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Abstract: This study deals with the effect of the power law index on the convective heat transfer of
hybrid nanofluids in a square cavity divided into three layers. The effect of a solid fluid layer is also
given attention. A two-dimensional system of partial differential equations is discretized by using
the generalized finite element method (FEM). A FEM having cubic polynomials (P3) is employed to
approximate the temperature and velocity components, whereas the pressure is approached using
quadratic finite element functions. The discretized set of equations have been solved using Newton’s
method. The numerical code which is used in this study has been validated by comparing with
experimental findings. Mathematical simulations are performed for different sets of parameters,
including the Rayleigh number (between 103 and 106), the power law index (between 0.6 to 1.8),
Darcy number (between 10−6 to 10−2), undulation (between 1 and 5) and the thermal conductivity
ratio (between 0.1 and 10). The results infer that a remarkable penetration of streamlines is figured
out towards the porous hybrid layer as the power law index is increased. The average Nu increases
with increasing Ra, and the maximum value is noted at Ra = 106. There is no much alteration
observed for isotherms at the solid layer by increasing Da. The average Nu decreases by increasing
the undulations. The rate of heat transfer is enhanced at the heated boundary and solid fluid interface
of the cavity by raising the ratio of thermal conductivity.

Keywords: natural convection; hybrid nanofluids; power law; porous medium; layers; Galerkin FEM

MSC: 35Q30

1. Introduction

Nanofluids are considered to be an innovative key factor allowing the enhancement of
heat transfer in many industrial thermal systems. The most commonly used nanoparticles
are TiO2, MWCNTs, Al2O3, SiO2 CuO, MgO and Ag. Nanoparticles are used for the
synthesis of nanofluids. Some related works are available in the literature [1–9]. The
mixture of more than on type of nanoparticle within a base fluid is called a hybrid nanofluid.
Porous layers are used to control the heat transfer due to the important heat transfer surface
between the fluid and the matrix and convective heat transfer inside pores [10]. Therefore,
the analysis of heat transfer in complex domains including Newtonian and non-Newtonian
layers and porous layers is very important and useful for the optimization of various
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engineering applications [11]. In addition, wavy walls lead to higher heat transfer rates
compared to flat walls by increasing the exchange surface within the same thermal system.

Esfe et al. [12] used hybrid nanofluids (Ag–MgO/water), with the volume concen-
tration of nanoparticle samples reaching up to 2%. The proportions of Ag and MgO
nanoparticles were 50% each. The sizes of the silver and magnesium oxide nanoparticles
were 25 nm and 40 nm, respectively. In this study, the dynamic viscosity and thermal
conductivity of the hybrid nanofluid were measured for different volume fractions of
nanoparticles. Similar studies have been done by Esfe et al. [13] for CNT–Al2O3/water
hybrid nanofluids and ref. [14] for DWCNT–ZnO/water hybrid nanofluids.

The study of conjugate heat transfer plays an essential role in engineering, including
regarding heat transfer between a solid container and a liquid, heat transfer between a heat
sink and its nearby fluid, and heat transfer between the thick solid walls of a tube that
is filled with liquid. The unsteady natural convection of nanofluids in a porous cavity is
studied by Sher. et al. [15]. Sher. and Pop [16] investigated the conjugate heat transfer of
non-uniformly distributed nanofluids in a porous medium. Conjugate natural convection
in a cavity was examined by Sher. et al. [17]. Due to the worthwhile manufacturing
applications of conjugate heat transfer, its characteristics have already been studied in past
years [18–23].

Alsabery et al. [24] considered a trapezoidal-shaped cavity including two layers:
a porous layer and a non-Newtonian layer. The results confirmed that the flow rose
considerably using silver nanofluid, and the effectiveness in heat transfer was also enhanced
by varying the angle of inclination. Rashid and Ali. [25] reported on the impact of Pr on the
natural convection in a cavity containing non-Newtonian and nanofluid porous medium
separated by a sinusoidal interface. It has been figured out that the average Nu rises by
enhancing the Darcy and Pr and reduces by enriching n.

Power law fluids have been the focus of researchers and scientists due to their im-
portance in engineering, such as in polymer engineering, as heat exchangers, as chemical
catalytic reactors and in geothermal systems [26]. More details can be found in [27–35].

Alsabery et al. [36] numerically investigated the effects of fluid layers and inclination
angle on natural convection. The results show that convection is notable with lower values
of n, and it drops when n increases. The impact of a wavy interface on natural convection
in a non-Darcy porous cavity has been studied by Nguyen et al. [37] using the ISPH
method. The results indicated that the average Nu declines by increasing the amplitude
and undulation number of the interface which is located among the layers.

