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Abstract: Let Q be a positive defined n × n matrix and Q[x] = xTQx. The Epstein zeta-function
ζ(s; Q), s = σ + it, is defined, for σ > n

2 , by the series ζ(s; Q) = ∑x∈Zn\{0}(Q[x])−s, and is meromor-
phically continued on the whole complex plane. Suppose that n > 4 is even and ϕ(t) is a differentiable func-
tion with a monotonic derivative. In the paper, it is proved that 1

T meas{t ∈ [0, T] : ζ(σ + iϕ(t); Q) ∈ A},
A ∈ B(C), converges weakly to an explicitly given probability measure on (C,B(C)) as T → ∞.

Keywords: Epstein zeta-function; limit theorem; weak convergence; Haar measure

MSC: 11M46; 11M06

1. Introduction

It is well known that the Riemann zeta-function

ζ(s) =
∞

∑
m=1

1
ms , s = σ + it, σ > 1,

shows analytic continuation to the whole complex plane, except for a simple pole at the
point s = 1, and satisfies functional equation

π−
s
2 Γ
( s

2

)
ζ(s) = π−

1−s
2 Γ
(

1− s
2

)
ζ(1− s),

where Γ(s) denotes the Euler gamma-function. The majority of other zeta-functions also
have similar equations, which are referred to as the Riemann type. Epstein in [1] raised a
question to find the most general zeta-function with a functional equation of the Riemann
type and introduced the following zeta-function. Let Q be a positive defined quadratic
n× n matrix, and Q[x] = xTQx for x ∈ Zn. Epstein defined, for σ > n

2 , the function

ζ(s; Q) = ∑
x∈Zn\{0}

(Q[x])−s,

continued analytically it to the whole complex plane, except for a simple pole at the point

s = n
2 with residue π

n
2

Γ( n
2 )
√

detQ , and proved the functional equation

π−sΓ(s)ζ(s; Q) = (detQ)−
1
2 πs− n

2 Γ
(n

2
− s
)

ζ
(n

2
− s; Q−1

)
.

In [2], Bohr and Jessen proved a probabilistic limit theorem for the function ζ(s). We
recall its modern version. Denote by B(X) the Borel σ-field of the topological space X, and
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by measA the Lebesgue measure of a measurable set A ⊂ R. Then, on (C,B(C)), there
exists a probability measure Pσ such that, for σ > 1

2 ,

1
T

meas{t ∈ [0, T] : ζ(σ + it) ∈ A}, A ∈ B(C), (1)

converges weakly to Pσ as T → ∞ (see, for example, [3] (Theorem 1.1, p. 149). In [4],
the latter limit theorem was generalized for the Epstein zeta-function ζ(s; Q) with even
n ≥ 4 and integers Q[x]. Namely, on (C,B(C)), there exists an explicitly given probability
measure PQ,σ such that, for σ > n−1

2 ,

1
T

meas{t ∈ [0, T] : ζ(σ + it; Q) ∈ A}, A ∈ B(C),

converges weakly to PQ,σ as T → ∞.
For the function ζ(s), more general limit theorems are also considered. In place of (1),

the weak convergence for

1
T

meas{t ∈ [0, T] : ζ(σ + iϕ(t)) ∈ A}, A ∈ B(C),

with certain measurable function ϕ(t) is studied. For example, theorems of such a kind
follow from limit theorems in the space of analytic functions proved in [5].

Suppose that the function ϕ(t) is defined for t ≥ T0 > 0, is increasing to +∞ , and has
a monotonic derivative ϕ′(t) satisfying the estimate

ϕ(2t)
1

ϕ′(t)
� t, t→ ∞.

Denote the class of the above functions by W(T0).
The aim of this paper is to prove a limit theorem for

P̂T,Q,σ(A)
de f
=

1
T

meas{t ∈ [0, T] : ζ(σ + iϕ(t); Q) ∈ A}, A ∈ B(C),

when ϕ(t) ∈W(T0). In place of P̂T,Q,σ one can consider

PT,Q,σ(A)
de f
=

1
T

meas{t ∈ [T, 2T] : ζ(σ + iϕ(t); Q) ∈ A}, A ∈ B(C).

