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Abstract: Prognostics and health management (PHM) are gradually being applied to production
management processes as industrial production is gradually undergoing a transformation, turning
into intelligent production and leading to increased demands on the reliability of industrial equipment.
Remaining useful life (RUL) prediction plays a pivotal role in this process. Accurate prediction results
can effectively provide information about the condition of the equipment on which intelligent
maintenance can be based, with many methods applied to this task. However, the current problems
of inadequate feature extraction and poor correlation between prediction results and data still affect
the prediction accuracy. To overcome these obstacles, we constructed a new fusion model that extracts
data features based on a broad learning system (BLS) and embeds long short-term memory (LSTM)
to process time-series information, named as the B-LSTM. First, the LSTM controls the transmission
of information from the data to the gate mechanism, and the retained information generates the
mapped features and forms the feature nodes. Then, the random feature nodes are supplemented by
an activation function that generates enhancement nodes with greater expressive power, increasing
the nonlinear factor in the network, and eventually the feature nodes and enhancement nodes are
jointly connected to the output layer. The B-LSTM was experimentally used with the C-MAPSS
dataset and the results of comparison with several mainstream methods showed that the new model
achieved significant improvements.

Keywords: remaining useful life (RUL) prediction; broad learning system (BLS); long short-term
memory (LSTM); feature extraction

MSC: 68T20

1. Introduction

Remaining useful life (RUL) is the length of time that an equipment component or
system can operate from the current point in time until the point in time at which it is
no longer able to perform a specific function [1]. During the operation of equipment,
internal and external factors such as high temperature and corrosive working environment,
overload operation and illegal operation will cause the performance and health of its
components to deteriorate gradually. If appropriate maintenance measures are not taken
before components lose their function, not only will the normal operation of the equipment
be affected, but there is a risk of damage to the equipment due to damaged components.
By continuously monitoring and analyzing the equipment’s operating data, RUL prediction
helps managers make maintenance or replacement decisions before parts are damaged,
ensuring the reliability and safety of system operation and reducing economic losses.
Therefore, accurate prediction is essential for maintaining normal production. There
are three main types of prediction methods: (1) physics-based methods; (2) data-driven
methods; and (3) methods that integrate these two approaches [2,3]. In physics-based
methods, a mathematical model is usually constructed to describe the failure mechanism
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based on a particular piece of equipment and combined with the empirical knowledge of
that equipment and the defect growth equation [4,5] to predict the RUL of the equipment.
A model-based prognostic method was developed to overcome the influence of the number
of sensors on the prediction results. The method is not only an innovation in prediction
methods, but also demonstrated the superiority of the approach in reducing the sensor
set [6]. Model-based approaches have been shown to be robust in limited sensing scenes.
In addition, a method was proposed for online evaluation in cases where little is known
about the degradation process and extreme cases are considered: the entire degradation
process from start of operation to failure is not observed [7]. El Mejdoubi et al. [8] considered
aging conditions in predicting the RUL of supercapacitors where the posterior values of
capacitance and resistance are predicted by means of particle filters. Gears are important
transmission components and accurate RUL prediction is very important to determine the
condition of gearing systems. The accuracy of prediction using the digital twin method was
significantly improved due to its comprehensive health indicators [9]. However, physics-
based methods require corresponding degradation models based on specific objects and
usually are not universal. In addition, as the complexity of the equipment increases, it
becomes difficult to model the failure of system objects, limiting the development of RUL
prediction methods by model construction.