The impact of heated walls with porous layers on natural convection has been investi-
gated by Al-Srayyih et al. [38] by employing GFEM. It has been observed that heat transfer
increases at low values of thermal conductivity. Additionally, a higher rate of heat transfer
has been found using hybrid nanofluids. Jabber et al. [39] investigated the impact of a
wavy wall in a square enclosure with a non-Newtonian nanofluid and porous medium.
The findings reveal that the average Nu decreases when n increases. Furthermore, the
thicknesses of layers have an important effect on the heat transfer rate, while the impact of
the number of undulations is negligible.

Natural convection in a 2D cavity having a wavy wall and filled with a power law
fluid was studied by Chen et al. [40]. The authors mentioned that the rate of heat transfer
of a pseudo-plastic fluid is more intense than that of a Newtonian fluid. Kefayati et al. [41]
applied LBM to figure out the behaviour of non-Newtonian fluid during natural convection
under the effect of an external uniform magnetic field. The results indicated that when n
and Ha rise, the heat transfer is reduced considerably, while it is significantly enhanced for
high buoyancy ratio values.

Saleh et al. [42] discussed the natural convection in polygon-shaped cavities including
a rotating obstacle by using COMSOL. It has been found that the heat transfer rate remains
steady at L/D > 0.77 and no considerable change is encountered in the variations of Nu.
Turan et al. [43] considered the natural convection of non-Newtonian fluids in a 2D cavity
having two active vertical walls. The authors proposed some new correlations relating Pr
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and Ra numbers, allowing the direct evaluation of the heat transfer rates for the Newtonian
and non-Newtonian fluids.

Barnoon et al. [44] analysed the combined effects of radiation and convection on the
flow in an enclosure based on the two phases model. The results revealed that the cavity
inclination has an important effect on the flow structure and the heat transfer rate.

Based on the above-described literature review, it is clear that no studies have been
done on the effect of wavy interfaces in a square cavity filled with a hybrid nanofluid and
including three layers (solid, porous and non-Newtonian). The current study represents an
effort to report the above combination in a comprehensive way. The applications of this
study are in engineering and industry where the layers are involved. The study focuses on
the effect of increasing the layers and the other controlling parameters, such as the Rayleigh
number, power law index, Darcy number, undulations and ratio of thermal conductivity
on the flow structure, temperature field and heat transfer.

2. Mathematical Model
2.1. Geometry of the Considered Problem

The configuration considered in the present study is shown in Figure 1. It consists of a
2D differentially heated squared cavity filled with a hybrid nanofluid and composed of
three layers.

• L and H are the length and height, respectively;
• Th and Tc are the temperatures on the left and right walls, respectively. The remaining

walls are considered to be adiabatic;
• H1 is the width of the conjugate layer, and H2 − H1 is the width of the porous

hybrid layer;
• The solid wavy interface is derived from the following equation:

x = H1 + A sin(2Nπy), where H1 = 0.1;
• The porous wavy interface is derived from the following equation:

x = H2 + A sin(2Nπy), where H2 = 0.2;
• Three layers are considered in this study;
• The flow is considered steady, laminar, and incompressible;
• The thermophysical properties of Ag/MgO-water are given in Table 1.

Figure 1. Computational sketch of the present problem.
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Table 1. Thermophysical properties of alumina and copper [45,46].

Properties Ag MgO Water

ρ (kg/m3) 10,500 3580 997.1
Cp (J/kgK) 235 879 4179
k (W/mK) 429 30 0.613

β (1/K) 5.4× 10−5 33.6× 10−6 21× 10−5

µ (kg/ms) — — 8.9× 10−4

α (m2/s) 174× 10−3 95.3× 10−7 1.47× 10−7

2.2. Formation of Equations

Based on the above mentioned assumptions, the dimensional governing equations are
written as [46–48]:

For the non-Newtonian nanofluid layer:

∂u
∂x

+
∂v
∂y

= 0 (continuity equation), (1)

ρhn f

(
u

∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ µhn f

(
∂τxx

∂x
+

∂τxy

∂y

)
(u-momentum equation), (2)

ρhn f

(
u

∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂y
+ µhn f

(
∂τxy

∂x
+

∂τyy

∂y

)
+ (ρβ)hn f g(T − Tc) (v-momentum equation), (3)

u
∂T
∂x

+ v
∂T
∂y

= αhn f

(
∂2T
∂x2 +

∂2T
∂y2

)
(energy equation). (4)

