an appropriate determination of the value of the current. This situation increases
in complexity when D remains for an extended period, as this compels the steady-state
system to move on, as shown in Figure 7.
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Figure 7. I/O control performance considering unmeasured random and matched disturbances for:
(a) Motor pump current, (b) motor pump angular speed, (c) motor pump voltage, (d) DC converter
inductance current, (e) control input stabilization.

3.4. Analytic SOSM and Nonlinear Implementation

Next, we perform flawless tracking between the PV system output y(t) and reference
desired input yd(t), notwithstanding the materialization of the disturbance D. The design
of the sliding surface is expressed as

S(t) = yd(t)− y(t) +
.
yd(t)−

.
y(t). (32)

The use of the reaching law as defined in (24) delivers a result stated as

U =

[
L C
(

y(1)d (t) + K1(yd(t)−VA)
)
+ VA +

L
R

(
IL

C
− VA

R C

)
+ L2 sin(VA) +

1
C

d3 + ϑ|S(t)|γsgn
(

yd(t)−VA +
.
yd(t)−

IL

C
+

VA

R C

)]
V−1

PV , (33)

where y, yd, S are defined in (32), and K1 is the controller gain.
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While the SOSM is applied to the approximation error, the PV system is controlled
by the I/O linearization law described in (24). The consequential control performance is
exhibited in Figure 8.
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Figure 8. Second-order sliding mode control performance considering unmeasured random and
matched disturbances for: (a) Motor pump current, (b) motor pump angular speed, (c) motor pump
voltage, (d) DC converter inductance current.

The stabilization of the PV system state variables, to the desired values, reflects
the capabilities of the SOSM to reject the disturbances and improve the robustness in
terms of inductor voltage. The total eradication of the disturbing parameter D and the
matched disturbance term − sin(VA) is not performed due to the inaccuracy of the model’s
parameters. As such, the calculated value in relation to the voltage, which also affects the
SOSM by way of the reaching law, is rendered flawed. Then, some degree of uncertainty,
linked to the derivative influencing the switching surface, is detected.

Even when the parameters ϕ and ϑ are precisely modified, chattering can still occur in
the system. To exacerbate the situation, as the reduction in chattering increases, the tracking
error among y(t) and yd(t) increases as well. To determine the optimal controller gains,
regarding y(t) and yd(t), the reduction of the gap to the sliding surface, a tricky control
task, needs to be executed.

The relationship between the SOSM procedure and I/O FBL is made clear through the
expression stated in (33), for a situation where the error dynamics, in correspondence to
the sliding surface, is linear and time-invariant. In its fundamental form, the sliding mode
puts on a display of chattering, corresponding to the control signal, which is unacceptable
for most industrial applications. Several procedures have been developed to reduce the
occurrence of chattering [14]. A heuristic optimization technique, involving the analytical
SOSM-based I/O FBL, is implemented to improve the performance of the control design
under investigation. The main goal for this implementation is to deliver an enhanced
quality steady-state routine, while lessening the occurrence of chattering, under harsh
output desired trajectory circumstances. The implementation of the SMO technique is
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aimed at diminishing the impact of chattering associated with the SOSM method, as well
as improving the efficiency of the technique.

4. Control Design Based on the Slime Mould Algorithm
4.1. Introduction to the Slime Mould Algorithm and Problem Expression

Here, we recommend the application of the SMO stochastic technique to ascertain
the PV system’s controller gains. An explanation is also provided on how the values of
the solution vector variables are adjusted for the SMO application to the root mean square
error (RMSE) [40–52].

For this investigation, the assumptions of the PV system’s parameter values are
depicted in Table 1. As made obvious in the expression stated in (5), nonlinear functions
manage the PV system as a function of the system state variables [IA, Ω, IL, VA]. Mostly,
the solution to these types of systems involves the usage of analytical, numerical, or
metaheuristic procedures. The stochastic SMO approach offers exceptional arithmetical
modeling of the optimization problem through the utilization of adaptive weights, which
is a replication of the procedure for obtaining both positive and negative feedbacks in
the propagated wave. The authenticity of PV cell’s parameters, extracted by means of
a theoretical model, is assessed by the RMSE between the measured experimental and
simulated outputs. The RMSE can be utilized to represent the overall difference between
every measured and approximated pair through an expression given by

RMSE =

√√√√1
q

q

∑
i=1

f (parameter)2, (34)

where q is the sample size or the number of experimental data. For the recommended
approach, the minimum RMSE according to (34) is considered. The implementation of the
SMO technique to approximate the parameters of the model is based on a regulation that is
representative of the solution vector in all iterations.

