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Abstract: The 0-1 test for chaos, which is a simple binary method, has been widely used to detect the
nonlinear behaviors of the non-cascade chaotic dynamics. In this paper, the validity checks of the 0-1
test for chaos to the popular cascade Logistic-Cubic (L-C) system is conducted through exploring the
effects of sensitivity parameters. Results show that the periodic, weak-chaotic, and strong-chaotic
states of the cascade L-C system can be effectively identified by the introduced simple method for
detecting chaos. Nevertheless, the two sensitivity parameters, including the frequency ω and the
amplitude α, are critical for the chaos indicator (i.e., the median of asymptotic growth rate, Km) when
the cascade dynamic is detected by the method. It is found that the effect of α is more sensitive than
that of ω on Km regarding the three dynamical states of the cascade L-C system. Meanwhile, it is
recommended that the three states are identified according to the change of K with α from zero to ten
since the periodic and weak-chaotic states cannot be identified when the α is greater than a certain
constant. In addition, the modified mean square displacement D∗c (n) fails to distinguish its periodic
and weak-chaotic states, whereas it can obviously distinguish the above two and strong-chaotic
states. This work is therefore invaluable to gaining insight into the understanding of the complex
nonlinearity of other different cascade dynamical systems with indicator comparison.

Keywords: 0-1 test for chaos; sensitivity parameter; cascade dynamic system; Logistic-Cubic mapping;
noised time series analysis

MSC: 37N30

1. Introduction

Chaos has been widely used in biononlinear dynamics [1,2], encryption algorithm [3,4],
physics [5,6], and industrial mixing [7,8]. The long-standing fundamental issue related
to chaotic dynamics is the determination of regular, chaotic, or random for a nonlinear
dynamic system. From open literature, a variety of methods, including power spectra,
entropy, fractal dimension, and Lyapunov exponent, have been used to address it [9].
However, these methods own certain limitations. For example, the most popular method is
to calculate the maximal Lyapunov exponent, but phase space reconstruction is complex
and not inevitable for dynamic systems whose equations are unknown [10]. However, the
0-1 test for chaos works directly with the time series and does not require any phase space
reconstruction. It has also been found in applications in a wide range of fields.

In particular, the 0-1 test for chaos can be applied to the chaotic detection of uncer-
tain dynamical systems without fundamental equations. The input is time-series data,
and the output is zero or one depending on whether the dynamics are non-chaotic or
chaotic [10]. Currently, the 0-1 test for chaos has been widely used in many new fields,
including nonlinear noise reduction [10–12], epidemic model [13,14], and communication
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technology [15,16] due to its advantages such as simplicity of theoretical fundamental, con-
venience of implementation, and high-accuracy of chaos identification. In this regard, the
theoretical background of the 0-1 test for chaos has already been reported, which should be
highlighted. For instance, Gottwald and Melbourne (2009) deeply studied the improvement
effect of the 0-1 test for chaos on the detection performance of noised signals [17]. Armand
Eyebe Fouda et al. (2014) applied the binary 0-1 test for chaos to a discrete mapping of
the local maxima and minima of the original observable object [18]. Muthu et al. (2020)
used the 0-1 test for chaos and three state tests to classify the chaotic state of Logistic Tent
system into strong-chaotic and weak-chaotic [19]. Xiao et al. (2022) discussed the influence
of damping amplitude on chaos detection reliability of the modified 0-1 test for chaos for
oversampled and noisy observations [20].

