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Abstract: A total k-rainbow dominating function on a graph G = (V, E) is a function f : V(G) →
2{1,2,...,k} such that (i)∪u∈N(v) f (u) = {1, 2, . . . , k} for every vertex v with f (v) = ∅, (ii)∪u∈N(v) f (u) 6=
∅ for f (v) 6= ∅. The weight of a total 2-rainbow dominating function is denoted by ω( f ) =

∑v∈V(G) | f (v)|. The total k-rainbow domination number of G is the minimum weight of a total
k-rainbow dominating function of G. The minimum total 2-rainbow domination problem (MT2RDP)
is to find the total 2-rainbow domination number of the input graph. In this paper, we study the
total 2-rainbow domination number of graphs. We prove that the MT2RDP is NP-complete for
planar bipartite graphs, chordal bipartite graphs, undirected path graphs and split graphs. Then, a
linear-time algorithm is proposed for computing the total k-rainbow domination number of trees.
Finally, we study the difference in complexity between MT2RDP and the minimum 2-rainbow
domination problem.

Keywords: total 2-rainbow domination; total 2-rainbow domination number; NP-complete; linear-
time algorithm

MSC: 05C69

1. Introduction

In this paper, only graphs without multiple edges or loops are considered. Let G =
(V, E) be an undirected graph with |V(G)| = n and |E(G)| = m. The open neighborhood
and closed neighborhood of a vertex v in G are denoted by N(v) = {u|uv ∈ E(G)} and
N[v] = {v} ∪ N(v), respectively. The degree of a vertex v is denoted by d(v) = |N(v)|.
A graph is called k-regular if d(v) = k for v ∈ V(G). For a positive integer n, we write
[n] = {0, 1, 2, · · · , n− 1}.

Let G = (V, E), F be a finite family of subsets of a non-empty set, if there is a
correspondence between V(G) and F such that fi ∩ f j 6= ∅ if and only if uv ∈ E(G), where
fi, f j ∈ F and fi, f j are the corresponding sets of vertices u and v, respectively, then G is
an intersection graph. A graph G is chordal if every cycle Ck with k ≥ 4 in G has a chord,
i.e., an edge joining two non-consecutive vertices of the cycle, and a chordal graph is also
an intersection graph with F which is a finite family of subtrees of a tree, see [1]. If G is
a chordal graph and F is a finite family of paths of a tree, then G is an undirected path
graph [2]. A chordal bipartite graph is a bipartite graph and every cycle in G of length ≥ 4
has a chord [3].

In a graph G = (V, E), a subset D ⊂ V(G) is called a dominating set if N(u) ∩ D 6= ∅
for u /∈ D. The domination number γ(G) is the minimum cardinality of a dominating set
of G [4]. The problems of finding a minimum cardinality dominating set in graphs [5], split
graphs and bipartite graphs [6], chordal bipartite graphs [7], planar bipartite graphs [8]
and undirected path graphs [9] are NP-complete. For relevant papers on dominating set in
graphs, see [10–14].

One of the most famous open problem involving domination in graphs is that
γ(G)γ(H) ≤ γ(G�H) for any graphs G and H, called Vizing’s conjecture [15], where
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G�H denotes the Cartesian product of graphs G and H [16]. To investigate a similar prob-
lem for paired domination, Brešar et al. proposed k-rainbow domination [17]. A k-rainbow
dominating function on a graph G is a function f : V(G)→ 2{1,2,...,k} such that every vertex
u for which f (u) = ∅, then ∪u∈N(v) f (u) = {1, 2, . . . , k}. The weight ω( f ) of a k-rainbow
dominating function f is denoted by ω( f ) = ∑u∈V(G) | f (u)|. The k-rainbow domination
number γrk(G) of G is the minimum weight over all k-rainbow dominating functions on
the graph G. A k-rainbow dominating function f of G with ω( f ) = γrk(G) is called a
γrk-function of G.

The minimum k-rainbow domination problem (MkRDP) is to finda minimum weight
of a k-rainbow dominating function in graphs. Bres̆ar et al. proved that M2RDP is NP-
complete for chordal graphs and bipartite graphs [18]. Later, Chang et al. showed that the
MkRDP for chordal graphs and bipartite graphs are NP-complete [19]. The linear-time
algorithms for computing 2-rainbow domination number [20] and k-rainbow domination
number [19] of trees are proposed. For a more detailed discussion of k-rainbow domination
number in graphs, see [21–27].

Ahangar et al. [28] proposed a new dominating function named total k-rainbow
dominating function for protecting the Empire under a more complex situation where the
Empire is guarded by different types of guards, and where every location without guards
needs all types of guards in its neighborhood and every location with guards needs at
least one guard in its neighborhood. A total k-rainbow dominating function on a graph
G = (V, E) is a k-rainbow dominating function f such that ∪u∈N(v) f (u) 6= ∅ for f (v) 6= ∅.
The weight of a total k-rainbow dominating function is denoted by ω( f ) = ∑v∈V(G) | f (v)|.
The total k-rainbow domination number of G is the minimum weight of a total k-rainbow
dominating function on the graph G, denoted by γtrk(G). A total k-rainbow dominating
function f of G with ω( f ) = γtrk(G) is called a γtrk-function of G.

The properties of total k-rainbow dominating function in graphs was studied [28,29].
Ahangar et al. characterized all graphs G, where γtr2(G) = |V(G)| − 1 [30]. The problems
of finding a minimum weight of a total 2-rainbow dominating function (MT2RDP) in
chordal graphs and bipartite graphs are NP-complete [29].

In this paper, we study the total 2-rainbow domination number of graphs. Then,
we prove that MT2RDP is NP-complete even when restricted to planar bipartite graphs,
chordal bipartite graphs, undirected path graphs and split graphs. Next, a linear-time
algorithm is proposed for computing the total k-rainbow domination number of trees.
Finally, we study the difference in complexity between MT2RDP and the minimum 2-
rainbow domination problem.

2. Results

Lemma 1. If the graph G is k-regular with order n, then γtr2(G) ≥ 2n
k+1 .

Proof. Let f be a γtr2-function of G. To prove the lower bound, we define an initial charge
function s corresponding to f , such that s(v) = | f (v)|. Then, we apply the following two
discharging rules to lead to the final charge function s′ corresponding to s of G, such that
∑v∈V(G) s′(v) = ∑v∈V(G) s(v).

Rule 1: For the vertex s(v) = 1, N(v) = {v1, v2, v3, . . . , vk}, suppose that f (v1) 6= ∅.
Then, s(v) transmits 1

1+k charge to v2, v3, . . . , vk.
Rule 2: For each s(v) = 2, N(v) = {v1, v2, v3, . . . , vk}, suppose that f (v1) 6= ∅. Then,

s(v) transmits 2
1+k charge to v2, v3, . . . , vk.

Thus, for s(v) = 1, we have s′(v) ≥ s(v)− k−1
k+1 = 2

k+1 by Rule 1.

