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Abstract: Credible and accurate traffic flow forecasting is critical for deploying intelligent traffic
management systems. Nevertheless, it remains challenging to develop a robust and efficient fore-
casting model due to the nonlinear characteristics and inherent stochastic traffic flow. Aiming at
the nonlinear relationship in the traffic flow for different scenarios, we proposed a two-stage hy-
brid extreme learning model for short-term traffic flow forecasting. In the first stage, the particle
swarm optimization algorithm is employed for determining the initial population distribution of
the gravitational search algorithm to improve the efficiency of the global optimal value search. In
the second stage, the results of the previous stage, rather than the network structure parameters
randomly generated by the extreme learning machine, are used to train the hybrid forecasting model
in a data-driven fashion. We evaluated the trained model on four real-world benchmark datasets
from highways A1, A2, A4, and A8 connecting the Amsterdam ring road. The RMSEs of the proposed
model are 288.03, 204.09, 220.52, and 163.92, respectively, and the MAPEs of the proposed model are
11.53%, 10.16%, 11.67%, and 12.02%, respectively. Experimental results demonstrate the superior
performance of our proposed model.

Keywords: intelligent transportation system; traffic flow modeling; time series analysis; machine
learning; noise-immune learning

MSC: 05C21

1. Introduction

A pivotal enabler for an intelligent transportation system is the forecasting of traffic
flow in the short term [1]. Reliable traffic flow forecasting in real time is aiming to improve
traffic operation efficiency and alleviate traffic congestion, which plays a foundational role
in guidance implemented and traffic control [2]. An efficient response to traffic congestion
can avoid more economic losses and save driving time [3]. Therefore, it has attracted great
attention from commercial organizations, public institutions, and individual drivers [4].
However, traffic flow contains seasonality masked by noise and random behavior influ-
enced by external factors, which makes accurate and reliable prediction still a challenging
mission [5].

There are different stages of the evolution of traffic prediction methods. A series of
models and theories have been constructed in the literature, which is usually roughly
classified by time series models, dynamics models, and machine learning models. Random
walk, historical average, autoregressive model, and its variants could be categorized as time
series models. A simple yet powerful method for making accurate traffic flow forecasting
is proposed based on a series of standard structures in traffic flow from the autoregressive
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integrated moving average (ARIMA) and its variants [6,7]. The Kalman filtering, which
forecasts the continuous changing of the traffic flow by simulating the evolution of the traffic
flow as a linear dynamic system, is the most typical dynamic mode [8,9]. Nevertheless,
complex and nonlinear characteristics of traffic flow could not be handled efficiently by
these two kinds of models due to their structure based on the stability assumption. Later,
researchers have employed machine learning for forecasting traffic flow with complex
and nonlinear features [10,11]. For instance, a k-nearest neighbor regression model based
on sample-rebalanced outlier-rejected is developed for the prediction of traffic in the
short term [12]. Cai et al. [13] demonstrated that there are more performance advantages
of the support vector machine regression model optimized by the gravitational search
algorithm than the original support vector machine in traffic flow forecasting. A noise-
immune boosting framework was developed by Zheng et al. for forecasting short-term
transportation flow [14]. Moreover, the search data-driven optimal models for traffic flow
forecasting could be searched by evolutional algorithms [15,16].

In recent years, the popularity of deep learning has increased rapidly in capturing
complex and nonlinear patterns in traffic [17–19]. In the early stage, when deep learning
is introduced into traffic flow forecasting, stacked autoencoder (SAE) networks [20,21]
and deep belief network (DBN) [22] are representative. Then, long short-term memory
networks and recurrent neural networks have also been drawn into short-term traffic flow
forecasting [23–25]. Luo et al. applied a graph convolution model to make use of the spatial
correlation of traffic flow for forecasting [26]. On this foundation, a host of spatiotemporal
prediction models is proposed for forecasting traffic in the short term [27–30].

All of the above deep learning models show their robust and significant performance
for traffic flow prediction. Nevertheless, the deficiency and low-quality training data may
cause these models to fall into local minimum [31,32]. All the network parameters are
optimized iteratively based on the gradient descent algorithm according to the principle of
empirical risk minimization in deep learning networks [19,33], which greatly improves the
computational complexity. Furthermore, determining an optimal network for a tangible
road network is based on corresponding expertise knowledge. That is to say, learning a
network model f for the nonlinear mapping between the historical traffic flow X and the
future traffic flow X̂ is the goal of traffic flow forecasting, e.g., X̂ = f (X). Nevertheless,
the best performance for every dataset is laborious to realize on a single optimal model f ∗

unless consuming massive computing resources.
The potential of evolutionary algorithms to exploit a model’s model is reconsidered to

deal with these issues. A meta model F is the learning object of it, and the optimal forecast-
ing model f ∗ could be obtained from the traffic flow data spontaneously, e.g., f ∗ = F (X, f ).