In addition, the cascade systems can improve the chaotic and onto-mapping param-
eter range while considering the high computation efficiency and be used to optimize
the dynamic characteristics [21]. Compared with one-dimensional chaotic systems, the
cascade chaotic systems own more complexity. Compared with the high-dimensional
chaotic dynamics, the cascade chaotic systems are simpler and need a short time to gen-
erate discrete data sequence. Recently, the cascade chaotic system technology has also
been widely used in image encryption, voice communication, and industrial mixing. For
example, Zhuang et al. (2018) proposed an encryption algorithm based on improved Jose-
phus loop and Logistic mapping for scrambling blocks [22], Guo (2020) constructed a
new cascade Logistic-Fibonacci chaotic system to generate random sequences [23], and
Cheng et al. (2021) proposed a novel image encryption scheme based on a hybrid cascaded
chaotic system and sectoral segmentation [24]. These cascade chaotic algorithms greatly
improve the sensitivity of high-dimensional and maintain the rapidity of low-dimensional
chaotic systems and have been also widely used in the field of communication. For in-
stance, Jin et al. (2009) cascaded multiple Logistic subsystems with different parameters to
construct a Logistic-Logistic speech frequency domain real-time encryption system [25].
Yu et al. (2016) proposed a method of constructing the Logistic-Chebyshev chaotic mapping
which is used to effectively expand the key space of the chaotic system [26]. Zhao (2021)
proposed a spread spectrum code generation algorithm based on cascade Sine-Tent coupled
chaotic mapping [27]. Meanwhile, the cascade chaotic system has also been applied in the
field of industrial stirring. Zhang et al. (2021) proposed a Logistic cascade sequence to
generate chaotic speed to improve the quality of the solid-liquid mixing state [28].

Inspired and motivated by the above text, it is of practical significance to investigate
the characteristics of cascade chaotic systems by using 0-1 test for chaos. Furthermore, the
validity of the 0-1 test for cascaded chaotic system is conducted in detail through exploring
the effects of frequency parameter and amplitude parameter on the chaos indicator in this
paper. It is worth noting that the availability of 0-1 test for chaos on the noisy cascaded
chaotic dynamical system has also not yet been discussed. The 0-1 test for chaos would be
a novel chaos detection method that can be directly applied to time series data generated
by cascade system and does not require phase space reconstruction.

After Section 1, the paper is organized as follows. Initially, a brief description of the 0-1
test for chaos is presented and four different methods for obtaining the asymptotic growth
rates are compared in Section 2. The approach to construct the cascade chaos formula of
the Logistic-Cubic mapping and to generate the time series data for numerical experiments
is then illustrated in Section 3. Afterwards, the results of numerical experiments regarding
the effects of frequency, amplitude, and mean square displacement on the chaos indicator
are analyzed in Section 4. Concluding remarks are then discussed.

2. 0-1 Test for Chaos
2.1. Traditional 0-1 Test for Chaos

The 0-1 test for chaos has been proposed to improve the convenience of chaos identifi-
cation, and its test output do not rely on explicit equations. In a word, the input of the 0-1
test for chaos is a measured time series, and whether the dynamical system is chaotic or
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not can be well distinguished by whether the output is 0 or 1. For the cascade dynamical
system, the specific implementation steps of the 0-1 test for chaos are as follows. Firstly, let
a discrete time series x = (x1, x2, · · · , xN), which can be interpreted as a vector containing
N measured data points, be input. For random number c ∈ (0, π), the translation variables
are computed by

pc(n) =
n

∑
t=1

xt cos(tc) (1)

and

qc(n) =
n

∑
t=1

xt sin(tc) (2)

where n = 1, 2, · · · , N. The theory underlying the test ensures that if the underlying
dynamical system is regular, the variables pc(n) and qc(n) exhibit a bounded evolution. On
the other hand, if the system is chaotic, these variables exhibit asymptotically unbounded
growth with features reminiscent of Brownian motion. Secondly, a modified mean square
displacement (MSD) of pc(n) and qc(n) is calculated by

Dc(n) = Mc(n)−Vosc(c, n) , Mc(n)− (E(x))2 1− cos(nc)
1− cos c

(3)

where Vosc(c, n) refers to the oscillatory term and the mean square displacement Mc(n) is
given by

Mc(n) = lim
N→∞

1
N

n

∑
t=1
{[pc(t + n)− pc(t)]

2 + [qc(t + n)− qc(t)]
2} (4)

and the expectation E(x) is given by

E(x) = lim
N→∞

1
N

n

∑
t=1

xt (5)

where Dc(n), which exhibits the same asymptotic growth as Mc(n) but with better conver-
gence properties, is the second indicator used to judge the chaotic characteristics in the
underlying dynamical system. In other words, Dc(n) is a bounded function in time if the
given time series is regular, whereas Dc(n) grows linearly with n if the given time series is
chaotic. It should be noted that n� N and the numerical value n is considered according
to n ≤ ncut = N/10 in general. Thirdly, the asymptotic growth rate (AGR) K, which is
the third indicator of the 0-1 test for chaos, is estimated quantificationally. In fact, there
are two different methods, including regression and correlation for calculating AGR with
original or modified MSD. There are hence various approaches for estimating AGR, and
the different types of AGR are described below.