It is easily seen that the weak convergence of P̂T,Q,σ to PQ,σ as T → ∞ is equivalent to that
of PT,Q,σ. Actually, if P̂T,Q,σ converges weakly to PQ,σ as T → ∞, then

lim
T→∞

P̂T,Q,σ(A) = PQ,σ(A)

for every continuity set A of the measure PQ,σ. Since

PT,Q,σ(A) = 2P̂2T,Q,σ(A)− P̂T,Q,σ(A),

we obtain that
lim

T→∞
PT,Q,σ(A) = PQ,σ(A), (2)

i.e., PT,Q,σ converges weakly to PQ,σ as T → ∞.
Now, suppose that (2) is true. Then

XPX,Q,σ(A) = XPQ,σ(A) + gA(X)X,
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where gA(X) → 0 as X → ∞. Taking X = T2−j and summing the above equality over
j ∈ N, we obtain, ue of σ-additivity of the Lebesgue measure,

P̂T,Q,σ(A) = PQ,σ(A) +
∞

∑
j=1

gA(T2−j)2−j. (3)

Let ε > 0. We fix j0 such that
∑
j>j0

2−j < ε.

Then
∞

∑
j=1

gA(T2−j)2−j �A ∑
j≤j0

gA(T2−j) + ε.

Thus, taking T → ∞ and then ε→ 0, we find

lim
T→∞

∞

∑
j=1

gA(T2−j)2−j = 0.

This together with (3) shows that

P̂T,Q,σ(A) = PQ,σ(A) + o(1), T → ∞,

i.e., P̂T,Q,σ converges weakly to PQ,σ as T → ∞.
Since, in the case of PT,Q,σ the function ϕ(t) occurs for large values of t, the study of

PT,Q,σ sometimes is more convenient than that of P̂T,Q,σ. Therefore, we will prove a limit
theorem for PT,Q,σ.

As in [3], we use the decomposition [6]

ζ(s; Q) = ζ(s; EQ) + ζ(s; FQ),

where ζ(s; EQ) and ζ(s; FQ) are zeta-functions of certain Eisenstein series and of a certain
cusp form, respectively. The latter decomposition and the results of [7], [8]—see also [9]—
imply that, for σ > n−1

2 ,

ζ(s; Q) =
K

∑
k=1

L

∑
l=1

akl
ksls L(s, χk)L

(
s− n

2
+ 1, ψl

)
+

∞

∑
m=1

fQ(m)

ms , (4)

where akl ∈ C, K, L ∈ N, L(s, χk) and L(s, ψl) are Dirichlet L-functions, and the series is
absolutely convergent for σ > n−1

2 . Equality (4) is the main relation for investigation of the
function ζ(s; Q). Before the statement of a limit theorem, we construct a C-valued random
element connected to ζ(s; Q).

Let P is the set of all prime numbers, γ = {s ∈ C : |s| = 1}, and

Ω = ∏
p∈P

γp,

where γp = γ for all p ∈ P. The infinite-dimensional torus Ω is a compact topological
Abelian group; therefore, the probability Haar measure can be defined on (Ω,B(Ω)). This
gives the probability space (Ω,B(Ω), mH). Denote by ω(p) the pth, p ∈ P, component of
an element ω ∈ Ω, and extend the function ω(p) to the whole set N by the formula

ω(m) = ∏
pl |m

pl+1-m

ωl(p), m ∈ N.
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On the probability space (Ω,B(Ω), mH), for σ > n−1
2 , define theC-valued random element by

ζ(σ, ω; Q) =
K

∑
k=1

L

∑
l=1

aklω(k)ω(l)
kσlσ

L(σ, ω, χk)L
(

σ− n
2
+ 1, ω, ψl

)
+

∞

∑
m=1

fQ(m)ω(m)

mσ
,

where

L(σ, ω, χk) = ∏
p∈P

(
1− χk(p)ω(p)

pσ

)−1

,

and

L
(

σ− n
2
+ 1, ω, ψl

)
= ∏

p∈P

(
1− ψl(p)ω(p)

pσ− n
2 +1

)−1

.

Now, denote by Pζ,Q,σ the distribution of ζ(σ, ω; Q), i.e.,

Pζ,Q,σ(A) = mH{ω ∈ Ω : ζ(σ, ω; Q) ∈ A}, A ∈ B(C).