In this paper, an uncomplicated but effective hybrid, which applies a data-driven
fashion to determining a suitable traffic flow forecasting model, is proposed as an example.
The combining PSO and GSA are used as a meta model in this example, and the ELM is a
base forecasting model. Extreme learning machine (ELM) declared by Huang et al. [34] has
been extensively employed for predicting short-term traffic flow with a fast learning rate
and simple network structure. On the premise that the activation function of the hidden
layer is infinitely differentiable, ELM ascertains the hidden layer biases and input weight
by random initialization; then, it employs the Moore–Penrose (MP) generalized inverse for
calculating the output weights matrices [33]. The special network structure of ELM could
avert or improve some problems such as local minimum, stopping criterion, and learning
rate, which are generated by gradient-based learning methods [35,36]. Nevertheless, it is
momentous to calculate the optimal hidden layer biases and input weight in ELM [15]. An
improper network parameter setting will lead to the problem of overfitting or a decline in
forecasting accuracy.

To combat the problem, this article reformulates the extreme learning machine ma-
jorized by particle swarm optimization combing gravitational search algorithm, termed a
PSOGSA-ELM hybrid model, for traffic flow prediction. During the fundamental idea of
our model, a data-driven optimization task replaces the selection of the optimal combina-
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tion for the hyperparameters of the ELM model, and then, the optimal solution for this task
is obtained by a hybrid heuristic swarm intelligent algorithm.

Our contributions to this paper are summarized as shown below:

• We apply the perspective of a meta model to rethinking the amelioration of traffic
flow forecasting models, with an example about a learning model optimized by a
data-driven hybrid evolutionary algorithm.

• We establish a particle swarm optimization combining a gravitational search algo-
rithm optimized extreme learning machine model for forecasting traffic flow in the
short term.

• We demonstrate the practicability of our motivation of the data-driven meta model by
sufficient experiments, whose results demonstrate the outperformance of the proposed
model to state-of-the-art models.

The remaining sections of this article are organized as follows. Section 2 reviews the
idea of a data-driven meta-model and demonstrates a hybrid extreme learning machine
optimized by combining particle swarm optimization and gravitational search algorithm.
Section 3 introduces the details of our empirical study on four base datasets gathered
from the expressways of Amsterdam, Netherlands. The summary of our study is given in
Section 4.

2. Methodology

In this section, an extreme learning machine is applied to establish the traffic flow
forecasting model first. Then, particle swarm optimization is employed for determining
the parameters of the gravitational search algorithm. Later, the resulting PSOGSA hybrid
module is used to optimize the extreme learning machine.

2.1. Extreme Learning Machine

Gradient descent algorithm is applied to renew the parameters in the training process
of traditional neural networks. This way, the output result of the neural network can
gradually approach the expected one with a decrease in the sum of square errors. There are
differences between the conventional feedforward neural network and the extreme learning
machine, which is a machine learning algorithm based on a feedforward neural network
with a single layer. In ELM, calculating the hidden layer parameters is the approach to
determining the output weight, and the hidden layer is built stochastically. This network
structure makes the algorithm have faster convergence speed and lower computational
complexity, and it also has advantages in fitting ability and generalization performance
compared with the traditional gradient-based learning algorithm [37,38]. The standard
ELM three-layer structure is shown in Figure 1.

Figure 1. The number of hidden layers in extreme learning machine is only one with three parameters:
hidden layer biases ω, input weight χ, and output weight t.
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The detailed description of ELM traffic flow forecasting model is as follows. First,
the traffic flow at the ath measurement location at the ith time interval could be assumed
as µ

(a)
i . Then, we employ {(e(i), t(i))}N

i=1 for representing N traffic flow training sam-
ples. After that, the traffic flow at the past and current ν − 1 time interval is set as
e(i) = [µ

(a)
i−ν+1, . . . , µ

(a)
i ]Aa=1, in which A is the number of measurement locations and ν

is the time lag. Later, the factual data of the i specimens for the traffic flow prediction model
are represented by f (i) = [µ

