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Abstract: Determining prerequisite requirements is vital for successful curriculum development and
student on-schedule completion of the course of study. This study adapts the Receiver Operating
Characteristic (ROC) curve analysis to determine a threshold grade in a prerequisite course necessary
for passing the next course in a sequence. This method was tested on a dataset of Calculus 1 and
Calculus 2 grades of 164 undergraduate students majoring in mathematics at a private university in
Kazakhstan. The results showed that while the currently used practice of setting prerequisite grade
requirements is accurately identifying successful completions of Calculus 2, the ROC method is more
accurate in identifying possible failures in Calculus 2. The findings also indicate that prior completion
of Calculus 1 is positively associated with success in a Calculus 2 course. Thus, this study contributes
to the field of mathematics education by providing a new data-driven methodology for determining
the optimal threshold grade for mathematics prerequisite courses.

Keywords: curriculum design; prerequisite; ROC curve analysis; Youden index; undergraduate
education; mathematics education; binary classification

MSC: 97B40; 97B70

1. Introduction

Curriculum design is a significant component of a successful educational program at
any level. Curriculum developers face many challenges in developing research-informed
curriculum such as feasibility of the educational program [1], establishing new qualifica-
tions for the future [2], promoting interdisciplinary curricula [3], closing the gap between
intended and attained curriculum [4], ensuring the ‘fitness to practice’ [5], and ensuring the
prerequisites are met before taking the next level courses [6,7]. Curriculum design “requires
legal frameworks and professional regulatory requirements” [8] (p. 1). Identifying minimal
prerequisites for a program is essential [9], and sequencing the courses that appear in the
learning process often requires careful attention to designing the curriculum, which is
reported to be highly correlated with the time students need to complete a degree [10].
Certain courses may require prior knowledge or skills necessary to complete them success-
fully, and as such, they should be taken in later stages after passing prerequisite courses
within the program. Prerequisites are defined as core competencies that students must
demonstrate before taking a course that requires these competencies in order to understand
the course material. Prior knowledge has long been considered the most important factor
influencing mathematics learning and student achievement. Therefore, determining ap-
propriate prerequisite requirements for mathematics courses is critical for increasing the
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likelihood of success and students’ overall well-being [11]. However, assigning too many
prerequisites could lead to a delay in graduation, and it may place a barrier for students in
other majors to taking advanced mathematics courses as electives. O’Shea and Pollatsek,
and McLoughlin [12,13] (p. 12) argue that “a well thought out mathematics program with
pre-requisite properly set offers the student more, not less chance to succeed and creates
access rather than denies it”.

Thus, the purpose of this study is to develop and implement a new method of deter-
mining the prerequisite grades necessary to pass the given course. In this study, we refer to
a minimal passing grade in a prerequisite course required to enroll in the given course as
a threshold.

2. Approaches to Establishing Prerequisites

Two approaches are commonly used to identify prerequisites: qualitative methods
analyze necessary skills and competences [14,15], and statistical methods compare an
experimental group to a control group [16–19]. Another less common approach using data
mining techniques was suggested by Bayer et al. [20]. Most often, prerequisites set in course
syllabi are based on theoretical models from the literature or expert opinion, including
from experienced instructors for the course [21–23]. During the curriculum revision period,
the stakeholders seldom refer to the empirical data to test the appropriateness of the
prerequisites. One possible reason for this could be insufficiency of empirical data [24],
as small data may fail to remove instructional effects. However, with a large number of
participants, the other possible factors can be minimized. For example, Vuong, Nixon, and
Towle [25] analyzed prerequisites within a curriculum of 888 schools in the US involving
20,577 students using a binomial test to look for possible correlations and to compare the
performance of the control and experimental groups.