Because n ≥ 4, σ− n
2 + 1 > 1

2 for σ > n−1
2 . Therefore, the second Euler product for Dirichlet

L-function is convergent for almost all ω and defines a random variable.
The main the result of the paper is the following theorem.

Theorem 1. Suppose that ϕ(t) ∈ W(T0), n ≥ 4 and σ > n−1
2 is fixed. Then PT,Q,σ converges

weakly to the measure Pζ,Q,σ as T → ∞.

Since the representation (4) depends on Q, the random element ζ(σ, ω; Q) depends on
Q. Thus, the limit measure Pζ,Q,σ also depends on Q.

2. Some Estimates

We will consider the measure PT,Q,σ; therefore, we suppose that t ∈ [T, 2T] with
large T. Let χ be a Dirichlet character modulo q, and L(s, χ) be a corresponding Dirichlet
L-function.

Lemma 1. Suppose that ϕ(t) ∈W(T0) and σ > 1
2 is fixed. Then, for τ ∈ R,

2T∫
T

|L(σ + iϕ(t) + iτ, χ)|2dτ �σ,χ,ϕ T(1 + |τ|).

Proof. It is well known that, for fixed σ > n−1
2 ,

T∫
−T

|L(σ + it, χ)|2dt�σ,χ T. (5)
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An application of the mean value theorem, in view of (5), gives

I(T, χ, σ)
de f
=

2T∫
T

|L(σ + iϕ(t) + iτ, χ)|2dt =
2T∫

T

1
ϕ′(t)

|L(σ + iϕ(t) + iτ, χ)|2dϕ(t)

=

2T∫
T

1
ϕ′(t)

d

 ϕ(t)+τ∫
T

|L(σ + iu, χ)|2du

 =
1

ϕ′(T)

ξ∫
T

d

 ϕ(t)+τ∫
T

|L(σ + iu, χ)|2du


=

1
ϕ′(T)

ϕ(ξ)+τ∫
ϕ(T)+τ

|L(σ + iu, χ)|2du ≤ 1
ϕ′(T)

ϕ(2T)+|τ|∫
ϕ(T)−|τ|

|L(σ + iu, χ)|2du

≤ 1
ϕ′(T)

ϕ(2T)+|τ|∫
−ϕ(2T)−|τ|

|L(σ + iu, χ)|2du�σ,χ
1

ϕ′(T)
(ϕ(2T) + |τ|),

where T ≤ ξ ≤ 2T and ϕ′(t) is increasing. Thus, by the definition of the class W(T0),

I(T, χ, σ)�σ,χ
ϕ(2T)
ϕ′(T)

(
1 +

|τ|
ϕ(2T)

)
�σ,χ,ϕ T(1 + |τ|).

If ϕ′(t) is decreasing, then similarly we have

I(T, χ, σ) =
1

ϕ′(2T)

2T∫
ξ

d

 ϕ(t)+τ∫
T

|L(σ + iu, χ)|2du

 =
1

ϕ′(2T)

ϕ(2T)+τ∫
ϕ(ξ)+τ

|L(σ + iu, χ)|2du

≤ 1
ϕ′(2T)

ϕ(2T)+τ∫
ϕ(2T)+τ

|L(σ + iu, χ)|2du�σ,χ
1

ϕ′(2T)
(ϕ(2T) + |τ|)

�σ,χ
ϕ(4T)
ϕ′(2T)

(1 + |τ|)�σ,χ,ϕ T(1 + |τ|).

Let θ > 0 be a fixed number, and

vN(m) = exp
{
−
(m

N

)θ
}

, m, N ∈ N,

where exp{a} = ea. Put

LN(s, χ) =
∞

∑
m=1

χ(m)vN(m)

ms .

Then, by the exponential decreasing of vN(m), the latter series is absolutely convergent for
σ > σ0 with arbitrary finite σ0. Define

ζN(s; Q) =
K

∑
k=1

L

∑
l=1

akl
ksls L(s, χk)LN

(
s− n

2
+ 1, ψl

)
+

∞

∑
m=1

fQ(m)

ms .