For s(v) = 2, then s′(v) ≥ s(v)− 2(k−1)
k+1 > 2

k+1 by Rule 2.
For s(v) = 0, since v is adjacent to at least one vertex u such that s(u) = 2 or two

vertices s(x) ≥ 1 and s(y) ≥ 1, then v will receive 2
k+1 charge form u or x, y by Rules 2 and

1, then s′(v) ≥ s(v) + 2
k+1 = 2

k+1 .
Therefore, ω( f ) = ∑v∈V(G) s′(v) = ∑v∈V(G) s(v) ≥ 2

k+1 × n = 2n
k+1 .



Mathematics 2022, 10, 2059 3 of 13

To show that γtr2(G) ≥ 2n
k+1 is sharp for k-regular graphs with order n = 4t when

k = 3, t ≥ 2, we investigate the total 2-rainbow domination number of double generalized
Petersen graphs.

The double generalized Petersen graphs DP(n, k) was introduced by Kutnar and
Petecki [31], n ≥ 3 and 1 ≤ k ≤ n− 1, with vertex set:

V(DP(n, k)) = U ∪V ∪ X ∪Y

where U = {u0, u1, . . . , un−1}, V = {v0, v1, . . . , vn−1}, X = {x0, x1, . . . , xn−1},
Y = {y0, y1, . . . , yn−1}, and its edge set is the union:

E(DP(n, k)) = E1 ∪ E2 ∪ E3

where E1 = {uiui+1, yiyi+1|i ∈ [n]}, E2 = {uivi, xiyi|i ∈ [n]}, E3 = {vixi+k, xivi+k|i ∈
[n]}, and the subscripts are reduced modulo n (see, e.g., (n, k) ∈ {(6, 1), (9, 4), (n, 1)} in
Figures 1 and 2).

ui−3 ui−2 ui−1 ui ui+1 ui+2 ui+3

vi−1 vi vi+1

xi−1 xi xi+1

yi−1 yi yi+1

Figure 1. The graph DP(n, 1).

(a) (b)

Figure 2. (a) The graph DP(6, 1); (b) The graph DP(9, 4).

Let

A4×4 =


a1,1 a12 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a2,2 a3,3 a3,4
a4,1 a2,2 a4,3 a4,4

, B4×t =


b1,1 b1,2 b1,3 ... b1,t
b2,1 b2,2 b2,3 ... b2,t
b3,1 b2,2 b3,3 ... b3,t
b4,1 b2,2 b4,3 ... b4,t

.

Let fA4×4,B4×t be a function of DP(n, 1) with n = 4s + t, such that f (up) = f (up+4k) =
a1,p+1, f (vp) = f (vp+4k) = a2,p+1, f (xp) = f (xp+4k) = a3,p+1, f (yp) = f (yp+4k) = a4,p+1,
f (un−1−q) = b1,t−q, f (vn−1−q) = b2,t−q, f (xn−1−q) = b3,t−q, f (yn−1−q) = b4,t−q, where
p ∈ {0, 1, 2, 3}, k ∈ {1, 2, . . . , s}, q ∈ {0, 1, 2, . . . , t− 1}.

Lemma 2. γtr2(DP(n, 1)) ≥ 2n + 1, where n ≥ 9 and n ≡ 1, 2, 3 (mod 4).

Proof. Let f be aγtr2-function of DP(n, 1), V0 = {v| f (v) = ∅}, V1 = {v| f (v) = {1}},
V2 = {v| f (v) = {2}}, V3 = {v| f (v) = {1, 2}}. Suppose that γtr2(DP(n, 1)) < 2n + 1, that
is, ω( f ) = γtr2(DP(n, 1)) = 2n.
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Then, V3 = ∅. Otherwise, s′(v) = 2− 1
2 −

1
2 = 1, ω( f ) = ∑v∈V(G) s(v) = ∑v∈V(G) s′(v)

= ∑v∈V0
s′(v)+∑v∈V1

s′(v)+∑v∈V2
s′(v)+∑v∈V3

s′(v) ≥ 1
2 × 4n+ 1

2 according to the proof
of Lemma 1, contradicting with ω( f ) = γtr2(DP(n, 1)) = 2n.

Similarly, |N(v) ∩ V1| = |N(v) ∩ V2| = |N(v) ∩ V0| = 1 for every vertex v ∈ V0,
and |N(v) ∩V1|+ |N(v) ∩V2| = 1, |N(v) ∩V0| = 2 for every vertex v ∈ V1 ∪V2.

Let s ∪ s = {1, 2}, |s| = |s| = 1, t ∪ t = {1, 2}, |t| = |t| = 1, p ∪ p = {1, 2},
|p| = |p| = 1, q ∪ q = {1, 2}, |q| = |q| = 1, Ii = {vi, u,xi, yi}, where i ∈ [n].

Case 1: ∑v∈Ii
| f (v)| = 4 for some i ∈ [n].

In this case, f (ui) = s, f (vi) = t, f (xi) = p, f (yi) = q. Then, f (ui+1) = f (vi+1) =
f (xi+1) = f (yi+1) = f (ui−1) = f (vi−1) = f (xi−1) = f (yi−1) = ∅. To dominate
ui+1, xi+1, vi+1, yi+1, we have f (ui+2) = s, f (vi+2) = t, f (xi+2) = p, f (yi+2) = q. Since
|N(v) ∩ V0| = 2 for every vertex v ∈ V1 ∪ V2, thus f (ui+3) = f (vi+3) = f (xi+3) =
f (yi+3) = ∅. To dominate ui+3, xi+3, vi+3, yi+3, then f (ui+4) = f (ui) = s, f (vi+4) =
f (vi) = t, f (xi+4) = f (xi) = p, f (yi+4) = f (yi) = q. Therefore, f (ui+4k) = f (ui) = s,
f (vi+4k) = f (vi) = t, f (xi+4k) = f (xi) = p, f (yi+4k) = f (yi) = q, f (ui+4k−2) = f (ui+2) =
s, f (vi+4k−2) = f (vi+2) = t, f (xi+4k−2) = f (xi+2) = p, f (yi+4k−2) = f (yi+2) = q,
f (ui+4k−3) = f (ui+1) = f (ui+4k−1) = f (ui+3) = f (vi+4k−3) = f (vi+1) = f (vi+4k−1) =
f (vi+3) = f (xi+4k−3) = f (xi+1) = f (xi+4k−1) = f (xi+3) = f (yi+4k−3) = f (yi+1) =
f (yi+4k−1) = f (yi+3) = ∅, where k ≥ 1 and the subscripts are reduced modulo n. Thus,
n ≡ 0 (mod 4), a contradiction.

Case 2: ∑v∈Ii
| f (v)| = 3 for some i ∈ [n].

Suppose that f (ui) = s, f (vi) = t, f (xi) = p, f (yi) = ∅. Then f (ui+1) = f (xi+1) =
f (ui−1) = f (xi−1) = ∅. To dominate yi, without loss of gravity, we assume that f (yi+1) =
p, f (yi−1) = ∅. Then f (yi−2) = {1, 2} for dominating yi−1, contradicting with V3 = ∅.