Here, four versions of AGR, including Kc1(c), Kc2(c), Kc3(c), and Kc4(c), are provided,
as shown in Table 1. (1) The regression method is related to linear regression with the
log-log plot. In terms of the original mean square displacement Mc(n), the first version Kc1
of K is given by

Kc1(c) = lim
N→∞

log Mc(n)
log n

(6)

where Kc1 is numerically determined by fitting a straight line to the graph of log Mc(n)
versus log n through minimizing the absolute deviation. (2) For demonstrating the effec-
tiveness between the modified mean square displacement Dc(n) and Mc(n), the second
version Kc2 of K obtained using the regression method is given by

Kc2(c) = lim
N→∞

log Dc(n)
log n

(7)

where Kc2 is numerically determined by fitting a straight line to the graph of log Dc(n)



Mathematics 2022, 10, 2080 4 of 13

versus log n through minimizing the absolute deviation. (3) For demonstrating the effec-
tiveness between the regression method and the correlation method, the third version Kc3
of K obtained using the modified mean square displacement Dc(n) is given by

Kc3(c) = corr(ξ, ∆) =
cov(ξ, ∆)√

var(ξ)var(∆)
(8)

where cov(ξ, ∆), var(ξ), and var(∆) respectively indicate co-variance between ncut-
dimensional vectors ξ = (1, 2, · · · , ncut) and ∆ = (Dc(1), Dc(2), · · · , Dc(ncut)), vari-
ance of ξ, and variance of ∆. In practical terms, the correlation method has been proved
to greatly outperform the regression method for different dynamical systems for public
literature. In addition, the values of median Km of K correspond to Km1(c), Km2(c), Km3(c),
and Km4(c) and can be used to quantify the dynamical behaviors of the systems. In other
words, Km ≈ 0 indicates regular dynamics, and Km ≈ 1 indicates chaotic dynamics.

Table 1. Various approaches for K estimation.

Version of K Version of Km Estimation Method Employed Approach

Kc1(c) Km1(c) Regression Mc(n)
Kc2(c) Km2(c) Dc(n)
Kc3(c) Km3(c) Correlation

Dc(n)
Kc4(c) Km4(c) D∗c (n)

2.2. Description of Issue Addressed

As mentioned in open literature, the original 0-1 test for chaos may be more efficient
when the level of measurement noise is sufficiently small. In the real world, in fact, the
measured time series data is mostly accompanied by noise with different types or levels.
For making the 0-1 test for chaos more robust to the presence of measurement noise, the
oscillatory term has been considered in the 0-1 test for chaos. Furthermore, to reduce the
sensitivity of chaos detection to noise within the observed time series, the damped version
of the 0-1 test for chaos is needed for identifying the cascade chaotic dynamics, and in this
work the corresponding MSD is given by

D∗c (n) = Dc(n) + αVdamp(n) , Dc(n) + α(E(x))2 sin(ωn) (9)

where Vdamp(n) refers to the damping term and the frequency parameter ω is chosen
arbitrarily. The amplitude parameter α of the chaos indicator D∗c (n) controls the sensitivity
of the test to weak noise and simultaneously to weak chaos within the observed time series
generated by cascade chaotic dynamics. Therefore, the corresponding asymptotic growth
rate K is also a chaos indicator for cascade chaotic dynamics and given by

Kc4(c) = corr(ξ, ∆∗) =
cov(ξ, ∆∗)√

var(ξ) · var(∆∗)
(10)

where ∆∗ = (Dc
∗(1), Dc

∗(2), · · · , Dc
∗(ncut )), cov(ξ, ∆∗) indicates co-variance of ξ and

∆∗, and var(∆∗) indicates variance of ∆∗, respectively. Next, the noisy time series data orig-
inated from cascade chaotic dynamics is provided in the following section, after which the
effects of sensitivity parameters, including damping amplitude parameter α and frequency
parameter ω on different chaos indicators, are respectively discussed.