For Cartesian 2D coordinates, the shear stress tensor (based on the power law model)
has been known by the relation given below [47]:

τij = 2µ̄αDij = µ̄α

(
∂ui
∂xj

+
∂uj

∂xi

)
, (5)

where Dij is the strain rate and µ̄α symbolizes the apparent viscosity, written as follows:

µ̄α = m

[
2

{(
∂u
∂x

)2
+

(
∂v
∂y

)2
}
+

(
∂v
∂x

+
∂u
∂y

)2
] n−1

2

. (6)

For the Newtonian nanofluid porous layer:

∂u
∂x

+
∂v
∂y

= 0, (7)

ρhn f

ε2

(
u

∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+

µhn f

ε

(
∂2u
∂x2 +

∂2u
∂y2

)
− Ax, (8)

ρhn f

ε2

(
u

∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂y
+

µhn f

ε

(
∂2v
∂x2 +

∂2v
∂y2

)
+ (ρβ)hn f g(T − Tc)− Ay, (9)

u
∂T
∂x

+ v
∂T
∂y

= αhn f

(
∂2T
∂x2 +

∂2T
∂y2

)
, (10)

A = (Ax, Ay) is known the force term due to the Darcy–Forchheimer porous medium;
it is assumed by the equation below [48]:

(Ax, Ay) =

(
µhn f

K
+

ρhn f Fc√
K

(√
u2 + v2

))
(u, v), (11)
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where

K =
ε3d2

150(1− ε)2 ,

Fc =
1.75√
150ε2

.

For the solid layer:

ks

(
∂2Ts

∂x2 +
∂2Ts

∂y2

)
= 0. (12)

The following variables are applied to render the above equations into the dimensionless

X =
x
H

, U =
uH
αb f

, Y =
y
H

, V =
vH
αb f

, θ =
T − Tc

Th − Tc
, P =

pL2

ρb f α2
b f

,

Pr =
νb f

αb f
, Ra =

gβb f (Th − Tc)L3

αb f νb f
, θs =

Ts − Tc

Th − Tc
, Da =

K
H2 .

The dimensionless reduced form of the governing equations are expressed as follows:
For the non-Newtonian nanofluid layer:

∂U
∂X

+
∂V
∂Y

= 0, (13)

ρhn f

ρb f

(
U

∂U
∂X

+ V
∂U
∂Y

)
= − ∂P

∂X
+

µhn f

µb f
Pr
(

2
∂

∂X

(
µa

m
∂U
∂X

)
+

∂

∂Y

(
µa

m

(
∂U
∂Y

+
∂V
∂X

)))
,

(14)
ρhn f

ρb f

(
U

∂V
∂X

+ V
∂V
∂Y

)
= − ∂P

∂Y
+

µhn f

µb f
Pr
(

2
∂

∂Y

(
µa

m
∂V
∂Y

)
+

∂

∂X

(
µa

m

(
∂U
∂Y

+
∂V
∂X

)))
+

(ρβ)hn f

(ρβ)b f
PrRaθ, (15)

U
∂θ

∂X
+ V

∂θ

∂Y
=

αhn f

αb f

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
, (16)

µα = m

[
2

{(
∂U
∂X

)2
+

(
∂V
∂Y

)2
}
+

(
∂V
∂X

+
∂U
∂Y

)2
] n−1

2

. (17)

For the Newtonian nanofluid porous layer:

∂U
∂X

+
∂V
∂Y

= 0, (18)

1
ε2

(
ρhn f

ρb f

)(
U

∂U
∂X

+ V
∂U
∂Y

)
= − ∂P

∂X
+

1
ε

µhn f

µb f
Pr
(

∂2U
∂X2 +

∂2U
∂Y2

)
+ Bx, (19)

1
ε2

(
ρhn f

ρb f

)(
U

∂V
∂X

+ V
∂V
∂Y

)
= − ∂P

∂Y
+

1
ε

µhn f

µb f
Pr
(

∂2V
∂X2 +

∂2V
∂Y2

)
+ By

+ PrRaθ
(ρβ)hn f

(ρβ)b f
, (20)

U
∂θ

∂X
+ V

∂θ

∂Y
=

αhn f

αb f

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
. (21)
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where B = (Bx, By) is known the force term caused by porosity. It is assumed through the
following equation:

(Bx, By) =
µhn f

ρb f νb f

Pr
Da

(U, V)−
ρhn f

ρb f

Fc√
Da

(√
U2 + V2

)
(U, V). (22)

For the solid layer:

ks

kb f

(
∂2θs

∂X2 +
∂2θs

∂Y2

)
= 0. (23)

The boundary conditions are as follows:

• Left wall: U = 0, V = 0, θ = 1;
• right wall: U = 0, V = 0, θ = 0;
• top/bottom wall: U = 0, V = 0, ∂θ

∂Y = 0.