Now we consider that f (ui) = s, f (vi) = t, f (xi) = ∅, f (yi) = q. Then f (ui+1) =
f (xi+1) = f (ui−1) = f (xi−1) = ∅. To dominate xi, wl.o.g we assume that f (vi+1) = q,
f (vi−1) = ∅. Thus, f (xi−2) = {1, 2} for dominating vi−1, contradicting with V3 = ∅.

Case 3: ∑v∈Ii
| f (v)| = 1 for some i ∈ [n].

Suppose that f (ui) = s, f (vi) = f (xi) = f (yi) = ∅. To dominate xi, yi, vi we have
| f (vi+1)| = | f (vi−1)| = 1, | f (yi+1)| = | f (yi−1)| = 1, | f (xi+1)|+ | f (yi−1)| = 1. Therefore,
∑v∈Ii+1

f (v) ≥ 3 or ∑v∈Ii−1
| f (v)| ≥ 3. The result is entirely consistent with Case 2, then

contradicting with V3 = ∅.
Now we consider that f (vi) = t, f (ui) = f (xi) = f (yi) = ∅. To dominate xi, yi, ui,

we have | f (vi+1)| = | f (vi−1)| = 1, | f (yi+1)| = | f (yi−1)| = 1, | f (ui+1)|+ | f (ui−1)| = 1.
Therefore, ∑v∈Ii+1

f (v) ≥ 3 or ∑v∈Ii−1
| f (v)| ≥ 3. The result is entirely consistent with Case

2, then contradicting with V3 = ∅.
Case 4: ∑v∈Ii

| f (v)| = 2 for some i ∈ [n].
In this case, it is sufficient to consider the following three subcases.
Subcase 4.1: f (ui) = s, f (vi) = t, f (xi) = f (yi) = ∅.
In this case, f (ui+1) = f (ui−1) = f (xi+1) = f (xi−1) = ∅. To dominate xi, we have

f (vi−1) = q, f (vi−1) = q. To dominate ui+1, then s = p. However, s = p for dominating
vi−1, a contradiction.

Subcase 4.2: f (ui) = s, f (xi) = p, f (vi) = f (yi) = ∅.
To dominate yi, we may assume f (yi+1) = p and f (yi−1) = ∅. Since |N(v) ∩V0| = 2

for every vertex v ∈ V1 ∪ V2, assume that f (ui+1) = ∅. Then, f (vi+1) = s, f (vi−1) = ∅,
f (ui−1) = p. To dominate vi, then f (xi−1) = s. Therefore, f (ui+4k) = f (ui) = s, f (vi+4k) =
f (vi) = ∅, f (xi+4k) = f (xi) = p, f (yi+4k) = f (yi) = ∅, f (ui+4k−3) = f (ui+1) = ∅,
f (vi+4k−3) = f (vi+1) = s, f (xi+4k−3) = f (xi+1) = ∅, f (yi+4k−3) = f (yi+1) = p,
f (ui+4k−2) = f (ui+2) = ∅, f (vi+4k−2) = f (vi+2) = p, f (xi+4k−2) = f (xi+2) = ∅,
f (yi+4k−2) = f (yi+2) = s, f (ui+4k−1) = f (ui+3) = p, f (vi+4k−1) = f (vi+3) = ∅,
f (xi+4k−1) = f (xi+3) = s, f (yi+4k−1) = f (yi+3) = ∅, where k ≥ 1 and the subscripts
are reduced modulo n. Thus, n ≡ 0 (mod 4), a contradiction.

Now we consider f (ui−1) = ∅, then f (vi−1) = s, f (vi+1) = ∅, f (ui+1) = p. To
dominate vi, then f (xi−1) = s. Therefore, f (ui+4k) = f (ui) = s, f (vi+4k) = f (vi) = ∅,
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f (xi+4k) = f (xi) = p, f (yi+4k) = f (yi) = ∅, f (ui+4k−3) = f (ui+1) = p, f (vi+4k−3) =
f (vi+1) = ∅, f (xi+4k−3) = f (xi+1) = ∅, f (yi+4k−3) = f (yi+1) = p, f (ui+4k−2) =
f (ui+2) = ∅, f (vi+4k−2) = f (vi+2) = p, f (xi+4k−2) = f (xi+2) = ∅, f (yi+4k−2) =
f (yi+2) = s, f (ui+4k−1) = f (ui+3) = ∅, f (vi+4k−1) = f (vi+3) = s, f (xi+4k−1) = f (xi+3) =
s, f (yi+4k−1) = f (yi+3) = ∅, where k ≥ 1 and the subscripts are reduced modulo n. Thus,
n ≡ 0 (mod 4), a contradiction.

Subcase 4.3: f (ui) = s, f (yi) = q, f (vi) = f (xi) = ∅ (or f (vi) = t, f (xi) = p,
f (ui) = f (yi) = ∅).

In this case, we have f (ui+4k) = f (ui) = s, f (vi+4k) = f (vi) = ∅, f (xi+4k) =
f (xi) = ∅, f (yi+4k) = f (yi) = q, f (ui+4k−3) = f (ui+1) = ∅, f (vi+4k−3) = f (vi+1) = p,
f (xi+4k−3) = f (xi+1) = s, f (yi+4k−3) = f (yi+1) = ∅, f (ui+4k−2) = f (ui+2) = ∅,
f (vi+4k−2) = f (vi+2) = s, f (xi+4k−2) = f (xi+2) = p, f (yi+4k−2) = f (yi+2) = ∅,
f (ui+4k−1) = f (ui+3) = s, f (vi+4k−1) = f (vi+3) = ∅, f (xi+4k−1) = f (xi+3) = ∅,
f (yi+4k−1) = f (yi+3) = p, where k ≥ 1 and the subscripts are reduced modulo n. Thus,
n ≡ 0 (mod 4), a contradiction.

Theorem 1. γtr2(DP(n, 1)) =
{

2n, n ≡ 0(mod 4),
2n + 1, n ≡ 1, 2, 3(mod 4),

where n ≥ 8.

Proof. Case 1: n ≡ 0 (mod 4).
Let:

A4×4 =


∅ ∅ {2} {2}
{1} {1} ∅ ∅
∅ {1} {1} ∅
{2} ∅ ∅ {2}

.

Then fA4×4,A4×4 is a total 2-rainbow dominating function of DP(n, 1) with ω( f ) = 2n,
and γtr2(DP(n, 1)) ≤ 2n for n ≡ 0 (mod 4).

Case 2: n ≡ 1 (mod 4).
Let:

A4×4 =


{2} ∅ {1} ∅
{1} ∅ {2} ∅
{1} ∅ {2} ∅
{2} ∅ {1} ∅

, B4×5 =


{2} ∅ {1} {1} ∅
{1} ∅ ∅ {2} ∅
{1} {1} {2} {2} ∅
{2} ∅ ∅ {1} ∅

,

Then fA4×4,B4×5 is a total 2-rainbow dominating function of DP(n, 1) with ω( f ) =
2n + 1, and γtr2(DP(n, 1)) ≤ 2n + 1 for n ≡ 1 (mod 4).

