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1. Preliminaries

In his note [1], David Zywina compiled a list of all simple groups up to a hundred
million that are not yet known to be Galois groups over Q. The list contains only 14 groups.
Most of them are classical groups, and we noticed that the technique of determining
the images of the Galois representations attached to modular and automorphic forms, a
technique that we employed several years ago in the first named author’s thesis (with the
third named author as advisor) could be applied to prove that some of these groups are in
fact Galois over Q. We succeed in doing so for seven of the simple groups in Zywina’s list.
In this note we present the details of these computations.

Two-Dimensional Representations

We denote by GQ the absolute Galois group Gal(Q̄/Q). Given a prime `, we will write
χ` for the mod ` cyclotomic character GQ → F×` , sending each Frobenius element Frobp to
p (mod `) for p 6= `.

For any ring R, we denote by PSL2(R) and PGL2(R) the respective quotients of
SL2(R) and GL2(R) by their subgroup of scalar matrices. The determinant yields a short
exact sequence

0→ PSL2(R)→ PGL2(R) det→ R×/(R×)2 → 0,

so that an element of PGL2(R) is in PSL2(R) if and only if its determinant is a square.
Let k > 1 and N ≥ 1 be positive integers, and let ψ be a primitive Dirichlet character.

We consider newforms f ∈ Sk(N, ψ) of weight k, level N, and nebentypus ψ. If the q-
expansion of f is f (τ) = ∑n≥1 anqn, the extension Q f of Q generated by all an is a number
field, called the field of coefficients of f . Let O be its ring of integers.

For any prime `, Deligne [2] constructs a continuous representation associated with f ,

ρ` : GQ → GL2(O ⊗Z`),

which is unramified at all primes p - `N. Moreover, for any prime Λ in O above `, we have
a representation

ρΛ : GQ → GL2(OΛ),
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where OΛ is the Λ-adic completion of O, such that for all p - `N,

trace(ρΛ(Frobp)) = ap and det(ρΛ(Frobp)) = ψ(p)χk−1
` (p).

We can compose ρΛ with the reduction modulo Λ to obtain a mod Λ representation
ρ̄Λ : GQ → GL2(O/Λ). Furthermore, we may projectivize ρ̄Λ by quotienting out scalar
matrices, yielding

P(ρ̄Λ) : GQ → PGL2(O/Λ).

Our goal will be to determine the image of P(ρ̄Λ) for specific forms f and for certain
primes Λ.

In our discussion, we shall need to look at the ramification of ρ̄Λ at `, that is, its restric-
tion to an inertia group I` ⊂ GQ, defined uniquely up to conjugacy. This is described by
Theorem 2.5 in [3].

Theorem 1. Fix a prime ` ≥ k − 1 for which ` - 2N. Let Λ be a prime ideal of O dividing `.
Suppose a` 6≡ 0 (mod Λ). After conjugating ρ̄Λ by a matrix in GL2(O/Λ), we have

ρ̄Λ|I` =
(

χk−1
` ∗
0 1

)
.

2. Realization of Groups PSL2(Fq) with q = p2m+1

Let k > 1 be an odd positive integer, ψ a quadratic Dirichlet character, N a positive
integer. We focus on newforms f ∈ Sk(N, ψ) without CM having any nontrivial inner
twists besides ψ. Ribet [4] proves that for every p not dividing the level N,

ap( f ) = ap( f )cψ(p),

where c denotes complex conjugation. This implies that f ⊗ ψ−1 = f c. We denote by Q f
the field of coefficients of f . We shall also consider the subfield Ff of Q f generated by
{a2

p/ψ(p)}p.
We are going to use Theorem 3.1 from [5]. Let ρ` : GQ → GL2(O`) be the `-adic

representation associated with f , where O` = O ⊗Z Z` and O is the ring of integers of
Q f . Let

A` = {x ∈ GL2(R`) | det(x) = (Z×` )
(k−1)}

where R` = R⊗Z` and R is the ring of integers of Ff . Considering ψ as a character of GQ,
we can consider its kernel H, and K the corresponding fixed field, which is a quadratic
extension of Q in our case. If we set H` = ρ`(H), Theorem 3.1 of Ribet [4] is as follows:

Theorem 2. For all `, we have the inclusion H` ⊆ A`, which is an equality for almost every
prime `.