4.2. Fundamentals of the Concept

Developed and introduced in [44], the SMO is a population-centered metaheuristic
optimization algorithm originating from the unique natural oscillatory conduct of slime
mould. The algorithm is based on the search for the optimal route, towards a solution to
the complex optimization problems, using a merger of positive and negative feedbacks,
much like the approach of slime mould during the pursuit of food. The mould adjusts
its food search maneuvers, based on the quality of the food, in an exceedingly vigorous
fashion. The mould is also equipped with the capability to craft a structure resembling an
arrangement of veins, which simultaneously links a variety of food sources.

A mathematical imitation of the slime mould behavior, regarding the contraction
mode, is stated as [44]

→
Γ (i + 1) =


→
Γ b(i + 1) +

→
Vb

(→
W
→
Γ a(i)−

→
Γ b(i)

)
, s < l,

→
Vc
→
Γ(i), s ≥ l,

(35)

where
→
Γ is the slime mould position;

→
Vb is a parameter equal to [−c, c], with

→
Vc linearly

decreasing from 1 to 0;
→
Γ b is the individual location with the greatest currently detected

aroma concentration;
→
W is the slime mould weight;

→
Γ a and

→
Γ b represent a pair of individu-

als chosen from the swarm, in an arbitrary mode; and i denotes the current iteration. The
variable l defined in (35) is the dynamically altered probability index given as

l = tanh|O(i)− LF|, i ∈ {1, . . . , n}, (36)
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where O(i) signifies the fitness of
→
Γ and LF is the finest (optimal) fitness identified in the

prevailing iterative process. Note that
→
Vb given in (35) is stated as

→
Vb = [−c, c], with

c = tanh−1(1− 1/max_iter), (37)

where max_iter is the maximum iteration. The slime mould weight is formulated as

→
W(smell index(i)) =

1 + s log
(

LF−s
LF−WF

+ 1
)

, condition;

1− s log
(

LF−O(i)
LF−WF

+ 1
)

, others;
(38)

where smell index(i) = sort(O(i)), that is, the series of fitness values classified (which
rises in the minimum value problem); “condition” indicates that O(i) is ranked among the
first half of the population; s is a random value in the interval [0, 1]; and WF is the least
fitness value attained during the prevailing iterative process. The mathematical formula
for revising the slime mould position is obtained as

→
Γ∗ =


rand(ub − lb) + lb, rand < s;

→
Γ b(i + 1) +

→
Vb

(→
W
→
Γ a(i)−

→
Γ b(i)

)
, s < l;

→
Vc
→
Γ (i), s ≥ l;

(39)

where lb and ub are the lower and upper bounds, respectively, and s and “rand” denote
the random value in the range 0 to 1. The key maneuver that needs to be implemented
for an SMO algorithm is the fitness function. The assessment exercise concludes with the
determination of the error between yd(t) and y(t), as expressed by

P(t) =
∫ ∞

0
(yd(t)− y(t))2dt =

∫ ∞

0
e(t)2dt. (40)

4.3. Algorithm Synthesis

Algorithm 1 summarizes the SMO control strategy as it was designed.

Algorithm 1 SMO control strategy

Step 1: Activate the PV system’s initial population as X(0) = [IA(0), Ω(0), IL(0), VA(0)]
T.

Step 2: Fix the boundaries for all parameters.
Step 3: Establish the fitness function expressed through P =

∫ ∞
0 e(t)2dt.