(a)
i+1]

A
a=1. The feedforward neural network with a w0 hidden

nodes hidden layer is demonstrated as:

Hβ = T, (1)

in which H = (gij)i=1,...,N,j=1,...,w0 indicates the output matrix of the hidden layer. Among
them, gij = f (χT

j ei + ωj) denotes the output of the jth hidden node with regard to ei.
The input nodes and the jth hidden neuron could be linked by a weight vector χj =

[χj1, χj2, . . . , χjn]
T . ωj represents the bias of the jth hidden neuron. The matrix of output

weights is expressed as β = [β1, β2, . . . , βw0 ]
T , and we can connect the output nodes and

the corresponding jth hidden neuron by the weight vector j = 1, . . . , w0. To the right of the
formula, the objective matrix is denoted as T = [t1, t2, . . . , tN ]

T . The operating principle
of ELM is to initialize the hidden deviation and input weight randomly. Then, a rational
activation function is chosen to ascertain the matrix H. After that, by calculating the least-
squares (LS) solution of the linear system, which plays a role in training the feedforward
neural network, the output weight ψ could be calculated. The solution procedure is
demonstrated as Equation (2).

β̂ = H†T, (2)

in which H† denotes the Moore–Penrose (MP) generalized inverse of matrix H.

2.2. Standard Gravitational Search Algorithm

Rashedi et al. [39] proposed a novel heuristic optimization algorithm based on Newto-
nian laws of gravity and law of motion. In gravitational search algorithm, mutual attraction
occurs between all substances under the action of gravity force. Heavier substances that
may be close to the global optimal value will make other substances move toward them-
selves because the heavier substances have greater attraction. Consequently, the solving
process of the problem to be optimized is transformed into the process of finding heavier
substances [40]. Assume that v substances are distributed in a d-dimensional exploitation
space; then, Equation (3) represents the position of the xth substances.

αx = (ι1x, ι2x, . . ., ιdx, . . . , ιvx) f or x = 1, 2, . . . , v, (3)

where αd
x is the location of the xth substances in the d-dimensional space. The xth substance

is gravitated by the yth substance at the t0th iteration, as shown in Equation (4).

Fd
xy(t0) = G(t0)

My(t0)×Mx(t0)

Zxy(t0) + δ
(ιdy(t0)− ιdx(t0)), (4)

in which Mx(t0) is the inertial masses of the substance x which is affected by gravity,
and the force producing substance y is represented as My(t0). δ denotes a tiny appropriate
constant and the Euclidian distance between substance x and substance y is Zxy(t0). G(t) =

G0e−ζ(
t0
S ) represents a gravity constant which gradually decreases during the iteration

process, and it is also the controller of the optimized accuracy process. S represents the
total iterations, ζ denotes the manually adjusted constant, and the initial value of Gs is G0.
The total gravity acting on the xth substance is the stochastic weighted sum of the force
applied from another substance in the dth dimension.
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Fd
xy(t0) =

v

∑
y=1,y 6=x

randyFd
xy(t0), (5)

where randy ∈ (0, 1) denotes a stochastic value employed for increasing the stochastic
features of GSA. A global search tactic on the solution space is applied to keep the GSA from
sinking into the local minima at the beginning of the optimization process. Then, the global
exploitation fades out and local exploitation fades in with the running of the algorithm.

In the process of standardizing exploration and exploitation, the optimization ability
of GSA could be improved. After that, the number of the agent is decreased to maintain
the balance of exploitation and exploration. Other substances are subjected to gravity
from a group of substances with larger mass (λbest corresponding optimal solution) [39].
Equation (6) could strengthen the performance of GSA, whereas by the time function, λbest
decreases with the increase of the number of iterations.

Fd
xy(t0) =

v

∑
y 6=x,y∈λbest

randyFd
xy(t0). (6)

The acceleration of substance x at time t0 in the d-dimension is shown as Equation (7)
based on Newton’s second theorem.

ad
x(t0) =

Fd
x (t0)

Mx(t0)
, (7)

where Mx(t0) is the inertial mass of the xth substance. The velocity and direction of the
substance are regulated by the acceleration function. The velocity and position of the
substance is updated under the guidance of Equations (8) and (9) in every iteration.

vd
x(t0 + 1) = randx × vd

x(t0) + ad
x(t0), (8)

ιdx(t0 + 1) = ιdx(t0) + vd
x(t0 + 1). (9)