Then the series for ζN(s; Q) is absolutely convergent for σ > n−1
2 . It turns out that ζN(s; Q)

approximates well in the mean the function ζ(s; Q). More precisely, we have the follow-
ing result.
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Lemma 2. Suppose that ϕ(t) ∈W(T0) and σ > n−1
2 is fixed. Then

lim
N→∞

lim sup
T→∞

1
T

2T∫
T

|ζ(σ + iϕ(t); Q)− ζN(σ + iϕ(t); Q)|dt = 0.

Proof. Let θ be from the definition of vN(m); Γ(s) denotes the Euler gamma-function, and

lN(s) =
s
θ

Γ
( s

θ

)
Ns.

Then, the Mellin formula

1
2πi

b+i∞∫
b−i∞

Γ(s)a−s ds = e−a, a, b > 0,

leads, for θ1 > 1
2 , to

LN(s, χ) =
1

2πi

θ1+i∞∫
θ1−i∞

L(s + z, χ)lN(z)
dz
z

. (6)

Denote by χ0 the principal Dirichlet character modulo q. Since the function L(s, χ) is entire
for χ 6= χ0, and L(s, χ0) has a simple pole at the point s = 1 with residue

aq
de f
= ∏

p|q

(
1− 1

p

)
,

the residue theorem and (6) give

LN(s, χ)− L(s, χ) =
1

2πi

−θ2+i∞∫
−θ2−i∞

L(s + z, χ)lN(z)
dz
z

+ RN(s, χ),

where 0 < θ2 < 1 and

RN(s, χ) =

{
0 if χ 6= χ0,
aq

lN(1−s)
1−s if χ = χ0.

Therefore,

|L(σ + iϕ(t), χ)− LN(σ + iϕ(t), χ)|

�
∞∫
−∞

|L(σ− θ2 + iϕ(t) + iτ, χ)| |lN(−θ2 + iτ)|
|−θ2 + iτ| dτ + |RN(σ + iϕ(t), χ)|.

Hence, we have that

1
T

2T∫
T

|L(σ + iϕ(t), χ)− LN(σ + iϕ(t), χ)|dt� I1 + I2, (7)

where

I1 =

∞∫
−∞

 1
T

2T∫
T

|L(σ− θ2 + iϕ(t) + iτ, χ)|dt

 lN(−θ2 + iτ)
|−θ2 + iτ|

dτ
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and

I2 =
1
T

2T∫
T

|RN(σ + iϕ(t), χ)|dt.

It is well known that, uniformly in σ1 ≤ σ ≤ σ2 with arbitrary σ1 < σ2,

Γ(σ + it)� exp{−c|t|}, |t| ≥ t0 > 0, c > 0. (8)

Therefore,
lN(1− σ− iϕ(t))

1− σ− iϕ(t)
�θ N1−σ exp

{
− c

θ
ϕ(t)

}
,

and

I2 �θ,q N1−σ 1
T

2T∫
T

exp
{
− c

θ
ϕ(t)

}
dt�θ,q N1−σ exp

{
− c

θ
ϕ(T)

}
. (9)

Suppose that σ > 1
2 and θ2 is such that σ− θ2 > 1

2 . Then, in view of (8) again,

lN(−θ2 + iτ)
−θ2 + iτ

�θ N−θ2 exp
{
− c

θ
|τ|
}

,

Therefore, Lemma 1 implies

I1 �θ,σ,θ2,χ N−θ2

∞∫
−∞

(1 + |τ|) exp
{
− c

θ
|τ|
}

dτ �θ,σ,θ2,χ N−θ2 .

This, (9) and (7) show that, for fixed σ > 1
2 ,

lim
N→∞

lim sup
T→∞

1
T

2T∫
T

|L(σ + iϕ(t), χ)− LN(σ + iϕ(t), χ)|dt = 0.

Since σ > n−1
2 , we have σ− n

2 + 1 > 1
2 . Therefore, for σ > n−1

2 ,

lim
N→∞

lim sup
T→∞

1
T

2T∫
T

∣∣∣L(σ− n
2
+ 1 + iϕ(t), ψl

)
− LN

(
σ− n

2
+ 1 + iϕ(t), ψl

)∣∣∣dt = 0.