Step 4: Set the parameter population size of the SMO method and max_iter.
Step 5: Fix the locations for the slime mould Γi , for i {1, . . . , n}, as l ≤ max _iter:

5.1 Compute the fitness function for all the slime mould.
5.2 Ascertain the function T (X,D) depicted by (7).
5.3 Calculate the control law expressed by (24).
5.4 Re-assess for the finest fitness Pbest = min

{∫ ∞
0 e(t)2dt

}
.

5.5 State the weight W by way of (36).

5.6 Re-evaluate l,
→
Vb,

→
Vc for the search portions.

5.7 Re-detect positions for each of the search portions through (37).
5.8 Do i = i + 1.

Step 6: Resume Pbest = min
{∫ ∞

0 e(t)2dt
}

.
Step 7: Confirm the control U formulated in (31).

4.4. SMO Control Implementation and Simulation Breakdown

The SMO application to the PV cell variable determination for the models entails
the lowering of the RMSE value to its minimum. After each iteration, the cost function is
altered for the experimental value from the inductor-voltage characteristic, which requires
minimization to acquire the parameters. The efficiency and quickness of the optimization
process for ascertaining the parameters of the PV system are determined by the algorithm’s
fitness function. The use of the SMO algorithm to vary the fitness function during parameter
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estimation is depicted in Figure 9. To arrive at the cost function objective, the solution
is updated over the iteration. Figure 10 displays the SMO flowchart for the parameter
determination and control strategy. The controlled PV system simulation was conducted
in a Matlab environment. Table 2 lists the numerical parameter values used. With the
SMO technique, the varying gains are regarded as fundamental elements, affecting the
algorithm convergence behavior. Table 3 provides the used parameters and settings of the
SMO algorithm.
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Table 2. PV solar pumping system numerical parameters.

Description Values

PV generator IPH = 4.4 A; IS = 52.75× 10−6A; VT = 6.73 V
Capacitor C = 4000× 10−6 Farad

The identified parameters of the
DC motor

R = 1.07 Ω; L = 0.05 Henry; J = 476 × 10−6 kg × m2;
F = 88× 10−5 per unit, KT = 14 × 10−4,
KB = 45 × 10−3 per unit

Table 3. Parameters and settings of the SMO algorithm.

Parameters Values

q 50
→
W adaptive
→
Vb −1 to 1
→
Vc 1 to 0

The effectiveness of the stabilizing control design and the vibrant performance of
the DC converter are made evident in Figures 11–14. Despite the arbitrary environmental
disturbances and their unwelcome impact on the system, the supply delivered by the pump
is well filtered and comes with high accuracy. To assess effectiveness of the SMO controller,
we compare it with several conventional approaches.
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Figure 14. Motor pump angular speed under the indicated scheme.

Figures 11–14 show the superiority of the SMO system in terms of reducing disturbance
and chattering, as well as curbing the occurrence of unwanted dynamical behavior. As noted
from Figure 15, the unwanted chattering feature was relatively subdued. This is attributed to
the combination comprising the SMO module and SMC-based FBL, in which controller gain
tuning is carried out unceasingly. The designed procedure has the capacity to surmount the
uncertainty problem brought about arbitrary external disturbances to the PV system.
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Figure 15. Control signals under the indicated scheme.

Table 4 illustrates the accuracy of the SMO controller for the advanced K1 gain tuning
stated in (33) and the corresponding control effort. In this table, such past aspects are
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compared against the conventional I/O FBL control defined in (5), the decoupling I/O
FBL established in (24), and the analytical SOSM control as given under the analytical
form presented in (33). The SMO technique offers the lowest control effort with its selected
accurate controller gain, which confirms the efficiency of the designed technique.

Table 4. Controller gain tuning for several control inputs in the irradiance trajectory of Figure 4.

Time Slot (8–9 h) (9–10 h) (10–11 h) (11–14 h) (14–15 h) (15–16 h)

I/O FBL control 10.50 10.15 9.34 8.00 10.01 11.00
Decoupling I/O FBL 10.33 9.89 9.22 8.75 8.63 8.10
SOSM control 8.00 7.74 7.10 6.68 7.00 7.50
SMO control 4.35 3.56 3.00 2.88 3.45 3.72

Table 5 confirms the same conclusion regarding the efficiency and superiority of the
developed schemes. Indeed, the best accuracy for the RMSE values among the simulation
slots is obtained for the SMO method. For tracking control purposes, we conclude that the
designed algorithm is efficient in the case of the PV system. Indeed, the dynamics of such a
process is relatively slow compared to the required algorithm convergence time.