In Equation (9), the position and speed of the substance at the t0th iteration is denoted
as vd

x(t0) and ιdx(t0). Then, we can calculate the inertia mass according to the size of the
fitness value. The distance between the substance and the optimal value decreases with
the increase of its inertial mass, which demonstrates that the attraction of the substance is
inversely proportional to its moving velocity. Later, the inertial mass of the substance is
updated as following:

mx(t0) =
f itx(t0)− worst(t0)

best(t0)− worst(t0)
, (10)

Mx(t0) =
mx(t0)

∑v
y=1 mx(t0)

, (11)

in which
worst(t0) = max

x∈1,2,...v
f itx(t0), (12)

best(t0) = min
x∈1,2,...v

f itx(t0), (13)

and where f itx(t0) denotes the fitness value of the xth substances at time t0.

2.3. Standard Particle Swarm Optimization

According to the observation of the social behavior of biological organisms, Kennedy
and Eberhart propose an evolutionary computation algorithm termed particle swarm
optimization (PSO) [41]. PSO explores the best solution in the specified search space
through free-flying particles. These particles could be regarded as candidate solutions,
and seeking the best particle in the path is the process of seeking the best solution. That is
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to say, the best solution found so far has the same performance as the independent solution
of each particle.

In D-dimensional space, a population composed of N0 particles can be assumed
as P = (P1, P2, . . . , Pn0), in which the lth particle is denoted as a D-dimensional vector
Pl = [pl1, pl2, . . . , plD]

T . The advantages and disadvantages of the current position can
be determined according to the calculation results of the fitness value corresponding to
the particle position Pl , based on the objective function. There is a speed representing the
direction and the distance of each particle. ρ = [ρl1, ρl2, . . . , ρlD]T denotes the speed of the
th particle. The position and speed of the particles are updated in each iteration of the PSO,
as shown in the following:

ρ
g+1
ld = φρ

g
ld + w1κ1(qv

d − pv
ld), (14)

pg+1
ld = pg

ld + ρ
g+1
ld , (15)

in which Q = [q1, q2, . . . , qD]
T is the global best position of colony and Ql = [ql1, ql2, . . . , qlD]

T

is the individual best position of the ith particle. The inertia weight is φ and the number of
hidden layer nodes is g. w1 and w2 are employed for representing the factors of learning.
The range of the speed is denoted as [v0min, v0max] and terms κ1 and κ2 are stochastically
ascertained in range U(0,1).

2.4. ELM Optimization Learning Based on Data Driven

The installation of the ELM network structure has a non-negligible influence on the
forecasting accuracy of the traffic flow model. In this article, we employ PSO instead of
the original random method for generating the initial population of GSA, to improve its
performance. Then, the hybrid evolutionary algorithm is employed for completing the
data-driven optimization tasks, which are transformed from a selection of input weight
and hidden layer threshold in ELM. Figure 2 demonstrates the workflow of the obtained
data-driven traffic flow forecasting model, which is termed the PSOGSA-ELM model.
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Figure 2. The network structure of the proposed PSOGSA-ELM.

3. Experiments
3.1. Data Description

In this section, four benchmark traffic datasets are employed for appraising the
PSOGSA-ELM model. Wang et al. [42] collect these datasets from four freeways A1,
A2, A4, and A8, which end at Amsterdam A10 Ring Road. MONICA loop detectors are
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employed for collecting these datasets from 20 May to 24 June 2010, and the detection
location is demonstrated in Figure 3.

Figure 3. Base road conditions of A1, A2, A4, and A8 highways in Amsterdam.

The raw traffic flow data are summarized by rolling stocks every hour per minute, which
consists of five weeks. The following is the fundamental message of the four motorways.

• The A1 freeway is an extremely significant route in Europe whose extraordinary
position is the link between the German border and Amsterdam. The first 3+ barrier-
separated lanes with high-occupancy vehicle (HOV) in Europe is located on the A1
freeway. Therefore, forecasting traffic flow accurately is thrown down the gauntlet
because the flow on an HOV vehicle lane changes dramatically over time.

• The A2 expressway links the Belgian border and the city of Amsterdam, which is one
of the expressways with the highest traffic flow in the Netherlands. The data collected
before the road widening in 2010 could be employed for evaluating the performance
of the proposed framework when the road falls into traffic congestion in our research.

• As a section of the Rijksweg 4, the A4 expressway in the Netherlands is another high
priority, starting from Amsterdam and ending at the Belgian border.