2.3. Hybrid Thermophysical Properties

The effective physical properties of the hybrid nanofluid are evaluated using the
flowing expressions [12,49,50]:

• Density: ρhn f = (1− φ)ρ f + φAgρAg + φMgOρMgO;
• Specific heat: (ρCp)hn f = (1− φ)(ρCp) f + φAg(ρCp)Ag + φMgO(ρCp)MgO;
• Coefficient of thermal expansion: (ρβ)hn f = (1 − φ)(ρβ) f + φAg(ρβ)Ag+

φMgO(ρβ)MgO;

• Thermal conductivity:
khn f
k f

=
0.1745×105+φhn f

0.1747×105−0.1498×106φhn f +0.1117×107φ2
hn f +0.1997×108φ3

hn f
;

• Thermal diffusivity: αhn f =
khn f

(ρCp)hn f
;

• Effective dynamic viscosity: µhn f = (1 + 32.795φhn f − 7214φ2
hn f 714600φ3

hn f

− 0.1941× 108φ4
hn f ).

Here, φ stands for the volume fraction of hybrid nanoparticles and is calculated by
φ = φAg + φMgO.

2.4. The Nusselt Number

The Nu and Nuavg for this study are derived as

Nu = −
khn f

k f

(
∂θ

∂Y

)
. (24)

Nuavg =
∫ l

0
Nu dX. (25)

3. Numerical Plan

The model considered in (18)–(21) for a similar configuration was adopted here to
numerically solve the governing equations based on the higher order GFEM. For the first
step, a formulation called weak was established by taking an appropriate test space. After
that, a hybrid mesh comprised of quadrilateral and triangular elements was generated
to cover the whole domain of the considered configuration. The FEM based on the cubic
polynomials (P3) was applied to compute for temperature and velocity fields, while the
pressure was computed by the quadratic (P2) finite element space of functions. The
robustness and stability of this higher order pair of FEM was confirmed in [51]. The
discretized equations were simplified by employing the adaptive Newton’s method. Some
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studies that have used the same solver can be found in the literature [52]. The solution is
considered as satisfactory (convergence) when the following criterion is satisfied:

∑m
i=1 ∑n

j=1 |φr+1
i,j − φr

i,j|

∑m
i=1 ∑n

j=1 |φr+1
i,j |

≤ 10−6, (26)

where φ represents all the variables, i and j indicates the ith and jth grid and the superscript
r is the rth iteration. m and n are the total number of nodes. The structure of the grid of the
present computation can be seen in Figure 2.

Figure 2. Coarsest mesh designed for the computational domain.

Code Authentication

To check the grid sensitivity, 9 different refined grids have been tested as shown in
Table 2. The NEL and the DOFs were varied from 449–8535 to 19,383–328,959. As can be
seen from the data in this table, a slight variation among the results of average Nu has been
observed among 7 and 8 levels, respectively. Then, to avoid the long computational time,
the retained mesh for this study was taken at level 8.

The present numerical model has been validated by comparing with [53,54] and also
with the experimental data of the average Nu presented by [55] at the boundary conditions.
As presented in Table 3, a good agreement is noted; in addition, the present results bear a
close resemblance to those of [53–55].
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Table 2. The test for grid convergence.

` NEL DOFs Nuavg

1 449 8535 2.47491332
2 663 12,560 2.47642591
3 1110 19,844 2.47643410
4 1823 32,360 2.47665501
5 2364 41,987 2.47669507
6 3685 64,517 2.47675383
7 7378 129,730 2.47681493
8 19,383 328,959 2.47683835

Table 3. Code validation.

φ Present Shulepova et al. [53] Saghir et al. [54] Ho (Eeperimental) et al. [55]

1% 30.6594 31.6043 30.6570 32.2037
2% 30.5063 31.2538 30.5030 31.0905
3% 30.2179 30.8290 30.2050 29.0769

4. Results and Discussion

The results are presented for different numerical simulation cases, which are dis-
cussed below:

4.1. Streamlines and Isotherms for Different Parameters

Figures 3 and 4 are the representations of streamline and isotherm contours, respec-
tively, for the fixed parameters Pr = 6.2, φ = 0.01, Da = 10−3, ε = 1, N = 3, A = 0.05 and
Kr = 1. The interpretations of both the figures are illustrated one by one as follows.