Table 5. Values of the RMSE for the indicated aspects.

Time Slot (8–9 h) (9–10 h) (10–11 h) (11–14 h) (14–15 h) (15–16 h)

I/O FBL control 11.75 10.12 9.94 9.01 8.51 7.20
Decoupling I/O FBL 20.23 19.91 19.45 18.17 17.263 16.51
SOSM control 17.00 15.84 13.123 11.361 9.97 8.85
SMO control 10 9.01 8.2 6.075 4.97 3.762

4.5. New Scenario under Natural Irradiance

We ran the entire simulation study by considering a new scenario for the natural
irradiance around the value of 1000 W/m2. The experimental results are reported next:

(i) We state clearly that our designed scheme offers satisfactory performance as can be
seen in Figure 16.

(ii) The first study is performed by using the fundamental FBL technique without ap-
plying disturbing signals to the closed-loop system. This fact is shown in Figure 17.
Notice that FBL provides high performance in stabilizing the controlled system.

(iii) The second study is conducted by considering disturbed random and matched signals,
as shown in Figure 18. Note that the dynamical performance is highly affected.

(iv) Observe that, in this new scenario, as expected, the FBL controller totally loses its
dynamical performance.

(v) The designed SMO-SMC-FBL scheme developed in this paper is now compared to
fundamental FBL (analytic technique ignoring disturbances), SOSM (analytic second-
order sliding mode considering disturbance), and FBL (analytic technique considering
disturbances). The results are shown in Figures 19–23, from where we detect that
the superiority of the SMO technique is obvious. Indeed, the global behavior of the
controlled system is stable and accurate.

(vi) Therefore, the steady-state regime is attained in a quite satisfactory way.
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Figure 16. Simulation of a real profile of the natural irradiance around the value of 1000 W/m2.
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Figure 17. Dynamics of the motor pump with FBL control ignoring disturbances for: (a) Motor
pump current, (b) motor pump angular speed. (c) motor pump voltage, (d) DC converter inductance
current, (e) control input stabilization.
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Figure 18. Dynamics of the motor pump with FBL control including disturbances for: (a) Motor
pump current, (b) motor pump angular speed, (c) motor pump voltage, (d) DC converter inductance
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Figure 19. Motor pump current for the indicated scheme.
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Figure 20. Inductance current of the DC converter for the indicated scheme.
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Figure 21. Motor pump voltage for the indicated scheme.
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5. Conclusions

In this paper, we have proposed an advanced metaheuristic approach that involved
second-order sliding mode control in association with feedback linearization. This ap-
proach solves control problems related to unspecified state disturbances and parametric
uncertainties plaguing the photovoltaic system. The simulation conducted here verified
that the input–output feedback linearization fails to ensure a problem-free decoupling of
the desired output variable from unmeasured disturbances. Precise determination of the
unmeasured states is needed to define the control law ensuring full decoupling. This leads
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to the recommended incorporation of the feedback linearization method for decoupling
the output from disturbance and of a sliding mode control technique for ensuring the
robustness of the controller. In addition, this combination has reduced the influence of ex-
ternal disturbances, accelerating the dynamic response to parameter and process modeling
uncertainties.

An optimization algorithm was implemented to enhance controllers of photovoltaic
systems and to diminish chattering, while the slime mould facilitated adjustments to the
gains of the sliding mode, which ensured the stability of the process. Therefore, the general
performance of the closed-loop photovoltaic system was significantly enhanced.

Future work should include investigations on the viability of applying the recom-
mended technique in the discrete time domain. While the control structure utilizes a real-
time software tool, the consequences of sampling frequency and process delays, derived
from the control input, were not precisely stated for this undertaking. Issues concerning
input saturation should also be considered for any upcoming work in this area.
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