• A8 is the shortest of the four freeways, starting from the A10 motorway at interchange
Coenplein to the Zaandijk, and the total length is less than 10 km.

Li et al. [43] proposed a statistical learning method, which is applied for correcting
and complementing the missing values in the original data collected by the detector.
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3.2. Evaluation Criterion

In this article, two frequently used criteria are applied to test the forecasting perfor-
mance. The root means square error (RMSE) demonstrates the average difference between
the predictive value and the measured value. The mean absolute percentage error (MAPE)
calculates the percentage of the differences. The mathematical definitions of the two criteria
are shown in Equations (16) and (17), respectively.

RMSE =

√√√√ 1
P0

P0

∑
p0=1

(û(p0)− u(p0))
2, (16)

MAPE =
1
P0

P0

∑
p0=1

∣∣∣∣ û(p0)− u(p0)

u(p0)

∣∣∣∣× 100%, (17)

where û(p0) and u(p0) denote the predictive value and the measured value of the p0th
sample.

3.3. Performance Evaluation

To assess the prediction performance of PSOGSA-ELM, we compare the proposed
model with some traffic flow models which are commonly applied in the intelligent trans-
portation system.

Historical average (HA): HA is employed for forecasting the average of the identical
time on an identical day in the weeks before a given time in a day.

Exponential smoothing (ES): Exponential smoothing (ES) is a particular weighted
moving average method (MA), which is an important category of time series analysis and
prediction methods [44]. The forecasted values during the observation period are further
affected by the recently observed values due to the unequal weights given by the observed
values at various times. To mirror the flatness of the trend change, we employ the double
exponential smoothing method for setting parameter α0 in the model to 0.4.

Artificial neural network (ANN): ANN is a kind of nonparametric learning model
with a single hidden layer neural network structure. According to the network parameters
criteria in [45], we set the MSE target value as 0.001, the maximum number of neurons as
40, the number of hidden layers as 1, and the expansion speed of the radial basis function
as 2000. Based on the default value, 25 neurons are set to add between displays.

Decision trees (DTs): The DT model, which is based on the classification and regres-
sion tree (CART), is employed for forecasting traffic flows in our experiment. In CART,
the robustness against missing data and noise is strong, and the prior hypothesis is not
necessary. The detailed knowledge about CART is in [46].

Autoregression (AR): The AR has been widely applied to forecasting traffic flow as a
linear regression model. In AR, the linear combination of stochastic variables at a previous
moment is employed for describing the random variables at a later moment, and then, the
randomness of traffic flow could be handled effectively. We set the parameter p̂ from 0 to 8
according to the suggestion in [20].

Seasonal autoregressive integrated moving average (SARIMA): In the data collected
regularly, there are usually sequential lag relationships, whose correlation could be further
excavated and applied by the SARIMA model for forecasting the traffic flow [35]. We set
the parameters of the model as SARIMA(1, 0, 1)× (0, 1, 1)1008, φ0 = 0.8, θ0 = 0.4, Θ0 = 0.8.

Support vector machine regression (SVR): The detailed description of SVR is in [20].
In our experiment, the kernel function of the SVR model is selected as the radial basis
function (RBF). The maximum difference between traffic flow determines the cost parameter
Ĉ, in which the regression horizon is set to 8.

To prove the optimized capability of the hybrid data-driven model, the ELM optimized
by genetic algorithm (GA-ELM) and the standard extreme learning machine is compared
with the proposed model. Since substances are randomly distributed in GA and hybrid
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PSOGSA, each run will generate different results. Therefore, the outcomes of 100 runs are
regarded as the outcomes on every benchmark dataset for the GA-ELM model and the
PSOGSA-ELM model in this comparative experiment.

We can find in Tables 1 and 2 that the PSOGSA-ELM has remarkable advantages in
forecasting the performance of all four benchmark datasets.

Table 1. The RMSE (vehs/h) of different forecasting models on datasets collected from A1, A2, A4,
and A8, respectively.

Model A1 A2 A4 A8

HA 404.84 348.96 357.85 218.72
ES 315.82 226.40 237.76 174.67

ANN 299.64 212.95 225.86 166.50
DT 316.57 224.79 243.19 238.35
AR 301.44 214.22 226.12 166.71

SARIMA 308.44 221.08 228.36 169.36
SVR 329.09 259.74 253.66 190.30
ELM 300.67 208.84 224.54 172.69

GA-ELM 291.42 211.43 228.57 169.25
PSOGSA-ELM 288.03 204.09 220.52 163.92

Table 2. The MAPE (%) of different forecasting models on datasets collected from A1, A2, A4, and
A8, respectively.