There are two important branches of data-driven methods, namely, statistical data-
driven methods and machine-learning(ML)-based methods, that are the current mainstream
methods for RUL prediction [10]. Statistical data-driven approaches are used to predict
system status based on monitoring data through statistical models without making as-
sumptions or empirical estimates of physical parameters. Park and Padgett [11] provided a
new model of accelerated degeneracy, mainly for faults in geometric Brownian motion or
gamma processes, with approximation operations using Birnbaum–Saunders and inverse
Gaussian distributions. Chehade and Hussein [12] proposed a multioutput convolutional
Gaussian process (MCGP) model that captures the cross-correlation between the capacities
of available battery cells and is very effective for long-term capacity prediction of lithium-
ion (Li-ion) batteries. Van Noortwijk et al. [13] proposed a method that combines two
stochastic processes to assess reliability over time. In [14], a degradation model based on
the Wiener process and using recursive filters to update the drift coefficients was developed
to predict the RUL. The prediction accuracy of physics-based methods depends on the
choice of degradation model, but the degradation models are distinctive for different types
of equipment. By contrast, statistical data-driven methods are valid in overcoming the
problems associated with model selection.

Recently, ML has matured in applications such as data mining, speech recognition,
computer vision, fault diagnosis and RUL prediction due to its powerful data processing
capabilities. ML-based prediction methods can overcome the problem of unknown degra-
dation models, as the input is not limited by the type of data but can be many different
types of data. ML used to predict RUL can be divided into shallow ML and deep learning
(DL) methods. The common shallow ML prediction methods are back-propagation (BP),
extreme learning machines (ELMs), support vector machines (SVMs) and relevance vector
machines (RVMs). BP-based neural networks have good long-term predictive capabilities.
Gebraeel et al. [15] established neural-network-based models to train the vibration data of
the bearings to obtain the expected failure time of the bearings. Since a single BP neural
network faces the problem of the weights falling into local optima and slow convergence
during training, some approaches combining other methods with BP algorithms have
been proposed. In [16], Wang et al. predicted the distribution of RUL of cooling fans by
building a time-series ARIMA model; the combination with a BP neural network model
improved the feature extraction ability of the model and improved the prediction accuracy.
ELMs have features such as fast learning speed and high generalization ability, and these
advantages are used in RUL prediction to feed the extracted features into ELM models for
training, thus improving the prediction accuracy [17]. Maior et al. [18] presented a method
combining empirical mode decomposition and SVM for degradation data analysis and
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RUL prediction. Improving the accuracy of prediction under uncertainty is a problem that
urgently needs to be solved. Wang et al. [19] extended the RVM to the probability manifold
to eliminate the negative impact of the RVM evidence approximation and underestimation
of hyperparameters on the prediction. Although some studies corroborate the effectiveness
of shallow ML in the field of RUL prediction, traditional shallow ML algorithms rely heavily
on the prior knowledge of experts and signal processing techniques, making it difficult to
automatically process and analyze large amounts of monitoring data.

By contrast, DL models aim to build deep neural network architectures that com-
bine low-dimensional features of the data to form more abstract high-level attributes with
strong feature learning capabilities. In 2006, the greedy layer-wise pretraining method
was proposed achieved a theoretical breakthrough in DL [20]. Subsequently, DL has had a
wide range of applications in several fields, such as image recognition [21], speech recog-
nition [22], fault diagnosis [23] and RUL prediction [24]. Deutsch et al. [25] combined
the feature extraction capabilities of DBNs with the superior predictive capabilities of
feedforward neural networks (FNNs) in predicting the RUL of rotating equipment. Based
on this approach, to obtain the probability distribution of the remaining lifetime, DBN was
effectively combined with particle filtering to further improve the prediction accuracy [26].
Deep neural networks (DNNs) have poor long-term prediction accuracy and need to be
combined with other methods for better performance. A convolutional neural network
(CNN) is a classical feedforward neural network with excellent characteristics such as pa-
rameter sharing and spatial pooling. In [27], a deep convolutional neural network (DCNN)
and time window approach were utilized for sample preparation and demonstrated the
extraction of more efficient features. To facilitate the fusion of comprehensive information,
a RUL prediction method was proposed that learns salient features automatically from
multiscale convolutional neural networks (MSCNN) and reveals the nonsmoothness of
bearing degradation signals through time–frequency representation (TFR) [28]. In contrast
to CNNs, recurrent neural networks (RNNs) are feedforward neural networks contain-
ing feedforward connections and internal feedback connections. Their special network
structure allows the retention of data information of the implicit layer at the previous
moment to be preserved and is often used to process monitoring vector sequences with
interdependent properties. Heimes [29] realized the prediction of the RUL based on the
RNN structure. However, due to the problems of vanishing and exploding gradients,
RNNs processing long-term monitoring sequences produce large prediction bias [30]. To ef-
fectively address long-term sequence problems, LSTM was used on top of RNN, which
made some improvements and allowed the gate structure to determine the information
features passed under optimal conditions [31]. Zhao et al. [32] constructed a hybrid model
based on the capsule neural network and long short-term memory network (Cap-LSTM)
to extract multivariate time-series sensor data, where the model is feature sensitive and
feature information is fully utilized resulting in improved prediction accuracy. A number
of variants have been proposed based on typical LSTM networks. The attention mechanism
can highlight key parts of time-series information and improve accuracy when predicting.
The local features of the original signal sequence were extracted by a one-dimensional
convolutional neural network, combined with a LSTM network and attention mechanism
to analyze sensor signals and predict RUL, improving the robustness of the model and
obtaining higher prediction accuracy [33]. DL is widely used for RUL prediction due to
its feature representation being stronger than shallow ML and its ability to handle large
amounts of data.