3. Description of the Synthetic Data
3.1. Dynamic Behaviors of Cascade System

Generally, Logistic mapping, which is used to generate time series data and owns well
randomness, periodicity or chaoticity, is one of the most popular dynamical mappings with
a simple mathematical form. In fact, Logistic mapping is defined as

xn+1 = µxn(1− xn) (11)
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where the control parameter µ ∈ [0, 4] and xn, xn+1 ∈ [0, 1]. The Logistic system is chaotic
when µ ∈ [3.57, 4]. Obviously, the range of the chaotic behavior is very limited, and this
has limited the application of Logistic mapping. Therefore, it is essential to design new
modified mathematical mappings with the improved chaotic behavior. In addition, Cubic
mapping is another common dynamical mapping and is defined as

xn+1 = ax3
n − bxn (12)

where the control parameter b ∈ [0, 3] and the mapping is when b = 3. In this work,
a = 0.5. To obtain the cascade system combining Logistic and Cubic mappings, the cascade
steps are provided below. Firstly, to construct the common mapping area of the Logistic
and Cubic mappings, the original Cubic mapping is modified and given by

xn+1 =

∣∣∣∣ x3
n

a2 − bxn

∣∣∣∣ (13)

where the control parameter b ∈ [0, 3], a = 0.5, and x ∈ [0, 2a], as mentioned above. The
system is chaotic when b ∈ [2.43, 3] and it is when b = 3. Then, the cascade chaotic system
is given by

xn+1 =
∣∣∣4µ3x3

n(1− xn)
3 − 3µxn(1− xn)

∣∣∣ (14)

where the control parameters µ ∈ [0, 4] and xn, xn+1 ∈ [0, 1]. In order to reflect the
improvement performance of the cascade system more intuitively, the chaotic characteristics
of the above systems are compared, as shown in Table 2. As expected, the used cascade
dynamical system in this work is obtained by combing Logistic mapping and the improved
Cubic mapping. In addition, the cascade chaotic system (CCS) may own the extended
onto mapping range of chaos, which is a better performance of CCS than that of Logistic
mapping and the improved Cubic mapping. In fact, the advantage of CCS can enhance the
chaotic characteristics and improve the chaotic keyspace. The generated chaotic sequences
are subsequently tested by the chaos detection methods.

Table 2. Comparison of chaotic characteristics of Logistic, improved Cubic, and L-C mappings.

Type of Mapping Control Parameters Chaotic Interval Interval of Onto Mapping

Logistic µ ∈ [0, 4] µ ∈ [3.57, 4] µ = 4
Improved Cubic b ∈ [0, 3] b ∈ [0, 2a] b = 3

L-C µ ∈ [0, 4] µ ∈ [1.55, 4] µ ∈ [1.9, 4]

As shown in Figure 1a, the bifurcation diagram of the cascade L-C system for different
numerical values of control parameter µ is present. In addition, Figure 1b presents the
changing of Km3 for the cascade L-C system with 1 ≤ µ ≤ 4 increased in increments of
0.05. According to these two subfigures, it is meanwhile observed that the L-C system
is chaotic in terms of the most range of µ ∈ [1.55, 4], and the asymptotic growth rate
gradually approaches Km3 = 1 by increasing control parameter µ. The exhibited features
in the former subfigure are in perfect agreement with that in the latter one. It is proved
that the 0-1 test for chaos can identify the behaviors of the cascade L-C system. Due to the
existence of the resonance phenomenon, the asymptotic growth rate drops suddenly from
Km3 = 1 to Km3 = 0 in some periodic windows. Nonetheless, it is obvious that the cascade
L-C system owns an expanded system parameter space, larger regions of chaotic states,
and mapping ranges.