For each g ∈ GQ, there is some element α(g) ∈ Q×f such that α(g)c = ψ(g)α(g). We
can choose the different α(g) independently of ` and only depending on the coset gH. The
full image of the representation is then given by Theorem 4.1 in [5].

Theorem 3. The image of ρ` is contained in the subgroup of GL2(O`) generated by A` and the
finite set of matrices (

α(g) 0
0 ψ(g)/α(g)

)
, (1)

with g ∈ G/H. Moreover, the inclusion is an equality for all but finitely many primes `.

Since ψ is quadratic and H has index 2, we can choose g = Frobp for a prime p such
that ψ(p) = −1 and α(Frobp) = ap 6= 0, so that α(g) generates Q f and α(g)2 is in Ff .
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Let Λ be a prime in Q f lying over `, and let r = [O/Λ : F`] be its inertia degree. We
also let λ = Λ ∩ R and r′ = [R/λ : F`]. We look at one of the induced representations
associated with ρ`,

ρ̄Λ : GQ → GL2(F`r ).

Recall that we are assuming f has odd weight k. Considering that for any Λ | `,
the determinant of ρ̄Λ|H is χk−1

` (a square in F`), and that ρ̄Λ|H is defined over F`r′ by
Theorem 2, we conclude that

P(ρ̄Λ(H)) ⊆ PSL2(F`r′ ).

We now have to impose conditions so that we also have P(ρ̄Λ(GQ)) ⊆ PSL2(F`r′ ). By
Theorem 3, the image P(ρ̄Λ(GQ)) is generated by P(ρ̄Λ(H)) and the class of a single matrix
of the form in (1), which modulo scalars takes the form(

α(g)2 0
0 ψ(g)

)
=

(
α(g)2 0

0 −1

)
=: Mg.

The matrix Mg is now in PGL2(F`r′ ) by the choice of α(g). For it to be in PSL2(F`r′ ),
we only need

det(Mg) = −α(g)2 (mod λ)

to be a square in F`r′ . We assume from now on that r′ is odd and ` 6= 2.

Theorem 4. If ` and λ satisfy one of the following conditions:

1. ` ≡ 1 (mod 4) and λ is split in Q f /Ff ;
2. ` ≡ 3 (mod 4) and λ is inert in Q f /Ff , and ap 6∈ F`r′ where p is a prime with ψ(p) = −1;

then we have P(ρ̄Λ(GQ)) ⊆ PSL2(F`r′ ).

Proof. Case 1: ` ≡ 1 (mod 4). In this case −1 is a square in F`r′ , and we need a2
p to be a

square in F`r′ . That is, it is enough that ap is in F`r′ . We recall that ap is a generator of Q f ,
and thus we see that ap ∈ F`r′ if λ is a split prime in Q f /Ff .

Case 2: ` ≡ 3 (mod 4). In this case −1 is not a square in F`r′ , and we need ap 6∈ F`r′ .
This is satisfied as long as λ is an inert prime not dividing the conductor of the order of O
generated by ap.

2.1. Discarding Possible Images

We have already proven how to achieve P(ρ̄Λ(GQ)) ⊆ PSL2(F`r′ ) in cases where r′ is
odd using modular forms of odd weight. However, the image might be smaller in some
cases which we now list.

Lemma 1. From Dickson’s work [6], the maximal subgroups of PSL2(Fq) with q = pr ≥ 5 are:

• Borel subgroups (i.e., conjugate to the subgroup of upper triangular matrices), corresponding
to the case where ρ̄Λ is reducible;

• Dihedral subgroups;
• S4, when q = p ≡ ±1 (mod 8);
• A4, when q = p ≡ 3, 5, 13, 27, 37 (mod 40);
• A5, when q ≡ 1 (mod 10), Fq = Fp(

√
5).

• PSL2(Fps) and PGL2(Fps), with s | r.

The dihedral case corresponds to a subgroup which is the normalizer of a Cartan
subgroup. Given a Cartan subgroup C and its normalizer N, we have that [N : C] = 2, and
trace(g) = 0 for all g ∈ N \ C.