In addition, hybrid approaches based on physics-based and data-driven approaches
were developed, such as the method of Sunet et al. [34], where empirical model decomposi-
tion, Wiener processes and neural networks were combined to take full advantage of both
physical models and data-driven approaches. However, it is not easy to design a structure
that reflects the advantages of both methods; thus, the use of hybrid methods to predict
RUL is uncommon.
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Although current ML algorithms perform well in the field of RUL prediction, and in
particular LSTM is effective in handling time-series data, there are still some drawbacks to
overcome when applying ML to RUL prediction. First of all, the existing methods suffer
from inadequate feature representation in RUL prediction, which affects their accuracy.
Secondly, the existing prediction models have to reconstruct the whole model and retrain
the parameters when a new data input is available, which is less efficient. To address this
problem, a new LSTM-based BLS algorithm is proposed. On the one hand, the BLS has
powerful feature representation and prediction capabilities and can accurately represent the
relationship between data characteristics and predicted outcomes. Meanwhile, compared
with DL, the BLS has a simple structure, a high training speed and the advantage of
incremental learning. When the network does not reach the expected performance, only
incremental learning is required and only the incremental part needs to be computed
without rebuilding the entire network. This significantly improves the efficiency of data
processing. In addition, LSTM can effectively process time-series data and avoid problems
such as parameter setting and single-time prediction randomness. On the other hand,
we hope to broaden the theoretical study of BLS networks by constructing a new fusion
network and applying it to practical production scenarios to create economic benefits.

We propose a method for predicting RUL that takes into account both feature extraction
and time-series information. It is hoped that sufficient feature extraction can improve the
prediction performance, and appropriately broaden the theory and application of the BLS.
Specifically, the main contributions and innovations of the work we have conducted are
listed below:

(1) A new LSTM-based BLS prediction method is proposed to extract the time-series
features of the data based on feature extraction, improving the ability of the prediction
results to represent the data features and enhancing the RUL prediction accuracy.

(2) The mechanism of model construction represents another innovation. Instead of
directly splicing the two methods, the new method is embedded by modifying the
internal structure and avoiding the redundancy of the model.

(3) The adaptation on the basis of a BLS enriches the practical significance of the BLS
framework, extends the scope of theoretical research and enables the achievement of
better results by integrating the BLS with other methods.

The rest of the paper is structured as follows. The constructed B-LSTM model and the
required related basics are introduced and presented in Section 2. Section 3 presents the
experimental data required and the experimental design. Section 4 applies the dataset for
validation of the model performance and comparison with other methods. A summary of
the model and possible future research directions are shown in Section 5.