Case 3: n ≡ 2 (mod 4).
Let:

A4×4 =


∅ ∅ {1} {2}
{1} ∅ ∅ {2}
∅ {2} {1} ∅
{1} ∅ ∅ {2}

, B4×6 =


∅ {2} {1} ∅ {2} {1}
{1} ∅ ∅ {1} ∅ {2}
∅ {2} {1} {1} ∅ ∅
{1} ∅ ∅ {2} ∅ {1}

.

Then fA4×4,B4×6 is a total 2-rainbow dominating function of DP(n, 1) with ω( f ) =
2n + 1, and γtr2(DP(n, 1)) ≤ 2n + 1 for n ≡ 2 (mod 4).

Case 4: n ≡ 3 (mod 4).
Let:

A4×4 =


{2} ∅ ∅ {1}
∅ {1} {2} ∅
{2} {1} ∅ ∅
∅ ∅ {2} {1}

, B4×7 =


{2} ∅ {1} {1} ∅ ∅ {1}
{2} {2} ∅ ∅ {2} {2} ∅
{2} ∅ ∅ {2} {2} ∅ ∅
∅ {1} {1} ∅ ∅ {1} {1}

.
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Then fA4×4,B4×7 is a total 2-rainbow dominating function of DP(n, 1) with ω( f ) =
2n + 1, and γtr2(DP(n, 1)) ≤ 2n + 1 for n ≡ 3 (mod 4).

Furthermore, by Lemmas 1 and 2 , this theorem holds.

Therefore, γtr2(DP(n, 1)) ≥ 2n is sharp when n ≡ 0 (mod 4).

2.1. Complexity

In this section, we show that the problems of finding a minimum weight of a total
2-rainbow dominating function in planar bipartite graphs, chordal bipartite graphs, undi-
rected path graphs and split graphs are NP-complete, by giving two polynomial time
reductions from two NP-complete problems, MINIMUM DOMINATION PROBLEM and
3-SAT, which are defined as follows.

MINIMUM DOMINATION PROBLEM(MDP)
INSTANCE: A simple and undirected graph G = (V, E) and a positive integer k ≤ |V(G)|.
QUESTION: Does G have a dominating set with cardinality at most k?

3-SAT
INSTANCE: A collection C = {C1, C2, . . . , Cm} of clauses over a finite set U of variables
such that |Cj| = 3 for j = 1, 2, . . . , m.
QUESTION: Is there a truth assignment for U that satisfies all the clauses in C?

MINIMUM TOTAL 2-RAINBOW DOMINATION PROBLEM(MT2RDP)
INSTANCE: A simple and undirected graph G = (V, E) and a positive integer k ≤ |V(G)|.
QUESTION: Does G have a total 2-rainbow dominating function of weight at most k?

Theorem 2. The MT2RDP is NP-complete for planar bipartite graphs, chordal bipartite graphs
and undirected path graphs.

Proof. Given a graph G = (V, E), then let each vertex v ∈ V(G) be the tree Tv, where
V(Tv) = {v, v1, v2, v3, v4, v5}, E(Tv) = {vv1, v1v2, v2v3, v2v4, v2v5}. Let A = {Tvi |i ∈
{1, 2, . . . , n}} be the set of disjoint trees corresponding to the graph G. If vivj ∈ E(G), then
add an edges vivj between the trees Tvi ∈ A and Tvj ∈ A. Therefore, we obtain a graph G′,
see Figure 3.

(b)(a)

ab

c
d

ab

c
d

Figure 3. (a) The graph G. (b) The graph G′ obtained from G.

Claim 1. The graph G has a dominating set with cardinality at most k if and only if there is a total
2-rainbow dominating function f of the graph G′ such that ω( f ) ≤ k + 3n.

Proof. Suppose G has a dominating set D and |D| ≤ k. We define a function f : V(G′)→
{∅, {1}, {2}, {1, 2}} such that f (v1) = {2}, f (v2) = {1, 2}, f (v3) = f (v4) = f (v5) = ∅ for
every tree Tv, and if v ∈ V(G) ∩ D, f (v) = {1}, if v ∈ V(G) \ D, f (v) = ∅.
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Thus, f is a total 2-rainbow dominating function of G and ω( f ) ≤ k + 3n.
Conversely, suppose the graph G′ has a total 2-rainbow dominating function f such

that ω( f ) ≤ k + 3n. It is immediate that | f (v1)|+ | f (v2)|+ | f (v3)|+ | f (v4)|+ | f (v5)| ≥ 3
with equality if and only if f (v2) = {1, 2}. If f (v) 6= ∅, let v ∈ D, then v is dominated. If
f (v) = ∅ and | f (v1)| ≤ 1, v is total 2-rainbow dominated by u ∈ NG(v) and v1, that is,
f (u) 6= ∅. Let v /∈ D, then v is dominated by u. If f (v) = ∅ and f (v1) = {1, 2}, let v ∈ D,
then v is dominated by u.

Since every vertex v ∈ V(G) is dominated, D is a dominating set of G with cardinality
at most k.

If the graph G is a chordal bipartite graph or planar bipartite graph, so is G′. Recall
that the MDP is NP-complete for chordal bipartite graphs [7], planar bipartite graphs [8]
and undirected path graphs [9]; thus, it can be immediately concluded that the MT2RDP is
NP-complete for chordal bipartite graphs and planar bipartite graphs.

Now we show that if the graph G is an undirected path graph, so is G′. Suppose G is an
undirected path graph. Then, there exists a finite family F of paths {Pvi |i ∈ {1, 2, . . . , n}}
of a tree T. Let xi be the one of the end points of path Pvi , Tvi be a tree with V(Tvi ) =
{ai, bi, si, ti, ri}, E(Tv) = {aibi, bisi, biti, biri}, where i ∈ {1, 2, . . . , n}. Construct T′ from T
by adding edges xiai between ai ∈ V(Tvi ) and xi ∈ V(Pvi ), where i ∈ {1, 2, . . . , n}. Now
let P′vi

= {xiai, aibi, bisi, biti, biri}, where i ∈ {1, 2, . . . , n}, F ′ = F ∪ {P′vi
| ∈ {1, 2, . . . , n}}.

Thus, there is a 1-1 correspondence f between V(G′) and F ′ such that f (ai) = xiai, f (bi) =
aibi, f (si) = bisi, f (ti) = biti, f (ri) = biri, and uv ∈ E(G′) if and only if f (u) ∩ f (v) 6= ∅.
Therefore, G′ is an undirected path graph.

The proof is completed.

Theorem 3. The MT2RDP is NP-complete for split graphs.

Proof. Let U = {x1, x2, . . . , xn}, C ={C1, C2, . . . , Cm} be an arbitrary instance F of 3-SAT .
Let GF = (V, E) be a graph, V(GF) = V1 ∪V2 ∪V3, E(GF) = E1 ∪ E2 ∪ E3, where V1 =

{xi, xi|i ∈ {1, 2, . . . , n}}, V2 = {cj|j ∈ {1, 2, . . . , m}}, V3 = {ai, bi|i ∈ {1, 2, . . . , n}}, E1 =

{uv|u, v ∈ {V1}}, E2 = {cjxi (or cjxi)|xi ∈ Cj (or xi ∈ Cj)}, E3 = {xiai, xibi, xiai, xibi|xi ∈
Cj}, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}, see Figure 4.