Model A1 A2 A4 A8

HA 16.87 15.53 16.72 16.24
ES 11.94 10.75 11.97 12.00

ANN 12.61 10.89 12.49 12.53
DT 12.08 10.86 12.34 13.62
AR 13.57 11.59 12.70 12.71

SARIMA 12.81 11.25 12.05 12.44
SVR 14.34 12.22 12.23 12.48
ELM 11.92 10.32 12.09 12.58

GA-ELM 11.86 10.30 11.87 12.26
PSOGSA-ELM 11.53 10.16 11.67 12.02

As shown in Table 1, the RMSEs of proposed model are 12.48%, 21.42%, 13.06%,
and 13.86% lower than the RMSEs of SVR at A1, A2, A4, and A8, respectively. The RMSEs
of the proposed model are 8.80%, 9.85%, 7.25%, and 6.15% lower than the RMSEs of ES at A1,
A2, A4, and A8, respectively. The RMSEs of the proposed model are 3.87%, 4.16%, 2.36%,
and 1.55% lower than the RMSEs of ANN, at A1, A2, A4, and A8, respectively. As shown in
Table 2, the MAPEs of the proposed model are 8.82%, 8.89%, 3.15%, and 3.38% lower than
the MAPEs of SARIMA at A1, A2, A4, and A8, respectively. The MAPEs of the proposed
model are 3.27%, 1.55%, 3.47%, and 4.45% lower than the MAPEs of standard ELM at A1,
A2, A4, and A8, respectively. The MAPEs of the proposed model are 2.78%, 1.36%, 1.68%,
and 1.96% lower than the MAPEs of GA-ELM at A1, A2, A4, and A8, respectively.

Then, Akaike Information Criterion (AIC) is introduced into our experiment, as demon-
strated in Table 3.

Table 3. Comparative experiment on AICc.

Model A1 A2 A4 A8

ELM 15.429 15.544 15.168 14.267
GA-ELM 15.416 15.522 15.136 14.161

PSOGSA-ELM 15.325 15.430 15.055 14.156
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AIC includes both simplicity and accuracy as references while evaluating the perfor-
mance of different models [47,48]. In Table 3, we discover that the AIC of the PSOGSA-ELM
model is the smallest of the three models related to ELM. That is to say, our proposed model
performs better in terms of accuracy and simplicity.

In Figure 4a–d, the deviation between the short-term traffic flow predicted values of
the model and the practical measured values are visualized intuitively. The purple lines
demonstrate the measured values, whereas the green lines represent the predicted values.
The errors between the predicted value and measured value divided by the ground truth,
termed the relative error of the model, are plotted with a black line. In Figure 4, we can
find the related errors calculated by experiments approached 0 most of the time, which
proved the outstanding performance of the PSOGSA-ELM model in the scenes of A1, A2,
A4, and A8.
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Figure 4. (a–d) show the predicted values of the PSOGSA-ELM model, the measured values in a
week, and the forecasting related error, respectively.

In addition, an evaluation index dedicated to traffic flow forecasting, termed GEH
statistics [49–51], is also employed for analyzing the results. Table 4 lists the GEH statistics
value of the prediction outcomes of proposed models on four base datasets.

Table 4. GEH statistics of the GSA-ELM model.

Dataset A1 A2 A4 A8

GEH 6.13 4.48 4.88 4.81

In Table 4, we can find that the GEH of the prediction results for most benchmark
datasets is less than 5. On the A1 dataset, the value of GEH is 6.12, which is probably
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because the A1 dataset has stronger volatility than the other three datasets. The fitting
performance of the model is in good accordance with the evaluation standard of GEH.