2. Related Work
2.1. Broad Learning System (BLS)

With the continuous development of deep learning, deep networks are widely used in
various research fields, but the disadvantages are also more obvious. In order to achieve
higher accuracy, the number of network layers has to be gradually increased; however,
this consumes more computational resources and causes overfitting to occur in small
sample data processing. A BLS is built based on a single hidden layer neural network
and uses lateral scaling to improve accuracy and avoid complex hyperparameters. The
unique feature node and enhancement node structure also provides a strong guarantee for
adequate feature extraction.

The BLS was established by C. L. Philip Chen on the basis of a random vector
functional-link neural network (RVFLLNN) and compensated for its shortcomings in
handling large-volume and time-varying data [35]. In addition, the multiple variants
proposed in the course of subsequent research showed flexibility, stability and remarkable
results in classification and regression of semi-supervised and unsupervised tasks [36]. The
structure of the BLS is shown in Figure 1. The network structure is constructed using the
following steps. First, the mapping of input data to feature nodes is established, and then
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the enhancement nodes are formed through a nonlinear activation function. Eventually,
the feature nodes and the enhancement nodes are combined as outputs, and the output
weight can be directly found through pseudo-inverse ridge regression.
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Figure 1. Structure of the BLS network. The Yellow ellipse on the left is the calculation formula for
converting input data into feature nodes, the earthy yellow circle on the left is the generated feature
nodes, the green rectangle on the right is the calculation formula for converting the left feature nodes
into enhancement nodes, the light yellow circle on the right is the generated enhancement nodes, and
the blue circle on the top is the output.

The BLS is constructed as follows:
The given data are subjected to a random weight matrix for feature mapping to obtain

a feature matrix with the aim of dimensionality reduction and feature extraction. The ith
mapped feature is:

Zi = φi(XWei + βei), i = 1, 2, . . . , n (1)

Here, the parameters Wei and the bias βei are randomly initialized. We denote
Zn , (Z1, Z2, . . . , Zn) as the collection of groups of feature nodes. Then, they are sent
to the enhancement nodes.

Similarly, the jth group enhancement nodes are:

Hj = ξ j(ZnWhj + βhj), j = 1, 2, . . . , m (2)

By introducing a nonlinear activation function, the feature nodes are mapped non-
linearly to a higher dimensional subspace and the nonlinear element in the network is
enhanced. In addition, the outputs of the enhancement layer are denoted as
Hm , (H1, H2, . . . , Hm).

Finally, the output of the BLS consists of feature nodes and enhancement nodes
together, which can be expressed as follows:

Y = [Z1, . . . , Zn

∣∣∣ξ(ZnWh1 + βh1), . . . , ξ(ZnWhj + βhj)]Wm
n

= [Z1, . . . , Zn|H1, . . . , Hm]Wm
n

= [Zn|Hm]Wm
n

= Am
n Wm

n

(3)

Wm
n are the weights that connect the feature nodes and the enhancement nodes to

the output and Wm
n = [Zn|Hm]+Y, where the pseudo-inverse [Zn|Hm]+ can be directly

calculated by ridge regression.

2.2. Long Short-Term Memory (LSTM)

The LSTM network structure is built on top of the RNN. The memory cell structure is
illustrated in Figure 2. In dealing with the problem of long-term sequences, a cell state is
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added, which determines whether past and present information can be added through a
gating mechanism, overcoming the “gradient vanishing” and “gradient explosion” prob-
lems of the RNN. LSTM has three gates to control the flow of information in the network.
The forget gate ft controls how much of the previous state ct−1 can be retained. The input
gate it determines whether to use the current input to update the information of the LSTM.
The output gate ot determines which parts of the current cell state need to be outputted to
the next layer for iteration.