There are two issues that curriculum and program developers have to address in order
to define prerequisites for any given course: (1) what courses should be required as prereq-
uisites, and (2) what is the minimum grade in a prerequisite course to allow enrollment in
the given course. The first issue can usually be addressed based on the expert assessment, as
discussed above. The second issue could be addressed using a detailed empirical analysis
of existing student data. However, to the best of the authors’ knowledge, there seems to
be almost no empirical studies that suggest methods to generate predictive models that
determine a minimal threshold grade in a prerequisite course for passing a given course.
Most studies focus on establishing correlations between the grades in the prerequisite
and following courses. For example, in a study on baccalaureate nursing programs [26],
the grades of prerequisite science courses were found to correlate with grades in major
courses, such as pharmacology (r = 0.60, p < 0.01, N = 37) and pathophysiology (r = 0.77,
p < 0.01, N = 37). Karimi and Manteufel [27] demonstrated that student grades in the first
thermodynamics course taught by nine instructors during the period of 1994–2012 had
significant correlations with the grades in the second thermodynamics course. However,
the literature search did not produce studies that focus on establishing optimal or minimal
grades in a prerequisite course as a predictor of success in the post-requisite course. This
is crucial in minimizing Type I and Type II errors. In this context, Type I errors (false
positive) increase when the minimal passing grade is set too high, therefore preventing
potentially good students taking the preceding course. On the other hand, Type II errors
(false negative) increase when the passing grade is too low, which leads to the increase
in failures in the upcoming course. Therefore, minimizing both errors is more likely to
increase students’ successful completion of the program of study [11].

This study suggests the method of defining the optimal threshold to minimize these
errors by adapting the Receiver Operating Characteristic (ROC) curve methodology.

3. Implementation Areas of Receiver Operating Characteristic Curve Methodology

While the ROC curve method is a common tool in scientific research used to evaluate
the performance of a binary classifier, it is rarely utilized in social sciences. A Scopus
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database search for studies published between 2016 and 2020 that use the term “ROC” in
their title, abstracts, or keywords yielded a total of 77,449 articles, with 949 of them in social
sciences, which amounts to only 1.2% of all published work (Figure 1).
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Moreover, according to Scopus, the total number of social science studies published
between 2016 and 2020 was 1,653,258, which means that only 0.05% of these studies
mentioned ROC curves. Restricting these search results further to “mathematics” yielded
only 33 “ROC”-related articles. These results indicate that the ROC curve analysis is not
a common methodology in education research and is practically absent in mathematics
education research.

Therefore, this study was guided by the following research questions:

(1) In what ways can ROC curve analysis be adapted as a methodology for determining
optimal passing grade in a mathematics prerequisite course necessary for passing the
next mathematics course in the sequence?

(2) How accurate is the ROC curve methodology for predicting calculus course completions
and failures compared to the existing approach in a private Kazakhstan university?

4. Description of ROC Curve Analysis Method

The ROC curve is a method used to evaluate the performance of predictive models in
statistics [28,29] that dates back to the 1950s, when it was used to evaluate the performance
of signal recognition models [30]. One of the kinds of predictive models are the so-called
binary classification tests, which are designed to classify the elements of a given set into
two groups depending on whether the test shows positive or negative results for the
given element. Common examples of binary classifiers include disease diagnostic tests in
medicine and face verification algorithms in artificial intelligence. In most binary classifiers,
there is a parameter that can be adjusted to vary predictive accuracy. However, moving
the parameter to the extreme values is more likely to increase false predictions, making it a
subtle task to find the optimal parameter value that increases true prediction rates. The
ROC curve methodology is one of the classical approaches in determining this optimal
parameter for binary classifiers, and the area under the ROC curve is one of the classical
metrics used to evaluate the classifier performance.

In this study, we suggest adapting the ROC curve method to educational settings. Let
Course A be a prerequisite for Course B in a specific educational sequence. Assume that
there is a correlation between the grades in both courses and that the minimal passing
grade for Course A is 50%. The question that needs to be addressed by the curriculum
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developers is does this grade represent sufficient mastery in Course A for a student to
be successful in Course B? In other words, what should be the optimal threshold grade
in Course A that could be used as a requirement for enrollment in Course B? Let c be a
threshold parameter that varies from 0 to 100. For a given value of c, we call a test result
positive if a student in Course A has a grade less than c and negative otherwise. In other
words, for a student with a positive test result, the model predicts the most likely failure of
Course B, e.g., that student will receive a grade of less than 50%. If the test result is negative,
then the model predicts that the student will most likely pass Course B. Reality may differ
from predicted results, and this leads to four different subsets of students depending on
the value of c:

TP(c) = True Positive, test correctly predicted the f ail in Course B
TN(c) = True Negative, test correctly predicted the pass in Course B
FP(c) = False Positive, test wrongly predicted the f ail in Course B

FN(c) = False Negative, test wrongly predicted the pass in Course B

These four subsets can be summarized in a confusion matrix, Table 1, where |·| denotes
the cardinality of a set.