Figure 3 demonstrates the streamline contours for different values of the power law
index and Rayleigh number. The plots show that streamlines are magnified by increasing
the Rayleigh number. At n = 0.6, the trend of streamlines seems to exclusively switch
towards expansion as | Ψ |max= 1.324244, 5.974056 and 15.286430 for Ra = 104 to 106,
respectively. This shows how much convection has been enhanced inside the cavity by
increasing the Ra in the presence of the power law index. The maximum stream function
is found at Ra = 106. Furthermore, the streamlines squeeze as the power law index
intensifies. At Ra = 106 and n = 1.8, the flow pattern significantly approaches towards the
porous layer. A remarkable penetration is found in the direction of the porous layer of the
hybrid nanofluid.

Figure 4 demonstrates the temperature contours for different values of power law
indexes and Rayleigh numbers. It is noticed that when Ra = 103, isotherms seem to be
parallel to each other. Rapidly, the increase in the temperature gradient is encountered by
increasing the Rayleigh number. When Ra = 104 to 106, the flow regime converts from
conductive to convective. Moreover, a thin thermal boundary layer is observed at Ra = 106,
which means that Ra is playing an important role in the solid-fluid layer, which is along the
hot wall. When Ra increases, the temperature on the solid wall noticeably decreases, and a
significance temperature distribution in the cavity is noticed, leading to the intensification
of the buoyancy forces and thus the enhancement of the heat transfer. A reduction in the
temperature gradients is observed as the power law index is increased, since the thermal
boundary layer on the hot wall becomes thicker, reflecting the reduction of heat transfer. It
is noticed from the figures that, when Ra = 105 and n = 0.6–1.8, the isotherms are weaker
as the power law index is increased to T = 0.3. It can be concluded that the heat transfer is
proportional to the Rayleigh number and inversely proportional to the power law index.
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n = 0.6

R
a
=

10
3

|ψ|max = 0.137599 |ψ|max = 0.131020 |ψ|max = 0.116592

n = 1 n = 1.8

R
a
=

10
4

|ψ|max = 1.324244 |ψ|max = 1.219836 |ψ|max = 0.770015

R
a
=

10
5

|ψ|max = 5.974056 |ψ|max = 5.409858 |ψ|max = 3.285237

R
a
=

10
6

|ψ|max = 15.286430 |ψ|max = 13.645534 |ψ|max = 11.604381

Figure 3. Streamlines for different values of power law indices n and Rayleigh numbers Ra.

Figures 5 and 6 are the demonstrations of the streamline and isotherms contours,
respectively, for the fixed parameters Pr = 6.2, φ = 0.01, Ra = 105, ε = 1, N = 3, A = 0.05
and Kr = 1. The explanations of both the figures are illustrated one by one as follows.

Figure 5 represents the streamline contours for different values of the power law
index and Darcy number. A marginal alteration is seen in the streamline pattern with
increasing Da. At Da = 10−2, a maximum value of the stream function is noted, which
is | Ψ |max= 6.339655. This indicates that the fluid velocity is the highest at n = 0.6. The
fluid circulation increases by enhancing Da. Moreover, a decreasing behaviour in the flow
intensity is observed as the power law index rises. The flow pattern shrinks by varying
n from n = 0.6 to n = 1.8. At Da = 10−2, the flow pattern approaches the wavy walls
significantly when n = 1.8, and the flow penetrates from the non-Newtonian hybrid layer
to the porous hybrid nanofluid layer. This is a significant change that is noted at the
specific parameters.



Mathematics 2022, 10, 2044 10 of 20

n = 0.6

R
a
=

10
3

n = 1 n = 1.8

R
a
=

10
4

R
a
=

10
5

R
a
=

10
6

Figure 4. Isotherms for different values of power law indices n and Rayleigh numbers Ra.