Figure 2 illustrates the graphical results of the 0-1 test for chaos for the cascade L-C
system. There are three types of graphs, including translational variables (pn(n), qc(n)),
the path of modified MSD (n, Dc(n)), and a single real number of AGR (c, Km3(c)). Ac-
cording to this figure, the three subfigures in the top row show the results related to
the periodic dynamic, the three subfigures in the medium row display the computations
corresponding to the weak-chaotic dynamic with Km3(c) ∈ (0.5, 0.9], and the three sub-
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figures in the bottom row illustrate the outputs in terms of the strong-chaotic dynamic
with Km3(c) ∈ (0.9, 1]. For periodic dynamic, the phase portrait (pc(n), qc(n)) exhibits
a regular round, the plot of (n, Dc(n)) presents a nonlinear function, and the values of
AGR are approaching Km3(c) = 0 approximatively. For weak-chaotic dynamic, the phase
portrait (pc(n), qc(n)) shows Brownian motion with low dispersion, the plot of (n, Dc(n))
presents a linear function with wide spanwise, and the values of AGR Km3(c) are tending
to be normally distributed. For strong-chaotic dynamic, the phase portrait (pc(n), qc(n))
represents Brownian motion with great dispersion, the plot of (n, Dc(n)) presents a linear
function with narrow spanwise, and the values of AGR are approaching Km3(c) = 1 ap-
proximatively. Thus, the cascade L-C system has different dynamical states with different
control parameter and deterministic chaos is verified. Compared to other methods, the
0-1 test for chaos has the advantage of not requiring the phase space reconstruction of the
cascade L-C system, as well as offering a straightforward interpretation of its result, since
output Km3(c) = 0 implies a non-chaotic time series, while an output Km3(c) = 1 means
that the analyzed time series is chaotic.
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Mathematics 2022, 10, 2080 7 of 13

3.2. Generation of Noisy Time Series Data

The cascade L-C system with measurement noise is further considered to illustrate
the validity of the 0-1 test for chaos. The new data sequence combining the simple noise
resulting from the statistical distribution function and the time series resulting from the
cascade L-C system is given by

x̃(n) = x(n)
(

1 +
ε

100
ηn

)
(15)

where ηn refers to independently and identically distributed random variable drawn from
a uniform distribution on [−1, 1] and ε is related to the noise-level in percent. In practice,
it has been reported from Gottwald and Melbourne (2005) and Schreiber and Kantz (1995)
that the amount of contaminated data is limited and for large noise levels the Lyapunov
exponents are systematically wrong [29,30]. Since the dataset size has a critical impact
on the calculation results, the effect of the sequence size N on the asymptotic growth rate
Km4(c) is discussed, as shown in Figure 3. As expected, the diagnostic output Km4(c) is
closer to 0 for periodic motion (e.g., the control parameter is µ = 1.41 and the initialization
is x0 = 0.9) and 1 for chaotic motion (e.g., the control parameter is µ = 3.99 and the
initialization is x0 = 0.9) when the data length is greater than N = 103. In addition, the
same pattern also exists for the different values α = 2, α = 4, α = 6, α = 8, and α = 10
of the amplitude parameter. Therefore, it is obvious that the sequence size used in the
numerical experiment is related to the results of the 0-1 test for chaos, and the length of the
time series used in the numerical investigations is N = 2.0× 103 below.
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Figure 3. The comparison results of Km4(c) versus N when the modified 0-1 test for chaos is applied
to identify the three states. The data length of time series with a noise level of 5% for the cascade
L-C system is N = 2.0× 103, the initialization is x0 = 0.9, and the amplitude parameter α is different,
as mentioned above: (a) µ = 1.41 corresponds to periodic motion; (b) µ = 1.56 corresponds to
weak-chaotic motion; (c) µ = 3.99 corresponds to strong-chaotic motion).