Table 1. The model performance table.

Actual (+) Actual (−)

Predicted (+) |TP(c)| |FP(c)|
Predicted (−) |FN(c)| |TN(c)|

The sensitivity of the binary classifier is defined as the probability of detection, also
known as the true positive rate. The true negative rate, called specificity, is the proportion
of real negatives that are correctly predicted to all real negatives. In other words,

Sensitivity = P(TP(c)) = P(Fail in Course B|test is positive) =
|TP(c)|

|TP(c)|+ |FN(c)| ,

Specificity = P(TN(c)) = P(Pass in Course B|test is negative) =
|TN(c)|

|TN(c)|+ |FP(c)| ,

where P is the probability function. Here, for an event E from a sample space S, the prob-
ability of the event E is defined to be P(E) = |E|/|S| and P(·|·) , which is the conditional
probability. Obviously, a good model should have both sensitivity and specificity close to
1, but in general, this is not possible and trying to maximize the sensitivity often yields a
decrease in the specificity and vice versa. The ROC curve, which is the plot of ‘sensitivity’
versus ‘1 − specificity’ at various parameter values c (in our case, c ∈ [0, 100]), can be
examined to evaluate the performance of a model without specifying the threshold settings;
it is easy to see that

1− specificity = P(FN(c)) = P(Fail in Calculus 2|test is negative)

=
|FP(c)|

|TN(c)|+ |FP(c)|

A classifier is said to have a better diagnostic performance if the area under the ROC
curve is closer to 1.

Besides a performance measure, the ROC curve provides an easy and practical way of
determining possible thresholds for a chosen model in decision-making. Youden index J
and index K are two commonly used rule-of-thumb indices used in practice [31–34].

Youden index J is defined as the maximum vertical distance from the ROC curve to
the positive diagonal line (y = x), and J is set equal to (sensitivity + speci f icity− 1) at the
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maximum. Therefore, if we denote the ROC curve with y = f (x), to compute the Youden
index, we need to estimate

max
0≤x≤1

| f (x)− x|

As x = 1− specificity and f (x) = sensitivity, maximizing the above means to maxi-
mize sensitivity + speci f icity− 1, which is our index J. In other words, the Youden index
is a problem to find

max
0≤c≤100

{
|TP(c)|

|TP(c)|+ |FN(c)| +
|TN(c)|

|TN(c)|+ |FP(c)|

}
.

In other words, it minimizes the sum of the so-called Type I and Type II errors, where
in this context, we define

Type II = 1− sensitivity =
|FN(c)|

|TP(c)|+ |FN(c)|

Type I = 1− specificity =
|FP(c)|

|TN(c)|+ |FP(c)|

On the other hand, the K index is defined to be the shortest Euclidean distance from
the ROC curve to the point with coordinates (x, y) = (0, 1). Thus, if we denote the ROC
curve with y = f (x), K index estimates

min
0≤x≤1

√
(1− f (x))2 + x2,

which amounts to minimizing (1− specificity)2 + (1− sensitivity)2, that is,

min
0≤c≤100

{(
|FP(c)|

|TN(c)|+ |FP(c)|

)2

+

(
|FN(c)|

|TP(c)|+ |FN(c)|

)2
}

.

In other words, the K index attempts to minimize the sum of the squares of the
so-called Type I and Type II errors. Although the two indices define the topologically
equivalent metrics, with the former being the supremum distance while the latter is the
Euclidean distance, they are clearly not identical. For generalizations of these indices and
other types of developed indices, we refer to [34]. For convenience, in our model, we
use the Youden index. Since both sensitivity and specificity are probabilities, they range
between 0 and 1, and the range of Youden index J was from 0 to 1 also. Moreover, at the
extremes when J = 1 or J = 0, we have both sensitivity and specificity that are equal to 1 or
both that are equal to 0. In the former case, the binary classifier reaches 100% accuracy with
complete separation of the two groups, and in the latter, it has 0% accuracy with complete
overlap of the two groups. Hence, the estimate of J also gives a performance evaluation of
the classifier according to how close it is to 1.