To show the image of some representation P(ρ̄Λ) is equal to PSL2(F`r′ ), we discard
that the image is contained in one of the maximal subgroups as follows.
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1. For the reducible case, we will usually be able to choose k = `, so that ` ≥ k − 1.
This means χk−1

` is the trivial character, and all our residual representations have
diagonal entries equal to one when restricted to inertia by Theorem 1, as long as
a` 6≡ 0 (mod Λ). Hence the characters ψ1, ψ2 in the diagonal of ρ̄Λ are unramified
outside N. Whenever N is prime, and because the prime-to-` part of the conductor of
ρ̄Λ divides N, one of these characters must be trivial and the other one has to be the
nebentypus. Therefore, we have proved the following:

Lemma 2. Let f be a newform of prime level N, weight k, quadratic nebentypus ψ which is
the single inner twist, and a prime ` for which Theorem 4 says ρ̄Λ(G) ⊆ PSL2(Fλ). If ` = k
and ` - 2N, then ρ̄ss

Λ ∼ 1⊕ ψ.

This yields a contradiction once we find a prime p with ψ(p) = −1 and ap 6≡ 0
(mod Λ). Alternatively, this gives a representation whose trace is defined over F`,
while we may have examples of traces not in F` as long as ap 6∈ F`.

2. After proving non-reducibility, we continue with the dihedral case (i.e., normalizer
of Cartan). We can assume that the image is not inside a Cartan subgroup C because
we have already dealt with the reducible case. To discard the image being in its
normalizer N, one takes the nontrivial character

GQ → N → N/C ∼= {±1},

which is unramified outside `N because so is ρ̄Λ. Taking a Dirichlet character ε to
concord with this character on Frobenius, there are finitely many primitive possible
Dirichlet characters, with conductors dividing `N. It is a matter of finding some p
with ε(p) = −1 and ap 6≡ 0 (mod `). If ε(p) = −1, g = ρ̄`(Frobp) is in N \ C, but for
such matrices trace(g) = 0, which does not happen.

3. The groups PSL2(Fps), PGL2(Fps), A4, A5 and S4 are discarded by finding some
element of large order. We can actually avoid considering the last three when R/λ is
a nontrivial odd extension of F` because of Dickson’s congruences.

With these steps, we are able to show the following.

Theorem 5. The groups PSL2(F53), PSL2(F33), PSL2(F73) and PSL2(F35) are Galois groups
over Q.

Remark 1. At the same period of time that this project was completed, the groups PSL2(F33)
and PSL2(F73) have been independently realized as Galois groups over Q by similar methods by
D. Zywina, cf. [7].

2.2. PSL2(F53)

We consider a newform f in the orbit denoted as Newform orbit 31.5.b.b in [8],
of level N = 31, weight k = 5, and nebentypus ψ the quadratic character associated to
the field Q(

√
−31). The coefficient field Q f is the degree-6 field with defining polynomial

x6 + 398x4 + 49236x2 + 1934136. Let ν be a root of this polynomial.
Since the level is prime, we see that f has no CM, as ψ(3) =

(
−31

3

)
= −1 and

a3 = ν 6= 0. The element a2
3 = ν2 generates the field Ff , which is a cubic extension of Q. In

particular, this implies that ψ is the only inner twist of f .
Let ` = 5. It is inert in Ff , so that `R = λ = (5). In turn, λ splits in Q f as the product

of two prime ideals, we fix Λ one of them. We have O/Λ = F53 and R/λ = F53 , so that
r = r′ = 3. Since ` ≡ 1 (mod 4) and λ splits completely in Q f , Theorem 4 implies that

P(ρ̄Λ(GQ)) ⊆ PSL2(F53).



Mathematics 2022, 10, 2048 5 of 10

We now start discarding possible small images. Assume first that ρ̄Λ is reducible. We
have ` = k ≥ k− 1 and ` 6= N. Since a5 6≡ 0 (mod Λ), we may apply Lemma 2 to show
that ρ̄ss

Λ ∼ 1⊕ ψ. However, this means the trace of ρ̄Λ would be zero for primes p such that
ψ(p) = −1, and we have a3 6≡ 0 (mod Λ). Hence, ρ̄Λ is irreducible.