4. Results and Discussion
4.1. Effect of the Frequency ω on Km4(c)

In terms of cascade dynamical system, as mentioned above, the chaotic indicator
Km4(c) involves two sensitivity parameters: the frequency ω and amplitude α. In this
section, the numerical values of Km4(c) for frequency parameter changing from ω = 0 to
ω = 10 are provided, as shown in Figure 4. According to this figure, periodic dynamic is
represented by the blue line, weak-chaotic dynamic is represented by the purple line, and
strong-chaotic dynamic is represented by the red line. As expected, the numerical values
of Km4(c) corresponding to the three states own different significant fluctuations due to
frequency ω. It should be noted that the strong-chaotic dynamic (see the red line) shows
the least range of fluctuation of Km4(c) which is related to ω. Meanwhile, the fluctuation of
Km4(c) is increased with the increasing of amplitude from α = 2 to α = 10, and remains
stable at Km4(c) = 1 approximately. In addition, the chaotic indicator Km4(c) for the weak-
chaotic dynamic (see the purple line) is most sensitive to the changing of the frequency
parameter ω. This is because there exists a significant drop of Km4(c) at the beginning, and
then the asymptotic growth rate fluctuates around Km4(c) = 0.35. Furthermore, it reaches a
low point at ω = 44 while the asymptotic growth rate is Km4(c) = 0.2. It is also obvious
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that the asymptotic growth rate corresponding to the periodic dynamic fluctuates around
Km4(c) = 0 and more significantly than that corresponding to the strong–chaotic dynamic.
Furthermore, the asymptotic growth rate corresponding to the periodic dynamic is very
similar to that corresponding to the weak-chaotic dynamic and drops to Km4(c) = 0.4 at
ω = 44.
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for chaos is applied to detect the three states (µ = 1.41 corresponds to periodic motion, µ = 1.56
corresponds to weak-chaotic motion, and µ = 3.99 corresponds to strong-chaotic motion) of the
cascade dynamical system. For the cascade L-C system, the data length of time series with a noise
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In summary, the changing of the frequency parameter ω owns a small effect on
improving the accuracy of the modified 0-1 test for chaos when the cascade dynamical
system is investigated. However, the frequency ω of the asymptotic growth rate has
different behaviors for regular, weak-chaotic, and strong-chaotic time series of the cascade
L-C dynamical system. In other words, the ω effect is provided for the first time to fill the
gap in the literature. In addition, for α = 2, α = 6, and α = 10, the asymptotic growth
rate Km4(c) corresponding to weak-chaotic sequence seems to be most sensitive to the
amplitude parameter α when the modified version of 0-1 test for chaos is used to identify
the three deterministic states, as shown in Figure 4. When the Km4(c) values decrease
significantly with increasing α values, for the periodic and weak-chaotic sequences, the
two minimum values of Km4(c) decrease significantly and are both at the same point with
ω = 44. However, whether the changing of amplitude α can significantly affect the status
identification of the cascade dynamical system or not is needed to discuss with much
narrower step sizes. In particular, the frequency ω is taken as a fixed numerical value

√
2

in the open literature, so the frequency ω is taken as the same fixed numerical value for an
in-depth discussion below.

4.2. Effect of the Amplitude α on Km4(c)

Figure 5 shows the trend of the asymptotic growth rate Km4(c), with the amplitude
parameter changing from α = 0 to α = 10 when the 0-1 test for chaos is used to identify
the status of the noisy cascade dynamical system with different noise-level. According
to Figure 5a, the changing trends of the asymptotic growth rate Km4(c) corresponding to
the three states, including periodic pattern, weak chaos, and strong chaos, are completely
different as the amplitude parameter α increases. From Figure 5b, slight fluctuations
of AGRs occur for the periodic dynamic. Specifically, for the AGRs there are significant
downward trends when α ∈ [0, 0.4], slight rises when α ∈ [0.4, 1.5], and narrow fluctuation
around a fixed value which is less than Km4(c) = 0 when α ∈ [1.5, 10]. From Figure 5c,
sharp declines of AGRs occur for the weak-chaotic dynamic, and for the AGRs there
are slight and negligible fluctuations around Km4(c) = 0 after the amplitude parameter
increases to α = 5 to a first approximation. From Figure 5d, slight declines of AGRs occur
for the strong-chaotic dynamics and the values of AGR are all greater than Km4(c) = 0.9
when α ∈ [0, 10].
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The data length of the no-noise or noisy time series from the cascade L-C system is N = 2.0× 103

and the initialization is x0 = 0.9: (a) the comparison results for the three states (µ = 1.41 corresponds
to periodic motion, µ = 1.56 corresponds to weak-chaotic motion, and µ = 3.99 corresponds to
strong-chaotic motion); (b) the results for periodic time series with different µ values and noise levels
ε; (c) the results for weak-chaotic time series with different µ values and noise levels ε; (d) the results
of strong-chaotic time series with different µ values and noise levels ε.