Figure 6 demonstrates the temperature contours for different values of power law
indexes and Darcy numbers. It is noticed that when Da = 10−6 and n = 0.6, isotherms are
quasi-parallel to the wavy interfaces. By increasing the Darcy number, a slow augmenta-
tion in heat transfer is observed, indicating that the heat transfer regime is shifting from
conduction to convection mode. No considerable changes in the solid wall are observed
due to the small fixed value of Kr = 1. It is to be noted that Kr is the ratio of the solid wall
thermal conductivity to the hybrid nanofluid’s thermal conductivity. A reduction in the
temperature gradient is observed as the power law index increases, as seen in Figure 4,
but tendency seems to be a little low here. The thermal layer alters from thinner to thicker,
which reflects that the rate of heat transfer is low. At Da = 10−4 and Da = 10−2, the
isotherm gradients are weaker with T = 0.3 and T = 0.4, respectively, as the power law
index increases from 0.6 to 1.8.
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n = 0.6

D
a
=

10
−

6

|ψ|max = 5.445408 |ψ|max = 4.508043 |ψ|max = 1.975400
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Figure 5. Streamlines for different values of power law indices n and Darcy numbers Da.
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Figure 6. Isotherms for different values of power law indices n and Darcy numbers Da.
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Figures 7 and 8 are the demonstrations of streamline and isotherm contours, respec-
tively, for the fixed parameters Pr = 6.2, φ = 0.01, Ra = 105, Da = 10−3, A = 0.05, ε = 1
and Kr = 1. The explanations of both the figures are illustrated one by one as follows.

Figure 7 represents the streamline contours for different values of the power law index
and undulations. At n = 0.6, a little elongation is noticed in the streamline pattern by
increasing the value of N. Gradually, the streamlines begin to occupy the whole area inside
the cavity. It is confirmed from the | Ψ |max values that fluid rotation changes into a slower
mode inside the cavity by enhancing the undulations numbers from 1 to 3. Furthermore,
the flow intensity is reduced when the power law index is augmented. The flow pattern
shrinks, as seen in Figure 5, from n = 0.8 to 1.8. At N = 1, the flow pattern moves towards
the porous layer from the non-Newtonian layer when n = 1.8.

Figure 8 demonstrates the temperature contours for different values of the power
law index and undulations. By increasing the value of N, a slow augmentation in heat
transfer is observed, indicating that the heat transfer mode gradually shifts from conduction
to convection. The temperature profile in the solid fluid layer is not much effected by
enhancing N due to the small value of the thermal conductivity ratio. Similarly to the
previous cases, a reduction in the temperature gradients is observed as the power law index
increases. The thermal layer is altered from thinner to thicker, which reflects that the rate
of heat transfer is slow. At N = 1 and N = 3, the isotherms are weaker with T = 0.2 and
T = 0.3, respectively, as the power law index increases from 0.6 to 1.8.

n = 0.6

N
=

1

|ψ|max = 6.020477 |ψ|max = 5.354108 |ψ|max = 3.252877

n = 1 n = 1.8

N
=

3

|ψ|max = 5.974056 |ψ|max = 5.409858 |ψ|max = 3.285237

N
=

5

|ψ|max = 5.776696 |ψ|max = 5.242635 |ψ|max = 3.147670

Figure 7. Streamlines for different values of power law indices n and undulations N.
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N
=
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Figure 8. Isotherms for different values of power law indices n and undulations N.

4.2. Graphical Representations of Nusselt Number with Different Parameters

Figure 9a,b presents the variation for multifarious Ra numbers. It is noticeable that
the local Nu intensifies significantly from Ra = 105 to 106.

Figure 9c,d presents the variation for multifarious Da numbers. It is noticed that the
local Nu rises from Da = 10−4 to 10−2.

Figure 9e,f presents the variation for multifarious N numbers. It is observed that the
local Nu increases for N = 1 and 2.

(a) (b)

Figure 9. Cont.
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(c) (d)

(e) (f)

Figure 9. Local Nusselt number Nu for different values of Rayleigh, Darcy and Undulation numbers.

4.3. Tabular Representations of Average Nusselt Number with Different Parameters

Tables 4 and 5 depict Nuavg values at the heated boundary and solid fluid interface,
respectively, for different Ra values. From these tables, it can be observed that if Ra
increases, the average Nu increases continuously, which reflect that convection heat transfer
increases with Ra, as presented in the tables. On the other hand, a reverse behaviour of
average Nu is observed by increasing the power law index.

Table 4. The values of the average Nusselt number (Nuavg) at the heated boundary.

Ra n = 0.6 n = 1 n = 1.4 n = 1.8

103 1.08714 1.08667 1.08633 1.08609
104 1.29168 1.23081 1.17212 1.13222
105 2.95847 2.61233 2.13034 1.70561
106 5.66139 5.04204 4.00963 3.07522

Table 5. The values of the average Nusselt number (Nuavg) at the solid-fluid interface.