Hence,

lim
N→∞

lim sup
T→∞

1
T

2T∫
T

|ζ(σ + iϕ(t); Q)− ζN(σ + iϕ(t); Q)|dt

�Q lim
N→∞

lim sup
T→∞

1
T

L

∑
l=1

2T∫
T

∣∣∣L(σ− n
2
+ 1 + iϕ(t), ψl

)
− LN

(
σ− n

2
+ 1 + iϕ(t), ψl

)∣∣∣dt = 0.

3. Limit Theorems

We divide the proof of Theorem 1 into lemmas that are limit theorems in some spaces.
We start with a lemma on the torus Ω. For A ∈ B(Ω), define

QT(A) =
1
T

meas
{

t ∈ [T, 2T] :
(

p−iϕ(t) : p ∈ P
)
∈ A

}
.
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Lemma 3. Suppose that ϕ(t) ∈W(T0). Then QT converges weakly to the Haar measure mH as
T → ∞.

Proof. We will apply the Fourier transform method. Let gT(k), k =
(
kp : kp ∈ Z, p ∈ P

)
be

the Fourier transform of QT , i.e.,

gT(k) =
∫
Ω

(
∏∗

p∈P
ωkp(p)

)
dQT ,

where “*” indicates that only a finite number of integers kp are distinct from zero. Thus, by
the definition of QT ,

gT(k) =
1
T

2T∫
T

∏∗

p∈P

(
p−ikp ϕ(t)

)
dt =

1
T

2T∫
T

exp

{
−iϕ(t)∑∗

p∈P
kp log p

}
dt. (10)

Obviously,
gT(0) = 1. (11)

Now, suppose that k 6= 0. Since the set {log p : p ∈ P} is linearly independent over the
field of rational numbers, we have

Ak
de f
= ∑∗

p∈P
kp log p 6= 0.

Then

2T∫
T

cos
(

Ak ϕ(t)
)
dt =

1
Ak

2T∫
T

1
ϕ′(t)

d sin
(

Ak ϕ(t)
)

=
1

Ak


(ϕ′(T))−1

ξ∫
T

d sin
(

Ak ϕ(t)
)

if ϕ′(t) is increasing,

(ϕ′(2T))−1
2T∫
ξ

d sin
(

Ak ϕ(t)
)

if ϕ′(t) is decreasing

� 1
|Ak|

{
(ϕ′(T))−1 if ϕ′(t) is increasing,
(ϕ′(2T))−1 if ϕ′(t) is decreasing,

where T ≤ ξ ≤ 2T. Since ϕ(t) ∈W(T0),{
(ϕ′(T))−1 if ϕ′(t) is increasing,
(ϕ′(2T))−1 if ϕ′(t) is decreasing

= o(T)

as T → ∞. Therefore,
2T∫

T

cos
(

Ak ϕ(t)
)
dt = o(T), T → ∞. (12)

Similarly, we find that
2T∫

T

sin
(

Ak ϕ(t)
)
dt = o(T), T → ∞.

Thus, (10)–(12) show that

lim
T→∞

gT(k) =

{
1 if k = 0,
0 if k 6= 0.
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Since the right-hand side of the latter equality is the Fourier transform of the Haar measure
mH , the lemma is proved.

For A ∈ B(C), define

PT,N,Q,σ(A) =
1
T

meas{t ∈ [T, 2T] : ζN(σ + iϕ(t); Q) ∈ A}.

To prove the weak convergence for PT,N,Q,σ as T → ∞, consider the function uN,σ : Ω→ C
given by the formula

uN,σ(ω) = ζN(σ, ω; Q),

where

ζN(σ, ω; Q) =
∞

∑
m=1

wN(m)ω(m)

mσ
,

and
∞

∑
m=1

wN(m)

ms

is the Dirichlet series for ζN(s; Q). Clearly, the above series are absolutely convergent for
σ > n−1

2 . The absolute convergence of the series for ζN(s, ω; Q) implies the continuity
for the function uN . Therefore, the function uN is (B(Ω),B(C))-measurable, and we can
define the probability measure VN,σ = mHu−1

N,σ, where

mHu−1
N,σ(A) = mH

(
u−1

N,σ A
)

, A ∈ B(C).

Lemma 4. Suppose that ϕ(t) ∈W(T0) and σ > n−1
2 is fixed. Then, PT,N,Q,σ converges weakly to

VN,σ as T → ∞.