It is immediate that the graph GF is a split graph with a partitioning V(GF) into a
clique v1 and a stable set V2 ∪V3.

x3

x3x2

x2

x1

x1 x4

x4

c1 c2 c3

a1

b1

a3
b3

a2
b2

a4
b4

Figure 4. The graph GF constructed from the instance F, where C1 = x1 ∨ x2 ∨ x3, C2 = x1 ∨ x3 ∨ x4,
C3 = x2 ∨ x3 ∨ x4.
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If C is satisfiable, then we define a function f : V(G′) → {∅, {1}, {2}, {1, 2}}, such
that f (ai) = f (bi) = f (cj) = ∅. If xi is true, then f (xi) = {1, 2}, f (xi) = ∅; otherwise,
f (xi) = {1, 2}, f (xi) = ∅. Thus, f is a total 2-rainbow dominating function of GF and
ω( f ) ≤ 2n.

Conversely, suppose the graph GF has a total 2-rainbow dominating function f such
that ω( f ) ≤ 2n. Let V1 = {v| f (v) = {1}}, V2 = {v| f (v) = {2}}, V3 = {v| f (v) = {1, 2}}.
To dominate ai, bi for i ∈ {1, 2, .., n}, if | f (ai)| ≥ 1 (or | f (bi)| ≥ 1), then | f (xi)|+ | f (xi)| ≥ 1
with equality if and only if | f (bi)| ≥ 1 (or | f (ai)| ≥ 1). Thus, | f (ai)|+ | f (bi)|+ | f (xi)|+
| f (xi)| ≥ 2 with equality if and only if | f (ai)| = | f (bi)| = 0. Note that ω( f ) ≤ 2n, then
| f (xi)|+ | f (xi)| =2, | f (ai)| = | f (bi)| = 0, | f (cj)| = 0, where i ∈ {1, 2, .., n}, j ∈ {1, 2, .., m}.

Since cj is dominated by one vertex v ∈ V3 or two vertices u ∈ V1, v ∈ V2, where
j ∈ {1, 2, .., m} then let x be true for x ∈ V1 ∪ V3. Therefore, the clause Cj is satisfied for
j ∈ {1, 2, .., m}. Note that V1 ∪V3 ⊆ V1, so V1 ∪V3 is the true assignment for U that satisfies
all the clauses in C.

2.2. A Linear-Time Algorithm for Trees

In this section, we propose a linear-time algorithm for computing the total k-rainbow
domination number of trees. Let f be a total k-rainbow dominating function of G. If S ⊂
V(G), f (S) =

⋃
v∈S f (v).

If u ∈ V(G), an H-trk function of (G, u) is a function g : V(G)→ 2{1,2,...,k}, such that g
is a total k-rainbow dominating function of G− u, that is, every vertex v ∈ V(G) \ {u} is
dominated by the vertices in V(G), the weight of g is denoted by ω(g) = ∑v∈V(G) |g(v)|.

Denote F = {g| g is an H-trk function of (G, u)}:
γ(G, u, t, 0) = min{ω( f )| f ∈ F, | f (u)| = t, f (N(u)) = ∅}, 1 ≤ t ≤ k,
γ(G, u, t, 1) = min{ω( f )| f ∈ F, | f (u)| = t, f (N(u)) 6= ∅}, 1 ≤ t ≤ k,
γ(G, u, ∅, t) = min{ω( f )| f ∈ F, f (u) = ∅, | f (N(u))| ≥ t}, 0 ≤ t ≤ k.

Lemma 3. Let u ∈ V(G), then: γtrk(G) = min{γ(G, u, 1, 1), γ(G, u, 2, 1), . . . , γ(G, u, k, 1),
γ(G, u, ∅, k)}.

Lemma 4. Let G be a graph and u ∈ V(G). If f is an H-trk function of (G, u) such that
| f (u)| = t, 1 ≤ t ≤ k, then for any A = {a1, a2, . . . , at}, ai ∈ {1, 2, . . . , k}, i ∈ {1, 2, . . . , t},
there exists an H-trk function f ′ of (G, u) with ∑v∈V(G) | f ′(v)| = ∑v∈V(G) | f (v)|, f ′(u) = A,
| f ′(N(u))| = | f (N(u))| .

Proof. Assume that f (u) = {x1, x2, . . . , xt} where xi ∈ {1, 2, . . . , k}, i ∈ {1, 2, . . . , t}. Let
B = {x1, x2, . . . , xt} \ {a1, a2, . . . , at}, C = {a1, a2, . . . , at} \ {x1, x2, . . . , xt}, then |B| = |C|.
Assume that |B| = p, B = {y1, y2, .., yp}, C = {z1, z2, .., zp}. Let f ′ be a function of
G obtained by changing yi into zi, changing zi into yi for yi, zi ∈ f (v), v ∈ V(G),
i ∈ {1, 2, . . . , p}. Then, f ′(u) = {a1, a2, . . . , at} and f ′ is an H-trk function of (G, u) and
∑v∈V(G) | f ′(v)| = ∑v∈V(G) | f (v)|, | f ′(N(u))| = | f (N(u))|. For example, G is a graph with
V(G) = {u, v, s}, E(G) = {uv, us, vs} and f is a total 5-rainbow dominating function of
G such that f (u) = {1, 4, 5}, f (v) = {2, 3, 4}, f (s) = {1, 2}. Then, we try to obtain a
total 5-rainbow dominating function f ′ such that f ′(u) = {1, 2, 3}. Thus, let B = {4, 5},
C = {2, 3}. Then, for f (v) = {2, 3, 4}, change 3 into 5, 4 into 2, 2 into 4, so f ′(v) = {2, 4, 5}.
For f (s) = {1, 2}, change 2 into 4, f ′(s) = {1, 4}. For f (u) = {1, 4, 5}, change 4 into 2,
change 5 into 3, so f ′(u) = {1, 2, 3}, as desired).

Lemma 5. Let P and Q be disjoint graphs and u and v be the vertices of P and Q, respectively.
Suppose that G = (V, E) is a new graph with V(G) = V(P) ∪V(Q), E(G) = E(P) ∪ E(Q) ∪
{uv}. Then, the following statements hold:
(a) γ(G, u, t, 0) = γ(P, u, t, 0) + γ(Q, v, ∅, k− t), 1 ≤ t ≤ k;
(b) γ(G, u, t, 1) = min{γ(P, u, t, 1) + min

1≤t1≤k
{γ(Q, v, ∅, k− t), γ(Q, v, t1, 0), γ(Q, v, t1, 1)},

γ(P, u, t, 0) + min
1≤t1≤k

{γ(Q, v, t1, 0), γ(Q, v, t1, 1)}}, 1 ≤ t ≤ k;
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(c) γ(G, u, ∅, t) = min
0≤t1<t

{γ(P, u, ∅, t1) + γ(Q, v, t− t1, 1), γ(P, u, ∅, t) + γ(Q, v, ∅, k)}, 1 ≤

t ≤ k;
(d) γ(G, u, ∅, 0) = γ(P, u, ∅, 0) + min

1≤t≤k
{γ(Q, v, ∅, k), γ(Q, v, t, 1), }.