ft = σ(W( f )xt + V( f )ht−1 + b f ) (4)

it = σ(W(i)xt + V(i)ht−1 + bi) (5)

ot = σ(W(o)xt + V(o)ht−1 + bo) (6)

ct = ft ⊗ ct−1 + it ⊗ tanh(W(c)xt + V(c)ht−1 + bc) (7)

ht = ot ⊗ tanh(ct) (8)

where xt is the data entered into the memory cell for training and ht is the output in each
cell. In addition, W, V and b are the weight matrix and biases, respectively, σ is the sigmoid
activation function used to control the weight of the message passing through and ⊗ is the
dot product.
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Figure 2. Long short-term cell structure. The blue circle at the bottom is the input data of a cell of the
LSTM. The orange rectangular part is the forget gate, input gate and output gate. The yellow part is
the calculation formula for generating forget gate, input gate and output gate. The orange circular
part is the operator for generating forget gate, input gate and output gate.

Specifically, the update process of a cell state can be divided into the following steps:
(1) determine what useless information is discarded from the state of the previous time
step; (2) extract the valid information that can be added to the state cell at the current time
step; (3) calculate the state unit of the current time step; and (4) calculate the output of the
current time step.

Variants of LSTM as part of a prediction model that take full advantage of LSTM in
processing time-series information are also a common approaches in current research.
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2.3. LSTM-Based Broad Learning System (B-LSTM)

For RUL prediction, more accurate predictions are always obtained by fully learn-
ing both the time-series information and feature information of the given data. When
performing time-series forecasting, the serial information of the data cannot be learned
simply by constructing a framework of mapped features. Therefore, in order to construct
a prediction model with comprehensive coverage, a model based on BLS and introduc-
ing LSTM is proposed, named B-LSTM. The intuitive idea is to enhance the extraction
of time-series information based on the extraction of feature information. The flow is
shown in Algorithm 1. In the original BLS framework, each attribute xi ∈ X ∈ RD must
be independent of the others, and due to this independence, each matrix can learn the
features through the variation of different weights. The construction mechanism of the
B-LSTM is shown in Figure 3. In this figure, unlike the standard BLS, the raw data are
first fed into the LSTM to learn the time-series information. The resulting output is then
transformed nonlinearly to generate enhancement nodes that extract deeper features and
increase the nonlinear fitting capability of the model. Finally, the state output of the LSTM
is connected to the output as a feature layer and an enhancement node. The feature matrix
and enhancement matrix of the B-LSTM structure are represented as:

Zi = oi ⊗ tanh(ci), i = 1, 2, . . . , n (9)

Hj = ξ j(ZnWhj + βhj), j = 1, 2, . . . , m (10)

where Zn , (Z1, Z2, . . . , Zn) is the collection of n groups of feature nodes obtained by the
calculation of the LSTM network. Finally, the connections of all of the mapped features and
the enhancement nodes are sent to the output layer. The dynamic equation of B-LSTM is
shown below:

Y = [Z1, . . . , Zn

∣∣∣ξ(ZnWh1 + βh1), . . . , ξ(ZnWhj + βhj)]Wm
n (11)
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Figure 3. Structure of the B-LSTM network. Multiple orange circles in the left rectangle are the input
data. The upper part in the middle indicates that the feature nodes of the new model are replaced
by LSTM, the yellow circle in the LSTM part is the input data, the green circle is the feature nodes
output by the new model, the lower part in the middle is the enhancement nodes generated by the
feature nodes generated by LSTM, the feature nodes and enhancement nodes are connected to the
output together, and the red circle on the right is the output of the model.
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Algorithm 1: B-LSTM Model

Input: Training data X, Y;
Output: the output weights W;
1: for i = 1; i <= n; i ++do
2: Calculate ct = ft ⊗ ct−1 + it ⊗ tanh(Wcxt + Vcht−1 + bc);
3: Calculate Zi = oi ⊗ tanh(ci), i = 1, 2, . . . , n;
4: end for
5: Set Zn , (Z1, Z2, . . . , Zn);
6: for j = 1; j <= m; j ++do
7: Random Whj, βhj;
8: Calculate Hj = ξ j(ZnWhj + βhj), j = 1, 2, . . . , m;
9: end for
10: Set Hm , (H1, H2, . . . , Hm);
11: Set Am

n and calculate (Am
n )