Ra n = 0.6 n = 1 n = 1.4 n = 1.8

103 0.91016 0.90977 0.90948 0.90928
104 1.08140 1.03044 0.98130 0.94790
105 2.47684 2.18705 1.78353 1.42795
106 4.73973 4.22121 3.35687 2.57458

Tables 6 and 7 depict Nuavg values at the heated boundary and solid fluid interface,
respectively, for different Da values. It is noticeable from the tables that if Da increases
slightly, the convective heat transfer rises proportionally.

Tables 8 and 9 depict Nuavg values at the heated boundary and solid fluid interface,
respectively, for different N values. It is noticeable from these tables that if N increases,
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the average Nu decreases slightly, which reflects that the heat transfer transfer is slow.
Similar behaviour is observed versus the power law index. The results indicate that the
heat transfer rate is reduced by increasing the undulation and power law index.

Table 6. The values of the average Nusselt number (Nuavg) at the heated boundary.

Da n = 0.6 n = 1 n = 1.4 n = 1.8

10−6 2.40059 1.95070 1.54008 1.27267
10−5 2.41455 1.97950 1.58761 1.31250
10−4 2.52891 2.15096 1.77288 1.46036
10−3 2.95847 2.61233 2.13034 1.70561
10−2 3.21410 2.82162 2.26224 1.78898

Table 7. The values of the average Nusselt number (Nuavg) at the solid-fluid interface.

Da n = 0.6 n = 1 n = 1.4 n = 1.8

10−6 2.00978 1.63313 1.28936 1.06548
10−5 2.02147 1.65725 1.32916 1.09883
10−4 2.11721 1.80079 1.48426 1.22262
10−3 2.47684 2.18705 1.78353 1.42795
10−2 2.69086 2.36227 1.89396 1.49774

Table 8. The values of the average Nusselt number (Nuavg) at the heated boundary.

N n = 0.6 n = 1 n = 1.4 n = 1.8

1 3.03071 2.68198 2.18358 1.73306
2 3.02175 2.67182 2.17879 1.74247
3 2.95847 2.61233 2.13034 1.70561
4 2.87997 2.54045 2.07793 1.67035
5 2.81333 2.48409 2.03873 1.64267

Table 9. The values of the average Nusselt number (Nuavg) at the solid-fluid interface.

N n = 0.6 n = 1 n = 1.4 n = 1.8

1 2.95900 2.61852 2.13192 1.69205
2 2.76620 2.44586 1.99453 1.59511
3 2.47684 2.18705 1.78353 1.42795
4 2.18071 1.92362 1.57341 1.26479
5 1.92207 1.69713 1.39286 1.12227

Tables 10 and 11 depict Nuavg values at the heated boundary and solid fluid interface,
respectively, for different A values. It is noticeable from these tables that if A increases, the
average Nu decreases slightly. Similar behaviour is observed for the power law index. It
can be mentioned that the rate of heat transfer is reduced by increasing the amplitude and
power law index. It is to be noted that the rate of the reduction in the heat transfer is slow
at the heated wall compared to the solid fluid interface. This is due to the existence of the
porous layer.

Tables 12 and 13 depict Nuavg values at the hot wall and solid fluid interface, respec-
tively, for different H2 values. It can be seen that the thickness of the porous layer has a
significant effect on the flow structure and heat transfer. As can be seen from these tables,
if H2 increases, the average Nu decreases slightly. Similar behaviour is observed with an
increase in the power law index. The tables indicates that the heat transfer is reduced by
increasing the width of the porous layer and the power law index. It is noticed that the
rate of reduction is lower at the heated wall compared to the solid fluid interface wall, as
presented in Tables 10 and 11.
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Table 10. The values of the average Nusselt number (Nuavg) at the heated boundary.

A n = 0.6 n = 1 n = 1.4 n = 1.8

0 3.00843 2.68445 2.20198 1.75516
0.01 3.00420 2.68110 2.20007 1.75379
0.02 2.99647 2.67194 2.19218 1.74860
0.03 2.98563 2.65717 2.17800 1.73916
0.04 2.97257 2.63714 2.15740 1.72498
0.05 2.95847 2.61233 2.13034 1.70561

Table 11. The values of the average Nusselt number (Nuavg) at the solid-fluid interface.

A n = 0.6 n = 1 n = 1.4 n = 1.8

0 3.00843 2.68445 2.20198 1.75516
0.01 2.97792 2.65765 2.18082 1.73845
0.02 2.89616 2.58250 2.11880 1.69006
0.03 2.77553 2.47019 2.02474 1.61678
0.04 2.63121 2.33430 1.90965 1.52689
0.05 2.47684 2.18705 1.78353 1.42795

Table 12. The values of the average Nusselt number (Nuavg) at the heated boundary.