Proof. If h1 is a function of P , h2 is a function of Q , f is a function of G such that
f (x) = h1(x) for x ∈ V(P), f (x) = h2(x) for x ∈ V(Q), then we write f = h1 ∪ h2.

(a) Let f1 be an H-trk function of (P, u) with minimum weight such that | f1(u)| =
t, f1(NP(u)) = ∅, f2 be an H-trk function of (Q, v) with minimum weight such that
f2(v) = ∅, k ≥ q = | f2(NQ(v))| ≥ k− t. Then, assume that f2(NQ(v)) = {s1, s2, . . . , sq},
si ∈ {1, 2, .., k}.

If t + q > k, there exists a function f ′1 such that f ′1(NP(u)) = ∅, ∑v∈V(P) | f1(v)| =
∑v∈V(P) | f ′1(v)| and f ′1(u) = {1, 2, . . . , k} \ {s1, s2, . . . , sq} ∪ {x0, x1, .., xt−(k−q)}, where xi ∈
{s1, s2, . . . , sq} for i ∈ {0, 1, .., t− (k− q)} by Lemma 4.

If t + q ≤ k, let A = {a1, a2, . . . , at}, where ai ∈ {1, 2, . . . , k} \ {s1, s2, . . . , sq}, i ∈
{1, 2, . . . , t}. Then, there exists a function f ′1 such that f ′1(NP(u)) = ∅, ∑v∈V(P) | f1(v)| =
∑v∈V(P) | f ′1(v)| and f ′1(u) = A by Lemma 4. Therefore, f = f ′1 ∪ f2 is an H-trk function of
(G, u) such that | f (u)| = t, f (NG(u)) = ∅. Thus, γ(G, u, t, 0) ≤ γ(P, u, t, 0)+γ(Q, v, ∅, k−
t).

If f is an H-trk function of (G, u) with minimum weight such that | f (u)| = t,
f (NG(u)) = ∅, then f = g1 ∪ g2, where g1 is an H-trk function of (P, u) such that
|g1(u)| = t, g1(NP(u)) = ∅, g2 is an H-trk function of (Q, v) such that g2(v) = ∅,
|g2(NQ(v))| ≥ k− t. Thus, γ(G, u, t, 0) ≥ γ(P, u, t, 0) + γ(Q, v, ∅, k− t).

(b) Using similar strategies used in the proof of (a), we obtain the equation from the
fact that f is an H-trk function of (G, u) with | f (u)| = t and f (NG(u)) 6= ∅ if and only if
f = f1 ∪ f2, where f1 is an H-trk function of (P, u) with | f1(u)| = t and f1(NP(u)) 6= ∅
and f2 is a total k-rainbow dominating function (TkRDF) of Q, such that | f2(v)| = t1, or f2
is a TkRDF of Q, such that f2(v) = ∅, | f2(NQ(v))| ≥ k− t, or f1 is an H-trk function of
(P, u) with | f1(u)| = t and f1(NP(u)) = ∅ and f2 is a TkRDF of Q such that | f2(v)| = t1.

(c) Using similar strategies used in the proof of (a), we obtain the equation from the
fact that f is an H-trk function of (G, u) with f (u) = ∅ and | f (NG(u))| ≥ t if and only if
f = f1 ∪ f2, where f1 is an H-trk function of (P, u) with f1(u) = ∅ and | f1(NP(u))| ≥ t1
and f2 is a TkRDF of Q, such that | f2(v)| = t− t1 and f2(NQ(v)) 6= ∅, or f1 is an H-trk
function of (P, u) with f1(u) = ∅ and | f1(NP(u))| ≥ t and f2 is a TkRDF of Q such that
f2(v) = ∅ and | f2(NQ(v))| = k.

(d) We obtain the equation from the fact that f is an H-trk function of (G, u), with
f (u) = ∅ and | f (NG(u))| ≥ 0 if and only if f = f1 ∪ f2, where f1 is an H-trk function of
(P, u), with f1(u) = ∅ and | f1(NP(u))| ≥ 0 and f2 is a TkRDF of Q.

By Lemmas 3 and 5, we propose the following linear-time algorithm , Algorithm 1,
with time-complexity O(k2|V(T)|) for computing the total k-rainbow domination number
of the tree T.
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Algorithm 1: TkRD(T).
Input : A tree T with a tree ordering [v1, v2, v3, . . . , vn]
Output : The total k-rainbow domination number γtrk(T) of T

for i = 1 to n do
for t = 1 to k do

γ(vi, t, 0) = t;
γ(vi, t, 1) = γ(vi, ∅, t) = ∞;

end
γ(vi, ∅, 0) = 0;

end
for i = 1 to n do

let vj be the parent of vi;
for t = 1 to k do

γ(vj, t, 0)← γ(vj, t, 0) + γ(vi, ∅, k− t);
γ(vj, t, 1)← min{γ(vj, t, 1) + min

1≤s≤k
{γ(vi, ∅, k− t), γ(vi, s, 0), γ(vi, s, 1)},

γ(vj, t, 0) + min
1≤s≤k

{γ(vi, s, 0), γ(vi, s, 1)}};

γ(vj, ∅, t)← min
1≤s≤k

{γ(vj, ∅, s) + γ(vi, t− s, 1), γ(vj, ∅, t) + γ(vi, ∅, k)};

end
γ(vj, ∅, 0)← γ(vj, ∅, 0) + min

1≤s≤k
{γ(vi, ∅, k), γ(vi, s, 1)};

end
γtrk(T) = min{γ(vn, 1, 1), γ(vn, 2, 1), . . . , γ(vn, k, 1), γ(vn, ∅, k)}.

2.3. Complexity Difference between Total 2-Rainbow Domination and 2-Rainbow Domination

In this section, we define two classes of graphs for which the complexities of total
2-rainbow domination is different from 2-rainbow domination.

CONSTRUCTION 1: Let G = (V, E) be a graph with |V(G)| = n, then let each
vertex vi ∈ V(G) be the tree Tvi , where V(Tvi ) = {vi, ai, bi, ci, di, ei, si, ti, pi, qi, ri}, E(Tvi ) =
{viai, aibi, aici, ciei, cisi, citi, di pi, diqi, diri}, i ∈ {1, 2, . . . , n}. Let B = {Tvi |i ∈ {1, 2, . . . , n}}
be the set of disjoint trees corresponding to the graph G. If vivj ∈ E(G), then add an
edge vivj between the trees Tvi ∈ B and Tvj ∈ B. Therefore, we obtain a graph G′. An
example is shown in the Figure 5a,b. Let GT be the set of G′ obtained from graphs by
CONSTRUCTION 1.