Table 3 reflects the quantitative data on the decrease of the asymptotic growth rate
with respect to the weakly and strongly chaotic dynamics. According to this table, for the
weak-chaotic dynamics with µ = 1.55, µ = 1.56, and µ = 1.57 and measurement noise with
ε = 0 and ε = 5, the ratio of difference value (between the initial and final AGRs) and initial
AGR shows a decreasing trend from 99% to 97%, approximatively. For the strong-chaotic
dynamics with µ = 3.98, µ = 3.99, and µ = 4.00, and the added noise with two levels,
meanwhile, the ratio represents a descending tendency from 9% to 6%, approximatively.
In addition, the effects of noise levels (i.e., ε = 0 and ε = 5) on the ratio are not distinct.
In fact, measurement noise refers to the corruption of observations by errors which are
independent of the dynamics. The modified 0-1 test for chaos owns good robustness with
respect to the measurement noise. It can be obviously concluded that the AGR presents
the greater drop for weak-chaotic dynamic (i.e., Km4(c) rapidly approaches 0) than that for
strong-chaotic dynamic.

Table 3. Quantitative data on decrease of Km4(c) in terms of weakly and strongly chaotic sequences.

System Status Control Parameter Ratio of Difference Value and Initial AGR

Level of the Added Noise ε=0 ε=5

Weak-chaotic dynamic

µ = 1.55 99.68% 99.04%

µ = 1.56 96.54% 96.87%

µ = 1.57 97.23% 97.14%

Strong-chaotic dynamic

µ = 3.98 8.96% 9.85%

µ = 3.99 8.49% 7.80%

µ = 4.00 6.15% 5.91%%
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For the effect of measurement noise and amplitude parameter, the further discussion
for the differentiation of dynamical states is provided below. As shown in Figure 6, the
values of Km4(c) corresponding to the three states of the cascade L-C system fluctuate
after adding noise from 0 to 100%. It is to be noted that the Km4(c) do not monotonically
increase or decrease with the increasing of noise level. As expected, the fluctuation of
Km4(c) represents stable with respect to the periodic dynamic, violent with respect to the
weak-chaotic dynamic, and slighter with respect to the chaotic dynamic as the noise level
increases. It is shown that the modified 0-1 test for chaos is robust for the measurement
noise, and the sensitivity parameters can improve the anti-noise performance of the 0-1
test for chaos. This investigation also confirms that there is a very necessary to select
appropriate parameter α to significantly improve the best detection performance of the
modified 0-1 test for chaos.

For the above investigations related to L-C system, the amplitude parameter α has
little influence on the chaos indicator when the 0-1 test for chaos is applied to the periodic
sequence. For strongly chaotic sequence, the values of Km4(c) decrease due to the increase
of the amplitude parameter α. The effect of amplitude parameter α on the AGR Km4(c)
cannot be neglected as well when the modified 0-1 test for chaos is considered in terms of
the weakly chaotic sequence. Furthermore, the values of amplitude parameter α that are
selected for the modified 0-1 test for chaos can greatly affect the detection output for weak-
chaotic systems. The variations of Km4(c) with α hence follow a clear pattern regarding the
periodic, weak-chaotic, and strong-chaotic dynamics. Then, the changing of Km4(c) with
α can be used as an auxiliary judgment criterion for the 0-1 test for chaos and the added
noise does not have a great effect on the changing tendency.
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Figure 6. The comparison results of Km4(c) versus level of the added noise the step-length of 5%
when the modified 0-1 test for chaos is applied to test three states: (a) the results of periodic dynamic;
(b) the results of weak-chaotic dynamic; (c) the results of strong-chaotic dynamic.