Following the standard statistical notations, we let ĉ and Ĵ denote the point estimators
of c and J, respectively. We now describe the procedure for the estimation of confidence
interval (CI) for the Youden index once the estimate ĉ for the optimal threshold parameter
c is obtained. We note that as J involves the sum of two quantities, namely sensitivity
and specificity, and since each is nonlinear, rational variable, one expects that the formula
to estimate CI for J is not straightforward. For a given α value, (1− α) 100% CI can be
approximated by

Ĵ ± zα/2

√
V̂ar

(
Ĵ
)
,
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where zα/2 is the standard α level z-score for a two-tailed test. To this end, we need to
compute the number of individuals in each group, namely |TP(ĉ)|, |FN(ĉ)|, |FP(ĉ)|, and
|TN(ĉ)|, once the threshold point is determined. For the given sample, this gives us

Ĵ =
|TP(ĉ)|

|TP(ĉ)|+ |FN(ĉ)| +
|TN(ĉ)|

|TN(ĉ)|+ |FP(ĉ)| − 1, (1)

Using the method in [31] to estimate for the standard error, we arrive at

Ĵ ± zα/2

√
V̂ar

(
Ĵ
)

= Ĵ ± zα/2

√
|TP(ĉ)||FN(ĉ)|

(|TP(ĉ)|+|FN(ĉ)|)3 +
|TN(ĉ)||FP(ĉ)|

(|TN(ĉ)|+|FP(ĉ)|)3 ,
(2)

We note that taking pre-image of (1− α) 100% CI for J under the map (1) gives the
(1− α) 100% CI for the optimal threshold ĉ:{

c ∈ [0, 100] :
|TP(c)|

|TP(c)|+ |FN(c)| +
|TN(c)|

|TN(c)|+ |FN(c)| − 1 > Ĵ − zα/2

√
V̂ar

(
Ĵ
)
,
}

Various parametric and nonparametric methods were developed to estimate CIs for
the Youden index [35–38]. The parametric approach of [38] uses the delta method under the
assumption that the distributions considered are either normal or gamma. As evidenced
in [38], the comparison with the other three bootstrapping approaches show that their
CI estimations perform better in terms of convergence and length of the intervals. Since
their formula for CI is very technical, we use the above original Youden’s estimate (2)
for practical purposes. However, interested readers are welcome to adopt more recently
developed formulas.

5. Testing the ROC Curve Method

The ROC curves analysis was tested on the data set of Calculus 1 and Calculus 2
grades collected over six consecutive semesters at a private university in Kazakhstan. At
this university, students entering college with the intent to major in one of STEM disciplines
are required to take Calculus I. Typically, this course covers the topics of limits, derivatives,
and integration of a function with one variable. This course is a prerequisite for the next
mathematics course, Calculus 2, that covers the topics of series and multiple integrals. Both
courses include theoretical and practical components. The course passing grade for all
courses is set as 50% per recommendation by the Kazakhstan Ministry of Education and
Science. The study sample included 164 undergraduate students majoring in mathematics.
The average age of students was 17.9 years old. Females comprised 54% of the sample.
During this period, the department of mathematics had about 20 full-time faculty members.
The Pearson r correlations between Calculus I grades (M = 62.05, SD = 20.66) and Calculus
II grades (M = 56.99, SD = 26.98) were found to be significant with r = 0.722 (p < 0.0001).

Each course was taught by 5–7 instructors who followed the same standardized cur-
riculum and used the same textbook. The course grade was composed of a formative
assessment (60%) and the comprehensive final examination (40%). The instructors had
freedom to decide on the format of formative assessment tasks; however, the final ex-
amination was the same for all students. This examination was administered in written
format and included problem-solving questions. Each instructor graded the work of their
own students.