To show the image is not contained in the normalizer of a Cartan subgroup, we only
need to consider the quadratic primitive Dirichlet characters of conductor dividing 5 · 31,
which are those associated to the quadratic fields

Q(
√

5),Q(
√
−31) and Q(

√
−155).

The first two have value −1 at 3, while a3 6≡ 0 (mod Λ). The third character gives
−1 at 2, and we also have a2 6≡ 0 (mod Λ). These facts are incompatible with P(ρ̄Λ(GQ))
being in the normalizer of a Cartan subgroup.

The other maximal subgroup of PSL2(F53), according to the congruences in Lemma 1
and point (3) in the discussion following Lemma 2, is PGL2(F5). Let Frob3 be a Frobenius
element for 3 in GQ. Modulo conjugation, we have

ρ̄Λ(Frob3) =

(
1 1
a3 a3 − 1

)
.

This matrix has order 124 in GL2(F53), and actually ρ̄5(Frob3)
31 = 2 Id, so the element

has order 31 in PSL2(F53). Hence P(ρ̄5(GQ)) cannot be inside PGL2(F5). We conclude that
the projective image is the whole PSL2(F53), which is a Galois group over Q.

2.3. PSL2(F33)

We consider a newform f in the orbit denoted as Newform orbit 43.5.b.b in [8] of
level N = 43, weight k = 5, and nebentypus ψ the quadratic character associated to
the field Q(

√
−43). The field Q f is defined by the polynomial x12 + 142x10 + 7173x8 +

157368x6 + 1510016x4 + 5098688x2 + 90352, it has degree 12 over Q. We let ν be a root of
this polynomial. The q-expansion of f begins with

q + νq2 + O(q3).

We have ψ(2) = −1 and a2 6= 0, therefore, f has no CM. The coefficient a2
2 = ν2

generates a field Ff with [Ff : Q] = 6, which confirms that ψ is the only inner twist of f .
We let ` = 3. It splits as the product of two primes λ and λ′ in Ff . Furthermore, λ

remains inert in Q f , we write Λ = λO. We check that O/Λ = F36 and R/λ = F33 , r = 6,
r′ = 3. Because ` ≡ 3 (mod 4), and a2 (mod Λ) 6∈ F33 , Theorem 4 implies that

P(ρ̄Λ(GQ)) ⊆ PSL2(F33).

Let us discard possible small images. If ρ̄Λ is reducible, and because its determinant is
det(ρ̄Λ) = χ4

3ψ = ψ, it has to be conjugate to(
χa

3ε1 ∗
0 χa

3ε2

)
,

where a = 0 or 1, and ε1, ε2 are characters ramified at most at N = 43. If both ε1 and ε2 were
ramified at N, which is prime, then 432 would divide the conductor of ρ̄Λ, which is not the
case. Hence, one of them (say ε1) must be unramified at N and trivial, and the other one
must be ramified at N and quadratic, that is, ε2 = ψ. Hence we find that ρ̄ss

Λ ∼ χa
3 ⊕ χa

3ψ
and the trace of ρ̄Λ is defined over F3. However, a2 = trace(ρ̄Λ(Frob2) 6∈ F3, so ρ̄Λ has to
be irreducible.
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Now we look at the case when the image is inside the normalizer of a Cartan subgroup.
We need to consider the quadratic primitive Dirichlet characters ε with conductor dividing
3 · 43, which are the ones associated to the fields

Q(
√
−3),Q(

√
−43) and Q(

√
129).

In the first two cases ε(2) = −1, but a2 6≡ 0 (mod Λ). In the third case, we have
ε(7) =

(
129
7

)
= −1, and it is easy to check that a7 6≡ 0 (mod Λ). Hence, the image is not

contained in a normalizer of Cartan subgroup.
By the congruences of Lemma 1 and the subsequent discussion, we still need to discard

the image of P(ρ̄Λ) being contained in PSL2(F3) and PGL2(F3). To that effect, we consider
the image of Frob2, which up to conjugation is

ρ̄Λ(Frob2) =

(
1 1
a2 a2 − 1

)
.

This matrix has order 13 in PSL2(F33), so the image cannot be in such smaller sub-
groups. Therefore, P(ρ̄Λ(GQ)) = PSL2(F33).