+ Equation (11);
12: Calculate W

3. Experimental Procedure and Analysis
3.1. C-MAPSS Dataset

The C-MAPSS dataset contains aircraft turbofan engine degradation simulation data,
including simulated sensor data generated by different turbofan engines over time; this
dataset was selected for training and evaluation of the effectiveness of the proposed model.
Table 1 shows that the dataset consists of four sub-datasets, FD0001, FD0002, FD0003
and FD0004, where both the FD001 and FD003 datasets contain 1 operational condition
and contain 1 and 2 fault types, respectively, whereas FD002 and FD004 both contain 6
operational conditions and contain 1 and 2 fault types, respectively. These sub-datasets
consist of engine numbers, serial numbers, configuration items and sensor data obtained
from 21 sensors, simulating the progressive degradation of the engine from a healthy state
to failure for different initial conditions.

Table 1. Parameters of the dataset.

Sub-Dataset
C-MAPSS

FD001 FD002 FD003 FD004

Training trajectories 100 260 100 249
Testing trajectories 100 259 100 248

Operating conditions 1 6 1 6
Fault modes 1 1 2 2

Each of the four sub-datasets contains a training set and a test set in which the actual
RUL values of the test engine are also included. The training set includes all data from the
start of the turbofan engine’s operation until its degradation and failure. In the test set,
however, the data start from a healthy state and are subsequently arbitrarily truncated; the
operating time periods up to the point of system failure were calculated from these data.

3.2. Performance Measures

To quantitatively assess the performance of the model, we compared the prediction
results of the new model and the predictions of this model were compared with those
of other network structures. Two objective evaluation metrics, namely, RMSE and Score,
are introduced in this paper, where d = Rpred − Ractual ; when the prediction error d is 0,
RMSE and Score are both the minimum values of 0. As the absolute value of d increases,
the two evaluation indices are increased. The difference is that when d > 0, Score gives
different penalty weights for model prediction lag and prediction advance. If the predicted
value is smaller than the true value, it means that the prediction is ahead and the penalty
coefficient is smaller, and conversely, lagging brings more serious consequences and the
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penalty coefficient is larger. Predicting the RUL value earlier allows for earlier maintenance
planning and avoidance of potential losses.

RMSE =

√
∑n

i=1 (d)
2

n
(12)

Score =

∑n
i=1 e−(

d
13 ) − 1, d < 0

∑n
i=1 e−(

d
10 ) − 1, d ≥ 0

(13)

3.3. Experimental Setup

Our experimental equipment was a personal computer with an Intel Core i5 CPU, 16GB
RAM and NVIDIA GTX 1080ti GPU. The operating system was Windows 10 Professional
and the programming platform was MATLAB R2019b.

First, data filtering was performed on the dataset, and in each dataset, a single sampled
data sample consisted of 26 variables, of which the first 2 variables represented the engine
sequence number and the cycle sequence number, the last 3 variables represented the
operation setting items and the remaining 21 variables represented the detection values
obtained by the 21 sensors. The third position of the operation setting term and the sensor
values with sequence numbers 1, 5, 6, 10, 16, 18 and 19 were unchanged and had no effect
on the prediction results, so they were filtered out. Then, since the sensors were of different
types and the selected data were of different magnitudes, we made the range of values
uniform across the data by data normalization. Finally, we divided the data into training
and validation sets proportionally, set the training parameters and inputted the processed
training and validation sets into the model for model training.