CONSTRUCTION 2: Let G = (V, E) be a graph with |V(G)| = n, then let each vertex
vi ∈ V(G) be the graph Gvi , where V(Gvi ) = {vi, ai, bi, ci, di, ei, fi, gi, g1

i , g2
i , g3

i , hi, ki, mi, m1
i ,

m2
i , m3

i , pi, qi, ri, si, s1
i , s2

i , s3
i }, E(Gvi ) = {viai, vibi, aici, cibi, aidi, di fi, diei, fiei, figi, gig1

i , gig2
i ,

gig3
i , cihi, ciki, hiki, kimi, mim1

i , mim2
i , mim3

i , bi pi, piqi, piri, riqi, risi, sis1
i , sis2

i , sis3
i }, i ∈ {1, 2, . . .

, n}. Let B = {Gvi |i ∈ {1, 2, . . . , n}} be the set of disjoint graphs corresponding to the graph
G. If vivj ∈ E(G), then add an edge vivj between the graphs Gvi ∈ B and Gvj ∈ B. There-
fore, we obtain a graph G′. An example is shown in the Figure 5a,c. Let GG be the set of G′

obtained from graphs by CONSTRUCTION 2.
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Figure 5. (a) The graph G, (b) the graph G′ obtained from G by CONSTRUCTION 1, (c) the graph G′

obtained from G by CONSTRUCTION 2.

Lemma 6. Let G′ = (V′, E′) be a graph constructed from G = (V, E) by CONSTRUCTION 1,
then γtr2(G′) = 6n.

Proof. First, we define a total 2-rainbow dominating function f of G′, f : V(G′) →
{∅, {1}, {2}, {1, 2}}, such that f (ai) = f (ci) = f (di) = {1, 2}, f (vi) = f (bi) = f (ei) =
f (si) = f (ti) = f (pi) = f (qi) = f (ri) = ∅, where i ∈ {1, 2, . . . , n}. Clearly, f is a total
2-rainbow dominating function of G′ and γtr2(G′) ≤ ω( f ) = 6n.

Suppose f is a γtr2-function of G′. To dominate ei, si, ti, pi, qi, ri, it is clear that f (ci) =
f (di) = {1, 2}, where i ∈ {1, 2, . . . , n}. Since bi need to be dominated, we have | f (ai)|+
| f (bi)| ≥ 2, i ∈ {1, 2, . . . , n}. Thus, γtr2(G′) = ω( f ) ≥ 6n.

Therefore, γtr2(G′) = 6n.

Lemma 7. Let G′ be a graph constructed from G by CONSTRUCTION 1, then γr2(G′) =
γr2(G) + 5n.

Proof. Let f be a 2-rainbow dominating function with minimum weight of G and let g
be a function of G′, such that g(bi) = {1}, g(ci) = g(di) = {1, 2}, g(ei) = g(si) = g(ti) =
g(pi) = g(qi) = g(ri) = ∅, g(vi) = f (vi), where i ∈ {1, 2, . . . , n}. It is clear that g is the
2-rainbow dominating function of G′, and ω(g) = ω( f ) + 5n = γr2(G) + 5n. Therefore,
γr2(G′) ≤ γr2(G) + 5n.

Conversely, let h be a γr2-function of G′. To dominate ei, si, ti, pi, qi, ri, |h(ci)|+ |h(ei)|+
|h(si)|+ |h(ti)| ≥ 2, and |h(di)|+ |h(pi)|+ |h(qi)|+ |h(ri)| ≥ 2, where i ∈ {1, 2, . . . , n}.
Then, we define a function l of G, l : V(G′) → {∅, {1}, {2}, {1, 2}} such that l(vi) = ∅
if h(vi) = h(ai) = ∅ and |h(bi)| = 1, l(vi) = {1} if h(vi) = ∅ and |h(ai)|+ |h(bi)| ≥ 2,
l(vi) = h(vi) if h(vi) 6= ∅, where i ∈ {1, 2, . . . , n}. Thence, l is a 2-rainbow dominating
function of G with ω(l) ≤ γr2(G′)− 5n. That is γr2(G) ≤ γr2(G′)− 5n. This completes the
proof of the lemma.

Lemma 8. Let G′ = (V′, E′) be a graph constructed from G = (V, E) by CONSTRUCTION 2,
then γtr2(G′) = γtr2(G) + 12n.

Proof. Let f be a total 2-rainbow dominating function with minimum weight of G and let
g be a function of G′, such that g(ci) = g( fi) = g(ri) = {2}, g(di) = g(pi) = g(ki) = {1},
g(gi) = g(mi) = g(si) = {1, 2}, g(ai) = g(bi) = g(ei) = g(hi) = g(qi) = g(g1

i ) =
g(g2

i ) = g(g3
i ) = g(m1

i ) = g(m2
i ) = g(m3

i ) = g(s1
i ) = g(s2

i ) = g(s3
i ) = ∅, g(vi) = f (vi),

where i ∈ {1, 2, . . . , n}. It is clear that g is total 2-rainbow dominating function of G′,
and ω(g) = ω( f ) + 11n = γtr2(G) + 12n. Therefore, γtr2(G′) ≤ γtr2(G) + 12n.
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Conversely, let h be a γtr2-function of G′, V0 = {v|h(v) = ∅}. To dominate g1
i , g2

i , g3
i ,

we have |h(g1
i )|+ |h(g2

i )|+ |h(g3
i )|+ |h(gi)| ≥ 2. To dominate ei, |h(ei)|+ |h( fi)|+ |h(di)| ≥

2. Similarly, |h(m1
i )| + |h(m2

i )| + |h(m3
i )| + |h(mi)| ≥ 2, |h(ci)| + |h(hi)| + |h(ki)| ≥ 2,

|h(s1
i )| + |h(s2

i )| + |h(s3
i )| + |h(si)| ≥ 2, |h(pi)| + |h(ri)| + |h(qi)| ≥ 2. Therefore,

∑v∈Gvi \{vi} |h(v)| ≥ 12 with equality if and only if h(ai) = h(bi) = ∅.
Then we define a function l of G, l : V(G′)→ {∅, {1}, {2}, {1, 2}}, such that

(1) if h(ai) = h(bi) = ∅, then l(vi) = h(vi), (2) if |h(ai)|+ |h(bi)| ≥ 1 and h(vi) 6= ∅, then
l(vi) = h(vi), l(vj) = {1} for one vertex vj ∈ N(vi) \ {ai, bi} ∩V0, (3) if |h(ai)|+ |h(bi)| = 1
and h(vi) = ∅, then l(vi) = {1}, (4) if |h(ai)|+ |h(bi)| ≥ 2 and h(vi) = ∅, then l(vi) = {1},
l(vj) = {1} for one vertex vj ∈ N(vi) \ {ai, bi} ∩V0, where i ∈ {1, 2, . . . , n}.

Hence, l is a total 2-rainbow dominating function of G with ω(l) ≤ γtr2(G′)− 12n.
That is γr2(G) ≤ γtr2(G′)− 12n. This completes the proof of the lemma.