2.4. PSL2(F73)

Let f be a newform in the orbit denoted as Newform orbit 31.7.b.c in [8], of level N = 31,
weight k = 7, and nebentypus ψ the quadratic character associated to the field Q(

√
−31). The

degree-12 field of coefficients Q f is given by the polynomial x12 + 7208x10 + 19859688x8 +

26566749360x6 + 17884354852944x4 + 5570285336959680x2 + 590986232936064000. As usual
we let ν be a root of this polynomial.

The form f does not have CM, since ψ(3) =
(
−31

3

)
= −1 and a3 = −ν 6= 0. The field

Ff is generated over Q by a2
3 = ν2 and [Ff : Q] = 6, so that ψ is the unique inner twist of f .

The rational prime ` = 7 splits in Ff as the product of three primes λ1, λ2 and λ3,
with inertia degrees 1, 2 and 3, respectively. The prime λ3 is inert in Q f , so that Λ = λ3O
satisfies O/Λ = F76 and R/λ3 = F73 . We have a3 (mod Λ) 6∈ F73 , in fact, a3 generates F76 .
Since 7 ≡ 3 (mod 4), Theorem 4 gives the inclusion P(ρ̄Λ(GQ)) ⊆ PSL2(F73).

In this example, we have again ` = k ≥ k − 1 and ` 6= N. Since a7 6≡ 0 (mod Λ),
if the representation were irreducible, by Lemma 2 we would have ρ̄ss

Λ ∼ 1⊕ ψ, but this
cannot happen since ψ(3) = −1 and a3 6≡ 0 (mod Λ), so ρ̄Λ is irreducible. To rule out the
normalizer of Cartan case, we look at the primitive Dirichlet characters ε with conductor
dividing 7 · 31, namely the ones corresponding to the fields

Q(
√
−7),Q(

√
−31) and Q(

√
217).

We need to find some prime p with ε(p) = −1 and ap 6≡ 0 (mod Λ). For the first
two characters this is satisfied by p = 3, while for the third we may look at p = 5. Hence
P(ρ̄Λ(GQ)) is not contained in a normalizer of a Cartan subgroup.

By Lemma 1, it remains to check that the projective image is not contained in PGL2(F7)
or PSL2(F7). To that effect, we note that ρ̄Λ(Frob3) is conjugate in GL2(F`6) to the matrix(

1 1
a3 a3 − 1

)
.

This matrix has order 24 · 43 in GL2(F`6), and even in PGL2(F`6). Therefore, P(ρ̄Λ(GQ))
is not contained in such a smaller subgroup, and the image is all of PSL2(F73).

2.5. PSL2(F35)

Let us consider a newform f of level N = 67, weight k = 3, and quadratic nebentypus
ψ associated with the field Q(

√
−67), in the orbit denoted as Newform orbit 67.3.b.b in [8].
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Its coefficient field Q f is given by the degree-10 polynomial x10 + 32x8 + 357x6 + 1725x4 +

3366x2 + 1519, let ν be one of its roots in Q f . The q-expansion of f begins with

q + νq2 + O(q3).

We see f has neither CM nor inner twists besides ψ, since the field Ff is generated over
Q by ν2, Q f has degree 2 over Ff , and ψ(2) = −1, while a2 6= 0. The prime ` = 3 is inert in
Ff , while λ = `R is inert in Q f . Setting Λ = λO, this means O/Λ = F310 and R/λ = F35 .
We have a2 (mod Λ) 6∈ F35 , hence Theorem 4 says that P(ρ̄Λ(GQ)) ⊆ PSL2(F35).

We have ` = k ≥ k− 1 and ` 6= N. Furthermore, a3 6≡ 0 (mod Λ), so we can apply
Theorem 1 and Lemma 2 to show ρ̄Λ is irreducible. Indeed, if ρ̄Λ were reducible, we would
have as usual ρ̄ss

Λ ∼ 1⊕ ψ, but ψ(2) = −1 and a2 6≡ 0 (mod Λ).
Next, we look at the possibility of P(ρ̄Λ(GQ)) being inside the normalizer of a Cartan

subgroup of PSL2(F35). Because the representation is unramified outside 3 · 67, we just
need to find some p with ε(p) = −1 and ap 6≡ 0 (mod Λ) for any of the primitive quadratic
Dirichlet characters ε associated with the fields

Q(
√
−3),Q(

√
−67), and Q(

√
201).