It is customary in this undergraduate program to discourage students from enrolling
in Calculus 2 without successful completion of Calculus 1. By the successful completion
of the Calculus courses, the authors refer to receiving at least a grade of 50 out of 100.
However, during the study period, this recommendation was not followed, and any
mathematics major could enroll in Calculus 2 regardless of their Calculus 1 grade. We
applied the ROC curve analysis to data from these two courses in order to determine a
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minimal prerequisite grade from Calculus 1 that could have been required for enrollment in
Calculus 2. This analysis also minimized the sum of Type I and Type I I errors as described
in the previous section.

To illustrate the importance of the optimal threshold in the current context, consider
three different scenarios. In the first case, assume that there is no prerequisite for Calculus 2.
In other words, the prediction is that regardless of their Calculus 1 grade, all 164 students
will pass Calculus 2. This amounts to Type I I error of 1 and Type I error of 0, summing to
1. In this case from descriptive statistics, we would have 55 failures in Calculus 2, which is
33.5% of the sample. To avoid too many failures in Calculus 2—that is, to reduce Type I I
error—we may go to the other extreme where we require 100 out of 100 from Calculus 1
to enroll in Calculus 2. In this case, we have a Type I I error of 0 but a Type I error of 1,
summing to 1 again. The reason for the high Type I error is that many successful students
would not be allowed to take Calculus 2 due to unreasonably high prerequisite grade re-
quirements. In the third scenario, let us assume that students have to pass Calculus 1—that
is, they need to receive 50 out of 100 to enroll in Calculus 2. Then, all students who failed
Calculus 1 would need to retake and pass it in order to continue in Calculus 2 course. In
this case, we see from Table 2 that 33 students would not be allowed to enroll Calculus 2.
However, we still have 27 failures, which amounts to a Type I I error of 28/55 = 0.51. We
also note that, out of 33 students not allowed to enroll in Calculus 2, 5 would pass it, leading
to 5/104 = 0.05 Type I error. This sum gives about 55% of error. This hints that the last
scenario is much better at reducing the error. However, whether this is the best possible
option that minimizes the error is the content of the optimization problem.

Table 2. The model performance table.

Proposed Threshold of 61 Traditional Threshold of 50

Actual Fail Actual Pass Actual Fail Actual Pass

Predicted (+) 48 29 27 5
Predicted (−) 7 80 28 104

Since the ROC curve method is used for binary classification models, we converted
Calculus 2 grades to an ordinal variable as Pass/Fail, while Calculus 1 grades were kept
as interval variables (integers) from 0 to 100. As before, c is the threshold parameter in
[0, 100]. A positive test result means that a given student has a Calculus 1 grade of less
than c, predicting that the student will fail Calculus 2. The negative result means that if
the student has a Calculus 1 grade of at least c, the student will pass the Calculus 2. By
calculating Sensitivity and 1− Specificity as a function of c and plotting the values, we
obtain the ROC curve (Figure 2).
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The calculation results show that the area under the ROC curve is 0.8653 and the
Youden index J is equal to 0.6068 at the optimal threshold parameter ĉ = 61 (see Table 3 for
a small part of the calculations). The former shows that this is a good binary classifier. The
latter suggests that the students should be allowed to enroll in Calculus 2 provided that
their Calculus 1 grade is at least 61. Otherwise, they should retake Calculus 1 to obtain a
grade of at least 61.

Table 3. Part of calculations.

c Sensitivity 1−Specificity J(c)

59 0.7798 0.2181 0.568
60 0.7706 0.2181 0.5588
61 0.7522 0.1454 0.6068
62 0.7247 0.1272 0.5975
63 0.7064 0.1090 0.5974
64 0.6788 0.1090 0.5698

We recall from the previous section that Youden index J is the maximum value for
sensitivity+ speci f icity− 1. Thus, in terms of the ROC curve, it amounts to maximizing the
difference between the coordinates. The point with coordinates (0.1454, 0.7522) highlighted
in Figure 1 is the coordinates where we achieve this maximum, namely 0.6068, as shown in
Table 3.

To have more flexibility, it may be wise to compute a confidence interval for ĉ. To this
end, we first compute 95% CI for Youden index J using (2) in the previous section and
obtain (0.4852, 0.7284).