3.4. Ablation Study

The fluctuation of traffic flow over a continuous time rather than minute-to-minute
fluctuation is the object of traffic flow forecasting study [21,42]. Consequently, we regard
the traffic flow data aggregation of a 1-min average in the subsequent 10 min as the 10-min
data and employ it for forecasting tasks. The original data made of 5 weeks of measurement
is classified as a training set and testing set in our experiment. The training set includes
the samples in the first four weeks and the testing set consists of the samples in the fifth
week, whereas the number of samples measured every week is 1008. The time interval
is stipulated as 8 and hidden layer nodes of ELM are set to 30. On this basis, we apply
the classical sigmoid function as the activation function. The specific parameter settings
of PSO and GSA are shown in Table 5. MAPE and RMSE are employed for evaluating
the optimization performance of PSOGSA. The trend for the forecasting performance
corresponding to the number of algorithm iterations is demonstrated in Figure 5. In Table 5,
it obvious that the values of RMSE and MAPE both tend to smooth when the number of
iterations is more than 80, which testifies to the rationality of setting the maximum number
of iterations of the GSA module as 100.

Table 5. The parameters setting of GSA module and PSO.

Algorithm Paramater Value

PSO Range of inertia weights [0.4,0.9]
Number of particles 40

c1 1.7
c2 1.3

Maximum Iterations 150

GSA Population size 300
G0 100
υ 20

Maximum Iterations 100
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0.03

0.04

0.05

0.06

0.07

M
A

P
E

0 10 20 30 40 50 60 70 80 90 100

The number of Iterations

150

200

250

300

R
M

S
E

Figure 5. The change trends of MAPE and RMSE with the number of iterations of GSA.
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For evaluating the ability of PSOGSA to optimize ELM network structure parameters
based on data-driven methods, we introduce a genetic algorithm (GA), which is a popular
optimization algorithm, to our comparative experiment. The non-specific parameters of
GA are set to be the same as PSOGSA for a fair comparison. The number of iterations of
GA is also stipulated as 100, whereas the variation probability is 0.03, the generation gap is
0.95 and the crossover probability is 0.85. Detailed information on the genetic algorithm
optimized ELM (GA-ELM) is shown in [52]. As two characteristic periods, the morning peak
and afternoon peak are chosen for evaluating the optimization performance of PSOGSA
and GA in determining the parameter of ELM. Among them, the time interval from 7:30
to 9:30 represents the morning peak and that from 13:30 to 14:30 represents the afternoon
peak. Tables 6 and 7 demonstrate the forecasting performances of three types of models
during the morning and afternoon high peak periods, respectively.

Table 6. The forecasting performance during the morning peak period while optimizing ELM with
different optimization algorithms.

The Morning Peak Period Groundtruth ELM Prediction GA-ELM PSOGSA-ELM

6/11/7:30 3546 3274.033 3270.369 3392.933
6/11/8:30 3792 3700.290 3724.208 3756.983
6/11/9:30 4184 3691.265 3734.778 3801.143
6/14/7:30 2670 2641.334 2662.170 2649.311
6/14/8:30 3116 2934.568 2957.073 2976.761
6/14/9:30 3094 3005.691 3023.728 3033.094
6/15/7:30 2817 2999.734 3012.434 2920.417
6/15/8:30 2893 2846.403 2808.657 2807.973
6/15/9:30 3154 3225.806 3200.339 3239.240

RMSE 217.03 206.39 164.44
MAPE 5.01 4.69 3.76

Table 7. The forecasting performance during the afternoon peak period while optimizing ELM with
different optimization algorithms.

The Afternoon Peak Period Groundtruth ELM Prediction GA-ELM PSOGSA-ELM

6/11/13:30 3948 3957.867 3973.349 3956.204
6/11/14:00 4373 4179.630 4437.895 44,407.233
6/11/14:30 3542 3976.427 4030.626 3968.726
6/14/13:30 3817 3369.284 3346.841 3376.680
6/14/14:00 4135 3734.672 3744.345 3812.346
6/14/14:30 4197 4261.105 4384.840 4272.334
6/15/13:30 3732 3394.333 3430.046 3431.599
6/15/14:00 4032 3818.189 3842.358 3827.597
6/15/14:30 4549 3895.383 3947.706 3908.953

RMSE 361.78 356.10 338.08
MAPE 7.62 7.57 6.82

In Figures 6 and 7, the forecasting error, which is the absolute value of the measurement
minus the forecasting, is shown in two categories: the morning and the afternoon rush hour,
respectively. Tables 6 and 7 demonstrate that the RMSE and MAPE of the PSOGSA-ELM
model are lower than the other comparable models in these periods. In Figures 6 and 7,
the PSOGSA-ELM model realizes a lower forecasting error than other comparison models
in different scenarios. Thus, the network structure of the ELM model could be optimized
by hybrid PSOGSA better than GA during the high peak period in the morning and
afternoon. Moreover, we also consider the traffic flow in a low traffic period. Midnight in
the morning, covering the period from 23:30 to 00:30 is considered the low traffic period in
our experiment. During this time, the violent fluctuation of RMSE could be caused by a
small forecasting error.
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Figure 6. The forecasting errors during the morning peak period while optimizing ELM with different
optimization algorithms.
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Figure 7. The forecasting errors during the afternoon peak period while optimizing ELM with
different optimization algorithms.