For the first two characters, this is the case for p = 2, for the third, we may use p = 7.
If we look at Lemma 1 and the discussion after, we need to check that the projective

image is not contained in some maximal subgroup of PSL2(F35), namely PSL2(F3) and
PGL2(F3). For instance, we can look at the image of Frob2, which up to conjugation is

ρ̄Λ(Frob2) =

(
1 1
a2 a2 − 1

)
.

This matrix has order 2 · 61 both in GL2(F35) and in PSL2(F35). It follows that the
projective image of ρ̄Λ is not contained in any smaller subgroup, and it is the full PSL2(F35),
as desired.

3. PSL2(F34)

Theorem 6. The group PSL2(F34) is a Galois group over Q.

Proof. We consider a newform f of level N = 226, weight 2, and trivial nebentypus in the
orbit denoted as Newform orbit 67.3.b.b in [8]. We know f has no inner twists nor CM,
since the form is Steinberg at the primes dividing the level. The coefficient field Q f is the
maximal totally real subfield of the cyclotomic field Q(ζ20) containing all 20th roots of unity.
We have [Q f : Q] = 4, and Q f is generated by a5( f ), whose irreducible polynomial is

x4 − 4x3 − 4x2 + 16x− 4.

This polynomial is also irreducible mod 3, so 3 is inert in Q f and we may consider
the representation

ρ̄3 : GQ → GL2(F34).

The determinant of ρ̄3 is the mod 3 cyclotomic character χ3. Hence, the projective
image of ρ̄3 is contained in PSL2(F34). We will determine its image using the classification
by Dickson in Lemma 1.

If ρ̄3 was reducible we would have ρ̄ss
3 ∼ 1⊕ χ3, since the level is squarefree (and thus

the conductor of ρ̄ f is squarefree with determinant χ3). Therefore, ρ̄ss
3 will have trace in F3,

but ρ̄3(Frob5) has trace a5, which is a generator of F34 . Hence, ρ̄3 is irreducible.
We next consider the case where the projective image of ρ̄3 is contained in the nor-

malizer N of a Cartan subgroup C. As in Section 2.1, we only need to look at primitive
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quadratic Dirichlet characters ε with conductor dividing ` · N = 2 · 3 · 113. What is more,
2 and 113 are primes where ρ̄3 is Steinberg, so that for p ∈ {2, 113},

ρ̄3|Ip
∼=

(
1 ∗
0 1

)
.

This means ε cannot be ramified at 2 or 113, since it is a nontrivial quadratic character
and ρ̄3|Ip has odd order. Therefore ε is the character associated with the quadratic field
Q(
√
−3). However, we then have ε(2) = −1, while a2 = 1 6≡ 0 (mod 3). We have thus

discarded the dihedral case.
Lastly, we will see the projective image of ρ̄3 is not contained in PGL2(F9). The field of

definition of the projective representation P(ρ̄3) is that generated by the different a2
p/ψ(p)

(mod 3) (here ψ is the nebentypus, which is trivial in this case). We have already shown
that a2

5 (mod 3) generates F34 , therefore, the image cannot be contained in PGL2(F9). We
have no further maximal subgroups of PSL2(F34) because of Lemma 1 and the fact that F34

is an extension of F3 of degree larger than two.
Therefore, the image P(ρ̄3(GQ)) is maximal.

4. PSU3(F5) and PSL3(F7) as Galois Groups over Q
The images of modular and geometric three-dimensional Galois representation have been

studied in our previous paper [9]. As a consequence of the recent results of P. Scholze [10],
we know the existence of Galois representations associated with the mod p cohomology
of the locally symmetric spaces for GLn over F a totally real or CM field. Moreover, we
have for characteristic 0 cohomology classes the existence of p-adic Galois representations
by the recent result of Harris–Lan–Taylor–Thorne [11] (also proved by Scholze). We state
the result that we will use to obtain the Galois realization over Q of the group PSU3(F5)
(cf. [10], V.4.2; V.4.6).