4.3. Effect of the Amplitude α on D∗c (n)

When it has been verified that the changing of the asymptotic growth rate Km4(c) with
the amplitude parameter α can be used as an auxiliary judging criterion for the 0-1 test for
chaos, the next step is to discuss whether the changing of Km4(c) with α can be used as the
auxiliary judging criterion for detecting the cascade L-C dynamical system with the three
numerical values of control parameter µ. In the previous section, the approach of D∗c (n)
has been given, which is the important parameter for using the modified 0-1 test for chaos.
The comparison results of D∗c (n) with two different values of the amplitude parameter
are provided for detecting the synthetical time series with initial value x0 = 0.9, as shown
in Figure 7. The six contaminated sequences with the finite data length N = 2.0× 103

and the added uniform noise ε = 5 are considered here as the testing time series. In
particular, the step size is taken by ∆n = 5 in terms of the data length N = 2.0× 103. In
addition, the amplitude parameters of the three sequences corresponding to the red lines
are all α = 1 while the others corresponding to bule lines are all α = 10. According to
this figure, the periodic and weak-chaotic cascade sequences exhibit obviously similar
nonlinear characteristic, and the values of their fluctuation range ∆D∗c (n) are not greater
than 8.5. However, the chaos indicator D∗c (n) corresponding to the strong-chaotic time
series greatly increases linearly. It is also shown that there exists a strong sensitivity of
amplitude parameter α to the version D∗c (n) of the modified mean square displacement
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Dc(n) and the increased values of α can exacerbate the fluctuation of the D∗c (n) when the
0-1 test for chaos is used to identify the different status of the cascade dynamic systems.
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Figure 7. The comparison results of D∗c (n) with two different values α = 1 and α = 10 of the
amplitude parameter which is related to detect the synthetical time series generated by combining
the simple uniform noise and the three cascade L-C mapping: (a) µ = 1.41 corresponds to periodic
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strong-chaotic dynamic.

All things considered, the changing of D∗c (n) with n can also be used as an auxiliary
indicator to evaluate the nonlinearity of the cascade time series and the tendency of values
of D∗c (n) as a function of n is changing quite a bit between α = 1 (blue line) and α = 10 (red
line) for the noisy cascade time series. In weakly chaotic systems, from the open literature,
the regions of regular (periodic and quasiperiodic) and chaotic motions typically coexist in
the phase space. The amplitude parameter α associated with Vdamp controls the sensitivity
of the test to weak chaos and to noise when the 0-1 test for chaos is used to distinguish
between chaotic and nonchaotic behavior in noise-contaminated, essentially stationary,
and deterministic time series data. In fact, the asymptotic growth rate is determined
by the mean square displacement of which the original and modified version own the
same changing pattern. From the previous text, the amplitude parameter α is a key factor
which has an impact on Km4(c) when the noisy cascade dynamical system comes down
to chaos detection. Considering the change of D∗c (n) with α, however, it is not easy to
provide the obvious difference between the calculations corresponding to the periodic and
weak-chaotic time series data. Therefore, the present alternative approach for identifying
nonlinear dynamics of the cascade system is far superior to traditional methods without
preprocessing the data with standard noise reduction methods.

5. Conclusions

Developing a reliable and proper diagnosis tool is one of most important things to the
utilization of cascading chaotic systems. In this work, a simple, convenient test for chaos is
investigated and its efficiency is tested with the cascading chaotic systems (i.e., the cascade
L-C system) which is a typical nonlinear dynamic system. Then, the effects of the sensitivity
parameters, including the frequency parameter ω and the amplitude parameter α on the
chaos indicator of the modified 0-1 test for chaos, are discussed by designing numerical
experiments. The following is a summary of the present conclusions. (1) The numerical
simulation results show that the periodic, weak-chaotic, and strong-chaotic dynamics of the
cascade L-C system can be easily distinguished by the 0-1 test for chaos. (2) The changing of
the frequency parameter ω has a small effect on the AGR Km, as for the modified 0-1 test for
chaos, while the changing of the amplitude parameter α can significantly affect the AGR Km.
(3) The changing of Km with α can be used as an auxiliary judgment criterion for testing the
cascade chaotic systems, while the changing of D∗c (n) with n can be used as an additional
diagnose criterion to distinguish the weak-chaotic dynamic and strong-chaotic dynamic.
From the perspective of chaos detection, hence, the further understanding of nonlinearity
of the cascading chaotic system is provided by investigating the sensitivity parameters of
the 0-1 test for chaos in this work. In addition, the effect of sensitivity parameters for some
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other varieties of measurement noise (i.e., Gaussian noise, Impulsive noise, Rayleigh noise,
Gamma noise, or Exponential noise) will be investigated in the future.
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