When the traffic flow is low at midnight, the prediction results from ELM optimized
by different algorithms are shown in Table 8. Figure 8 shows the forecasting errors of
three models during this period, which illustrates that PSOGSA is better than the genetic
algorithm in determining the network parameters of ELM. Consequently, the optimization
performance for the ELM of hybrid PSOGSA is better than GA under different traffic flow
situations. To further reduce the stochasticity of the prediction performances, the traffic
flow in more diversified periods is employed for a comparative experiment of several
models, as shown in Figure 9.
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Table 8. The forecasting performance during the low traffic period at midnight while optimizing
ELM with different optimization algorithms.

The Midnight Period Ground Truth ELM Prediction GA-ELM PSOGSA-ELM

6/11/23:30 297 235.481 238.125 238.980
6/12/00:00 243 236.766 233.857 241.629
6/12/00:30 229 337.797 313.061 309.774
6/12/23:30 297 264.544 247.249 259.573
6/13/00:00 192 232.681 243.316 212.192
6/13/00:30 426 402.075 342.899 374.851
6/13/23:30 241 246.560 236.844 236.777
6/14/00:00 187 336.153 323.598 261.377
6/14/00:30 284 368.125 335.396 316.246

RMSE 73.25 69.88 48.20
MAPE 24.47 24.02 15.93
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Figure 8. The forecasting errors during the low traffic period at midnight while optimizing ELM with
different optimization algorithms.

To assess the comprehensive performance of the hybrid model proposed in this article,
ELM, GA-ELM, and PSOGSA-ELM are selected for a comparative experiment about run-
ning time. In Table 9, we can find that the running time of ELM is the fastest of the three
due to its random parameter generation process. Nevertheless, the target of the data-driven
model, minimizing the forecasting error, could hardly be realized by randomly generated
parameters. Meanwhile, on the basis of determining the parameters reasonably of the
forecasting model, PSOGSA-ELM still maintains a low running time, which is lower than
GA-ELM. The training of the proposed model costs about 83 seconds in our experiments
on the benchmark dataset. Fortunately, we only need to train the model one time. The
forecasting time of the proposed model is the same as the general extreme learning machine,
i.e., less than 0.1 second. The parameters of the proposed model are automatically opti-
mized in a data-driven fashion, and the only required input is traffic flow data. Therefore,
the algorithm can be effectively applied to other traffic scenes at different locations without
human interaction.
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Figure 9. Under the conditions of large traffic flow fluctuations, the forecasting performance of
different algorithms optimized ELM is shown as (a–f).

Table 9. The computational time of ELM, GA-ELM, and GSA-ELM.

Model Computational Time (s)

ELM 0.0516
GA-ELM 100.2139
PSOGSA-ELM 83.8456

With accurate predicted future traffic flow, the policymakers can adjust the time slice of
the traffic lights to make perspective traffic management based on the future traffic flow for
effective leverage of the road resources. The policymakers can also adjust the driving rules
to control the traffic on the road network to optimize the allocation and management of
road resources. Moreover, the spreading of the future traffic flow by public media can also
induce vehicles to choose alternative ways spontaneously to improve the traffic conditions.

4. Conclusions

In this paper, we develop a two-stage data-driven hybrid extreme learning model
for short-term traffic flow forecasting. Comparative experiments on the trained model
show that the RMSEs of the proposed model are 3.87%, 4.16%, 2.36%, and 1.55% lower
than the RMSEs of the state-of-the-art model, at four benchmark datasets, respectively.
The MAPEs of the proposed model are 2.78%, 1.36%, 1.68%, and 1.96% lower than the
MAPEs of the state-of-the-art model at four benchmark datasets, respectively. Conse-
quently, the experimental results demonstrate the model can automatically determine the
optimal hyperparameters of the extreme learning machine in a data-driven fashion. Since
the hyperparameters of the model are optimized automatically in a data-driven manner,
the model can be conveniently deployed to different intelligent traffic systems without
human intervention. In the future, we will improve forecasting accuracy by spatiotemporal
learning on other models.
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