Proof. By the definitions of PT,N,Q,σ, QT and uN,σ, for all A ∈ B(C),

PT,N,Q,σ(A) =
1
T

meas
{

τ ∈ [T, 2T] :
(

p−iϕ(t) : p ∈ P
)
∈ u−1

N,σ

}
= QT

(
u−1

N,σ

)
.

Thus, PT,N,Q,σ = QTu−1
N,σ. Therefore, the lemma is a consequence of Theorem 5.1 from [10],

continuity of uN,σ and Lemma 3.

The measure VN,σ is very important for the proof of Theorem 1. Since VN,σ is indepen-
dent of the function ϕ(t), the following limit relation is true.

Lemma 5. Suppose that σ > n−1
2 is fixed. Then VN,σ converges weakly to Pζ,Q,σ as N → ∞.

Proof. In the proof of Theorem 2 from [4], it is obtained (relation (12)) that VN,σ converges
weakly to a certain measure Pσ, and, at the end of the proof, the measure Pσ is identified by
showing that Pσ = Pζ,Q,σ.

For convenience, we recall Theorem 4.2 of [10]. Denote by D−→ the convergence in distribution.

Lemma 6. Suppose that the space (X, ρ) is separable, and X-valued random elements Yn, X1N , X2N , . . .
are defined on the same probability space with measure P. Let, for every k,

XkN
D−→

N→∞
Xk,

and
Xk

D−→
k→∞

X.
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If, for every ε > 0,
lim
k→∞

lim sup
N→∞

P(ρ(XkN , YN) ≥ ε} = 0,

then YN
D−→

N→∞
X.

Proof of Theorem 1. Suppose that ξT is a random variable defined on a certain probability
space (Ω̂,B(Ω̂), P) and distributed uniformly in [T, 2T]. Since the function ϕ(t) is con-
tinuous, it is thus measurable, and ϕ(ξT) is a random variable as well. Denote by XN,σ
the complex valued random element having the distribution VN,σ, and, on the probability
space (Ω̂,B(Ω̂), P), define the random element

XT,N,σ = ζN(σ + iϕ(ξT); Q).

Then, in view of Lemma 4,
XT,N,σ

D−−−→
T→∞

XN,σ, (13)

and, by Lemma 5,

XN,σ
D−−−→

N→∞
Pζ,Q,σ. (14)

Define one more complex-valued random element

YT,σ = ζ(σ + iϕ(ξT); Q).

Then, an application of Lemma 2 gives, for ε > 0,

lim
N→∞

lim sup
T→∞

P{|XT,N,σ −YT,σ| ≥ ε}

≤ 1
εT

2T∫
T

|ζ(s + iϕ(t); Q)− ζN(s + iϕ(t); Q)|dt = 0.

This, relations (13) and (14) show that all hypotheses of Lemma 6 are satisfied. Therefore,

YT,σ
D−−−→

T→∞
Pζ,Q,σ,

and this is equivalent to the assertion of the theorem.

4. Concluding Remarks

By Bohr and Jessen’s works, it is known that the asymptotic behavior of the Dirichlet
series can be characterized by probabilistic limit theorems. It turns out that Bohr–Jessen’s
ideas can also be applied for the Epstein zeta-function ζ(s; Q) whose definition involves a
positive defined n× n matric Q. We prove that, for any fixed σ > n−1

2 ,

1
T

meas{t ∈ [T, 2T] : ζ(σ + iϕ(t); Q) ∈ A}, A ∈ B(C),

converges weakly to an explicitly given probability measure on (C,B(C)) as T → ∞. Here
ϕ(t) is an increasing differentiable function such that

ϕ(2t)
ϕ′(t)

� t, t→ ∞.

For example, ϕ(t) can be a polynomials or the Gram function. We recall that the Gram
function g(t) is the solution of the equation

θ(τ) = (t− 1)π, t ≥ 0,
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where θ(τ) is the increment of the argument of the function π−
s
2 Γ( s

2 ) along the segment
connecting the points s = 1

2 and s = 1
2 + iτ. It is known [11] that

g(t) =
2πt
log t

(1 + o(1))

and
g′(t) =

2π

log t
(1 + o(1))

as t→ ∞.
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