Reading from our Excel worksheet for the c values, we have that the 95% CI for the
optimal threshold is (53, 75). This suggests that, in practice, the curriculum developers
have some flexibility in deciding prerequisite grade requirement for Calculus 2.

Table 2 compares the classifier performance for the threshold grade predicted by
the ROC curve and the one that is currently used at the university. We see that our
model correctly identified 48 out of 55 failures and 80 out of 109 successful completions of
Calculus 2. Therefore, the model sensitivity is 48/55 = 0.87 and specificity is 80/109 = 0.73,
leading to the Youden index of 0.6. On the other hand, the traditional approach predicted
27 out of 55 failures and 104 out of 109 successful completions of the Calculus 2 course,
giving the Youden index of 27/55 + 104/109 − 1 = 0.45. Thus, based on the Youden index,
the proposed model is more accurate than the traditional approach to predict successful
completion of Calculus 2 based on performance in Calculus 1. In comparing our proposed
model to the traditional practice (Table 2); it is important to note that, while traditional
practice has better specificity with 0.95—that is, when the threshold is set to be 50, which is
accurately identifying successful completions of Calculus 2—our model is better than the
latter in identifying possible failures with performance (sensitivity) of 0.87, while for the
threshold of 50 the sensitivity is 0.49.

6. Discussion and Conclusions

In order to address the first research question, we adapted the ROC curve analysis
method to determining minimal grade prerequisites for the educational program courses
leading to passing grades in the next course in sequence. Students who entered the course
with a more integrated previous knowledge foundation and the ability to function on
higher levels of procedural prior knowledge were more likely to succeed. These findings
highlight the significance of identifying students’ prior knowledge base at the start of the
learning process. Therefore, establishing a level of mastery in the preceding course as a
prerequisite in the consecutive courses is very essential.

Effectiveness, simplicity, and availability of technology, as well as usefulness, are the
crucial features for this technology to be adopted. Moreover, for the sake of convenience,
Youden’s technique has been followed [31].
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The proposed method determines the optimal minimal grade (threshold) that should
be required in the prerequisite course to enroll in the next level course. As mentioned
before, this is crucial for the student’s academic well-being. One possible limitation of
the proposed method could be instructor bias making the grade less objective [27,39].
Different instructors may have different grading cultures, leading to grade inconsistencies.
As such, the proposed technique is best used where the grading consistency is achieved
between the instructors of the same course. In the case of Kazakhstan, the Ministry of
Education and Science provides clear guidance on the meaning of each grade. Moreover,
many universities in Kazakhstan are considering implementing grade curving to partially
reduce instructor bias and grade inflation. With such regulations, we think the method can
be implemented successfully. The method is best applied especially if the programs use
standardized common examinations.

In addressing our second research question, we implemented the ROC curve method-
ology to estimate the optimal threshold grade for Calculus 1 as a prerequisite to enroll in
Calculus 2. The performance of a binary classifier can be evaluated according to the area
under the ROC curve. More specifically, it is regarded as acceptable if the area falls between
0.70 and 0.80, excellent if it varies between 0.80 and 0.90, and outstanding if it is above
0.9 [40]. According to this assessment, the performance of our model is excellent with the
area under the ROC curve equal to 0.87. This shows that Calculus 1 performance is a good
predictor for the successful completion of Calculus 2. The study also demonstrated that
the ROC curve methodology outperforms the currently used practice at the university in
predicting successful completion of Calculus 2.

Our proposed method is a data-driven approach as opposed to expert opinion-based
approaches [21,22] that could be subjective. This study provides significant implications
for curriculum design, especially in mathematics education. Indeed, for a specific course,
the curriculum developers can refer to the expert opinion to select prerequisite courses,
then they can implement our proposed ROC curve methodology to set up the optimal
threshold grades.

For future research, more advanced multivariate statistical or machine learning-based
approaches can be used to improve the accuracy of the prerequisite requirements for several
courses at once.

Finally, we note that the proposed method is not necessarily restricted to mathematics
courses, and it can be implemented in any educational program that involves sequencing
courses with some level of standardized assessments evaluation criteria. Either expert
opinion should be referred or the Pearson correlation between two courses should be
established before attempting the proposed strategy.
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