4. Results and Discussion
4.1. RUL Prediction

To verify the performance of the B-LSTM model, we inputted the datasets into the
model and roughly determined whether the model can effectively predict based on the
fit between the true and predicted values of the RUL. The prediction results are shown in
Figure 4. The red solid line indicates the true RUL value, whereas the green scatter plot
indicates the predicted value. As can be seen from the figure, the B-LSTM was able to depict
the trend of RUL variation for each test set. This shows that the improved structure of
extracting time-series information and feature information can be more effective in making
predictions. In addition, in the FD001 and FD003 datasets, the B-LSTM model made better
predictions compared to the other two datasets because in these two sub-datasets the failure
modes and operating conditions were relatively simple. Although the operating conditions
and failure modes in the FD002 and FD004 test sets were more complex, they basically
described the changing trend of the equipment RUL.

We can see that the true value of RUL in the FD003 sub-dataset in the prediction result
plot continued to be constant at the beginning; this is because after our practical verification,
due to the smoother operating conditions, the RUL in FD003 remained basically stable at
the beginning of the operation and can be considered as constant, and only at a later stage
did a linear decline occur as the RUL of the device did not change uniformly with time.
In order to make better predictions of RUL, we processed the labels of FD003 training data.
The RUL was set to a fixed value when the operating cycle of the device was less than 60,
and decreased gradually with the growth of the operating cycle when the operating cycle
was greater than 60, as the device gradually declined.
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4.2. Performance Evaluation

To verify the performance of the model, we compared the proposed method with other
existing RUL prediction methods, including MLP [37], SVR [37], CNN [37], LSTM [38],
ELM [39], and BiLSTM [40]. The comparison results are shown in Table 2. From Figure 5,
we can see that the RMSE of the proposed method was smaller than the other methods
in all four sub-datasets, especially in FD001 and FD003, where it achieved good results.
Similarly, in Figure 6 it is clear that the Score of the new method improved as compared
to the other methods. The comparison results show that the method we constructed can
fully extract the features of the data and, thus, obtain more accurate prediction results.
In addition, the FD001 and FD003 datasets performed better for each prediction method
compared to the other two datasets because the turbine engines in the FD001 and FD003
datasets have fewer operating conditions and can maintain smooth operating conditions
during the operating period.

Table 2. Model performance comparison on the C-MAPSS dataset.

Method
RMSE/Score

FD001 FD002 FD003 FD004

MLP 37.56/18,000 80.03/7,800,000 37.39/17,400 77.37/5,620,000
SVR 20.96/1380 42.0/590,000 21.05/1600 45.35/371,000
CNN 18.45/1290 30.29/13,600 19.82/1600 29.16/7890
LSTM 16.14/338 24.49/4450 16.18/852 28.17/5550
ELM 17.27/523 37.28/498,000 18.47/574 30.96/121,000

BiLSTM 13.65/295 23.18/41,300 13.74/317 24.86/5430
Proposed method 12.45/279 15.36/4250 13.37/356 16.24/5220
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5. Conclusions

There are a variety of methods for predicting RUL in the existing research, but these
methods can have some problems in actual prediction, such as ignoring time-series features,
features not being sufficiently extracted, etc. We proposed a new method for predicting
RUL and demonstrated that the method improves prediction performance. Specifically,
a new BLS network integrated with LSTM, named B-LSTM, is essential for enriching the
theoretical knowledge of RUL prediction.

Theoretically, this network retains the time-series information in the input data while
performing sufficient feature extraction so that the output of the model remains strongly
correlated with the input data and the interpretability and accuracy of the model is en-
hanced. In addition, when the model performance was validated using the C-MAPSS
dataset, the results obtained were significantly better than other models. Therefore, the
B-LSTM performed well in both theoretical construction and data validation. Although
this study achieved ideal conclusions, the experimental results of one dataset may be
serendipitous; therefore, in the following research, we will use more different datasets to
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verify the scientificity and generalizability of the proposed model. In addition, this research
did not pay too much attention to the training time of the model. In later work, we will
focus on further optimizing the model structure to shorten the training time so that the
model can be processed quickly and, at the same time, achieve a satisfactory accuracy.
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