Theorem 7. Let F be an imaginary quadratic field. Let S be the pullback from finite set of primes
of Q, which contains p and all places at which F/Q is ramified. Let π be a cuspidal automorphic
representation of GLn(AF) such that π∞ is regular algebraic, and such that πv is unramified at all
finite places v /∈ S. Then there exists a unique continuous semisimple representation

σπ : GF,S → GLn(Qp)

such that for all finite places v /∈ S, the Satake parameters of πv agree with the eigenvalues of
σπ(Frobv).

Lemma 3. Let f ∈ H3(Γ0(88),C) be the eigenform for the action of the Hecke algebra T (N)
computed in [12] Table 2 such that Q f = Q(

√
−7). The eigenform f is cuspidal.

Proof. Proof. If f is not cuspidal, there is a unique decomposition

f = ω � g

where ω is an automorphic form on GL(1)/Q and g is an automorphic form on GL(2)/Q.
We remark that ω is algebraic, as a consequence it is a Hecke character of type A0 and the
finite part only ramifies at two and 11. According with the eigenvalues computed in [12]
we can determine the attached Satake polynomials which are of the form

Polp(X) = X3 − apX2 + ap pX− p3, p - 88.

In particular, if f is not cuspidal they will have as a factor the Satake character attached
to ω, that is X− ptε(p), where ε(p) is a root of the unit with order coprime to 3, since the
conductor of the character ε is 2α11β and 3 - ϕ(2α11β). Let p = 3, the polynomial Pol3(X) is
irreducible since we compute that it is irreducible modulo 5. Let γ be a root of it, the degree
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of Q(γ,
√
−7) over Q is therefore equal to 6. If γ = 3tε(3) then Q(γ,

√
−7) = Q(ε(3),

√
−7),

so ε(3) must be a root of unity of order 3 or 6, which is a contradiction.
By Theorem 7 we can consider the 5-adic Galois representation attached to f

ρ f : GQ → GL3(Z(
√
−7)5).

Let ρ f the reduced Galois representation modulo 5. Because 5 is inert in Q(
√
−7),

we have
ρ f : GQ → GL3(F52).

As we have observed in [9], the form of the characteristic polynomial of the Frobenius,
implies that ρv

f
∼= ρc

f ⊗ ψ, where < c >= Gal(F25/F5). So we have that the image is unitary.
Moreover, since the determinant of ρ f is χ3 (cf. [9]), we have that

ρ f ⊗ χ−1(GQ) ⊂ SU3(F5).

Theorem 8.
P(ρ f )(GQ) = PSU3(F5)

Proof. We know that P(ρ f )(GQ) ⊂ PSU3(F5). From the classification of the maximal
subgroups of PSL3(Fp) in our case p = 5, we know that the maximal proper subgroups
are of type C1 reducible (two cases over F25 ) or of type S, that is, M10 = A6.2 or A7
(cf. Liebeck’s Ph.D. thesis). The polynomial Pol3(X) ∈ F25[X] is irreducible modulo 5,
as a consequence, the cases C1 are not possible. On the other hand, Pol7(X) modulo 5 is
reducible and splits into a linear factor and a quadratic factor. The roots of the quadratic
factor have order divisible by 13. That means that in the image of ρ f , there is an element
M of order divisible by 13. Since 13 is relatively prime with 24 = ]Z(SU3(F25)), the
order of P(M) is also divisible by 13. This exclude that the image is of the type S in
the classification.

As a consequence, we have that the group PSU3(F5) occurs as a Galois group over Q.
In the case of the group PSL3(F7), we obtain that it is a Galois group over Q since

conjecture 1’ of [13] has been proved as a consequence of P. Scholze results modulo p
(cf. [10], cor. V.4.3). That means that to a Hecke eigenclass in the mod p cohomology of
the congruence subgroup of SL(3,Z) we can attach a three-dimensional mod p semisimple
Galois representation of GQ. We consider a Hecke eigenclass over the field F7 of level 167 for
which several eigenvalues and the image of the mod 7 corresponding Galois representation
have been computed in [13], p. 222, and we conclude that thanks to Scholze’s result the
realization of this group, already obtained as a result of these computations in [13], now
holds unconditionally.

Theorem 9 (Ash-McConnell; Scholze). The group PSL3(F7) is a Galois group over Q.
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