H2 n = 0.6 n = 1 n = 1.4 n = 1.8

0.15 3.02415 2.56662 1.99657 1.54771
0.2 2.95847 2.61233 2.13034 1.70561

0.25 2.91815 2.63164 2.20363 1.79797
0.3 2.89044 2.63491 2.23633 1.84533

Table 13. The values of the average Nusselt number (Nuavg) at the solid-fluid interface.

H2 n = 0.6 n = 1 n = 1.4 n = 1.8

0.15 2.53183 2.14878 1.67153 1.29575
0.2 2.47684 2.18705 1.78353 1.42795

0.25 2.44309 2.20322 1.84489 1.50527
0.3 2.41989 2.20596 1.87226 1.54492

Tables 14 and 15 depict Nuavg values at the heated boundary and solid fluid interface,
respectively, for different thermal conductivity ratios Kr. The thermal conductivity ratio
is defined as Kr = Ks

Khn f
. It is observed that a significant enhancement in heat transfer is

gained by increasing Kr at the heated boundary. A slight reduction in the average Nu is
observed by increasing the power law index. Similar behaviour regarding heat transfer
is observed along the solid fluid interface, as shown in Table 15. The two tables reflect
that convective heat transfer is more pronounced at the heated boundary compared to the
solid fluid interface. This difference is due to the enhancement of the thermal conductivity
by using the hybrid nanofluid. It can be concluded that at a high value of Kr, there is no
tangible effect of the thermal resistance on both the heated boundary and the solid fluid
interface. The heat transfer mode is changed from conductive to convective by increasing
the conductivity ratio to Kr = 10.

Table 14. The values of the average Nusselt number (Nuavg) at the heated boundary.

Kr n = 0.6 n = 1 n = 1.4 n = 1.8

0.1 0.43974 0.36794 0.27694 0.20603
1 2.95846 2.61233 2.13034 1.70561
5 6.97416 6.54366 5.89804 5.24224
10 8.75246 8.39716 7.86149 7.29620
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Table 15. The values of the average Nusselt number (Nuavg) at the solid-fluid interface.

Kr n = 0.6 n = 1 n = 1.4 n = 1.8

0.1 2.02479 1.69422 1.27521 0.94867
1 2.47683 2.18705 1.78353 1.42794
5 3.50113 3.28499 2.96084 2.63161
10 4.02660 3.86312 3.61665 3.35658

5. Conclusions

The impact of the power law index on natural convection has been investigated in the
presence of three layers (solid, porous and non-Newtonian layers) in a 2D cavity using FEM.
An Ag-MgO/water hybrid nanofluid was used for the porous and non-Newtonian layers.
The effects of the governing parameters were studied, including the Rayleigh number,
power law index, Darcy number, undulations, amplitude of the wavy interface, thickness
of the layer and thermal conductivity ratio. Natural convection in porous media has a great
interest in many technical and engineering applications. The main findings of the study
can be summarised as follows:

• Streamlines are magnified by enhancing the Rayleigh number, and the maximum
enlargement of the streamlines is found at Ra = 106;

• A remarkable penetration of streamlines is identified towards the porous hybrid layer
by increasing the power law index;

• The temperature along the solid wall decreases and a significant distribution of tem-
perature is noted in the remaining parts of the cavity by increasing Ra;

• The average Nusselt number increases by increasing Ra, and its maximum occurs at
Ra = 106;

• No considerable alteration is observed for isotherms at the solid layer by increasing Da;
• The average Nusselt number decreases by increasing the undulation number;
• The average Nusselt number declines by increasing the thickness (H2) and the power

law index n;
• The rate of heat transfer increases at the heated boundary and solid fluid interface by

increasing the ratio of thermal conductivity;
• The temperature field at the solid wall is not considerably affected by increasing Da

and N.
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Nomenclature
X, Y Horizontal and vertical coordinates (dimensionless)
U, V Velocity components (dimensionless)
g Gravitational acceleration (m s−2)
K Permeability of porous media (m2)
Cp Specific heat (J kg−1K−1)
Da Darcy number, K/L2

Ra Rayleigh number
x, y Dimensional space coordinates (m)
u, v Dimensional velocity components (m s−1)
Pr Prandtl number, ν f /α f
T temperature (K)
Greek symbols
α thermal diffusivity (m2 s−1)
β thermal expansion coefficient (K−1)
µ dynamic viscosity (kg m−1s−1)
ρ density (kg m−3)
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