Lemma 9. Let G′ be a graph constructed from G by CONSTRUCTION 2, then γr2(G′) = 11n.

Proof. First, we define a 2-rainbow dominating function f of G′, f : V(G′)→ {∅, {1}, {2},
{1, 2}}, such that f (gi) = f (mi) = f (si) = {1, 2}, f (ai) = f (hi) = f (qi) = {1}, f (bi) =
f (ei) = f (ki) = {2}, f (vi) = f (ci) = f (di) = f ( fi) = f (ki) = f (pi) = f (ri) = f (g1

i ) =
f (g2

i ) = f (g3
i ) = f (m1

i ) = f (m2
i ) = f (m3

i ) = f (s1
i ) = f (s2

i ) = f (s3
i ) = ∅, where

i ∈ {1, 2, . . . , n}. Clearly, f is a 2-rainbow dominating function of G′ and γr2(G′) ≤
ω( f ) = 11n.

Suppose h is a γr2-function of G′. It is immediate that |h(g1
i )|+ |h(g2

i )|+ |h(g3
i )|+

|h(gi)| ≥ 2. |h(m1
i )|+ |h(m2

i )|+ |h(m3
i )|+ |h(mi)| ≥ 2, |h(s1

i )|+ |h(s2
i )|+ |h(s3

i )|+ |h(si)| ≥
2, To dominate ei, di, |h(ei)|+ |h(di)|+ |h(ai)|+ |h( fi)| ≥ 2. Similarly, |h(bi)|+ |h(pi)|+
|h(ri)|+ |h(qi)| ≥ 2. Since hi need to be dominated, |h(hi)|+ |h(ci)|+ |h(ki)| ≥ 1. Thus,
γr2(G′) = ω(h) ≥ 11n.

Therefore, γr2(G′) = 11n.

By Lemmas 6 and 7, Lemmas 8 and 9, and the fact that the M2RDP and MT2RDP are
NP-complete, the following results are immediate.

Theorem 4. For a graph G ∈ GT , the minimum 2-rainbow domination problem is NP-complete
and the minimum total 2-rainbow domination problem is solvable in polynomial time.

Theorem 5. For a graph G ∈ GG, the minimum 2-rainbow domination problem is solvable in
polynomial time and the minimum total 2-rainbow domination problem is NP-complete.

3. Conclusions

In this paper, we study the total 2-rainbow domination numbers of k-regular graphs
and prove that the lower bound of total 2-rainbow domination numbers of 3-regular graphs
is sharp for the double generalized Petersen graph DP(n, 1) when n = 4t ≥ 8. It will be
interesting to characterize the 3-regular graphs with order n, such that γtr2(G) = |V(G)|

2 .
Then, we prove that the decision problem of minimum total 2-rainbow dominating function
is NP-complete for planar bipartite graphs, chordal bipartite graphs, undirected path graphs
and split graphs, prove the complexity difference between minimum total 2-rainbow
domination problem and minimum 2-rainbow domination problem and show a linear-time
algorithm for total k-rainbow domination problem on trees. For the algorithm and hardness
aspects of the total 2-rainbow domination problem, designing approximation algorithms on
general graphs, or polynomial algorithms on some special classes graphs such as interval
graphs, deserves further research.

Author Contributions: Investigation, H.J. and Y.R.; Methodology, H.J. and Y.R.; Supervision, Y.R.;
Writing—original draft, H.J.; Writing—review & editing, H.J. and Y.R. All authors have read and
agreed to the published version of the manuscript.



Mathematics 2022, 10, 2059 13 of 13

Funding: This work was supported by the National Natural Science Foundation of China (No.
62172116) and the Guangzhou Academician and Expert Workstation (No. 20200115-9).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gavril, F. The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory Ser. B 1974, 16, 47–56.

[CrossRef]
2. Gavril, F. A recognition algorithm for the intersection graphs of paths in trees. Discret. Math. 1978, 23, 211–227. [CrossRef]
3. Golumbic, M.C.; Goss, C.F. Perfect elimination and chordal bipartite graphs. J. Graph Theory 1978, 2, 155–163. [CrossRef]
4. Cockayne, E.J.; Hedetniemi, S.T. Towards a theory of domination in graphs. Networks 1977, 7, 247–261. [CrossRef]
5. Garey, M.R.; Johnson, D.S. Computers, and Intractability: A Guide to the Theory of NP-Completeness; Bell Telephone Laboratories, Inc.:

New York, NY, USA, 1979.
6. Bertossi, A.A. Dominating sets for split and bipartite graphs. Inf. Process. Lett. 1984, 19, 37–40. [CrossRef]
7. Müller, H.; Andreas, B. The NP-completeness of steiner tree and dominating set for chordal bipartite graphs. Theor. Comput. Sci.

1987, 53, 257–265.
8. Lee, C.M.; Chang, M.S. Variations of Y-dominating functions on graphs. Discret. Math. 2008, 308, 4185–4204. [CrossRef]
9. Booth, K.S.; Johnson, J.H. Dominating sets in chordal graphs. SIAM J. Comput. 1982, 11, 191–199. [CrossRef]
10. Haynes, T.; Hedetniemi, S.; Slater, P. Fundamentals of Domination in Graphs; Marcel Dekker, Inc.: New York, NY, USA, 1998.
11. Chang, G.J. Algorithmic aspects of domination in graphs. In Handbook of Combinatorial Optimization; Springer: Boston, MA, USA,

1998; pp. 1811–1877.
12. Cockayne, E.J.; Goodman, S.; Hedetniemi, S.T. A linear algorithm for the domination number of a tree. Inf. Process. Lett. 1975, 4,

41–44. [CrossRef]
13. Gonçalves, D.; Pinlou, A.; Rao, M.; Thomassé, S. The Domination Number of Grids. SIAM J. Discret. Math. 2011, 25, 1443–1453.

[CrossRef]
14. Papadimitriou, C.H.; Yannakakis, M. Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 1991, 43, 425–440.

[CrossRef]
15. Vizing, V.G. Some unsolved problems in graph theory. Russ. Math. Surv. 1968, 23, 125. [CrossRef]
16. Imrich, W.; Klavzar, S.; Rall, D.F. Topics in Graph Theory: Graphs and Their Cartesian Product; CRC Press: Boca Raton, FL, USA, 2008.
17. Brešar, B.; Henning, M.A.; Rall, D.F. Paired-domination of Cartesian products of graphs and rainbow domination. Electron. Notes

Discret. Math. 2005, 22, 233–237. [CrossRef]
18. Bres̆ar, B.; S̆umenjak, T.K. On the 2-rainbow domination in graphs. Discret. Appl. Math. 2007, 155, 2394–2400.
19. Chang, G.J.; Wu, J.; Zhu, X. Rainbow domination on trees. Discret. Appl. Math. 2010, 158, 8–12. [CrossRef]
20. Brešar, B.; Henning, M.A.; Rall, D.F. Rainbow domination in graphs. Taiwan. J. Math. 2008, 12, 213–225. [CrossRef]
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