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Abstract: An alternative approach, known today as the Bernstein polynomials, to the Weierstrass
uniform approximation theorem was provided by Bernstein. These basis polynomials have attained
increasing momentum, especially in operator theory, integral equations and computer-aided geomet-
ric design. Motivated by the improvements of Bernstein polynomials in computational disciplines,
we propose a new generalization of Bernstein–Kantorovich operators involving shape parameters λ, α

and a positive integer as an original extension of Bernstein–Kantorovich operators. The statistical ap-
proximation properties and the statistical rate of convergence are also obtained by means of a regular
summability matrix. Using the Lipschitz-type maximal function, the modulus of continuity and mod-
ulus of smoothness, certain local approximation results are presented. Some approximation results in
a weighted space are also studied. Finally, illustrative graphics that demonstrate the approximation
behavior and consistency of the proposed operators are provided by a computer program.

Keywords: weighted B-statistical convergence; shape parameter α; shape parameter λ; blending-type
operators; computer graphics
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1. Introduction

The Weierstrass approximation theorem asserts that there exists a sequence of polyno-
mials rp(u) that converges uniformly to r(u) for any continuous function r(u) on the closed
interval [a, b] [1]. Bernstein provided an alternative proof of the well-known Weierstrass
approximation theorem, nowadays called Bernstein polynomials. The following Bernstein
operators

Bp(r; u) =
p

∑
i=0

bp,i(u)r
(

i
p

)
,

where,

bp,i(u) =
(

p
i

)
ui(1− u)p−i, u ∈ I

were given in [2] to approximate a given continuous function r(u) on [0, 1] = I .
In this sense, an approximation process for Lebesgue integrable real-valued functions

defined on I was presented by replacing sample values r
( i

p
)

with the mean values of r

in the interval
[ i

p , i+1
p
]

(see [3]). It is well known that these operators involving Lebesgue
integrable functions on I can be expressed by means of the Bernstein basis function bp,i(u),

Kp(r; u) = (p + 1)
p

∑
i=0

bp,i(u)
∫ i+1

p+1

i
p+1

r(t) dt.
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There are several generalizations and different modifications of the Kantorovich operators
Kp in the literature (see e.g., [4–8]).

Approximation methods by Bernstein-type operators have been used both in pure
and applied mathematics, as well as in certain computer-aided geometric design and
engineering problems. For instance, a numerical scheme for the computational solution
of certain classes of Volterra integral equations of the third kind and an algorithm for the
approximate solution of singularly perturbed Volterra integral equations were provided
with the help of Bernstein-type operators [9,10].

A new class of Bernstein operators for the continuous function r(u) on I , which
includes the shape parameter α and named hereafter as α-Bernstein operators, were con-
structed in [11]. Many modifications of α-Bernstein operators have been studied (see [4,5,12]).
A new basis with shape parameter λ ∈ [−1, 1] was introduced in [13], and a new type λ-
Bernstein operators were constructed by shape parameter λ in [14]. Shape parameters α
and λ were used to modify Bernstein operators to α-Bernstein-type (see [4,11,12,15,16]) and
λ-Bernstein-type operators (see [6,13,17–25]) in order to have better approximation results.

Quite recently, Cai et al. estimated rates convergence of univariate and bivariate
blending-type operators, which were introduced in [26], by a weighted A-statistical summa-
bility method [27].

The motivation of the paper is to extend Bernstein-type operators and introduce a
novel generalization of blending-type Bernstein–Kantorovich operators that include many
known sequences of linear operators in the literature.

The outline of the paper is as follows: In Section 2, we provide the needed background
that includes definitions of α-Bernstein and λ-Bernstein-type operators. In Section 3, we
introduce a novel generalization of Bernstein–Kantorovich operators with the help of a
new class of basis polynomials involving two shape parameters and a positive integer. We
also obtain moments and central moments and provide a classical Korovkin-type theorem.
In Section 4, we focus on the convergence properties and a Voronovskaja-type approxi-
mation result of the operators through the notion of weighted B-statistical convergence.
Further, we estimate the rate of the weighted B-statistical convergence of the proposed
operators. In Section 5, we obtain some pointwise and weighted approximation results.
In Section 6, we provide certain computer graphics for different kinds of functions to
see the approximation of the defined operators. In Section 7, we provide a conclusion to
summarize the obtained results.

2. Preliminaries

In this part, we provide the needed background that includes definitions of α-Bernstein,
λ-Bernstein and blending (α, λ, s)-Bernstein basis functions; also, the definitions of α-
Bernstein, λ-Bernstein and blending (α, λ, s)-Bernstein operators are provided.

Throughout the paper, let the binomial coefficients be given by the formula(
p
i

)
=

{
p!

i!(p−i)! , 0 ≤ i ≤ p,
0, otherwise.

The known α-Bernstein operators (see [11]) were introduced as

Tp,α(r; u) =
p

∑
i=0

w(α)
p,i (u)r

(
i
p

)
,

where w(α)
1,0 (u) = 1− u, w(α)

1,1 (u) = u, and α-Bernstein basis is given as

w(α)
p,i (u) =

[
(1− α)

(
p− 2

i

)
u + (1− α)

(
p− 2
i− 2

)
(1− u) + α

(
p
i

)
u(1− u)

]
ui−1(1− u)p−i−1,

for α, u ∈ I , p ≥ 2, r(u) ∈ C[0, 1].
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The λ-Bernstein operators were given as (see [14])

Bp,λ(r; u) =
p

∑
i=0

b̃p,i(u)r
(

i
p

)
,

where λ-Bernstein basis is given as

b̃p,i(λ; u) =



bp,0(u)− λ
p+1 bp+1,1(u), if i = 0,

bp,i(u) + λ
(

p−2i+1
p2−1 bp+1,i(u)

)
−λ
(

p−2k−1
p2−1 bp+1,i+1(u)

)
, if 1 ≤ i ≤ p− 1,

bp,p(u)− λ
p+1 bp+1,p(u), if i = p.

(1)

Generalized blending-type α-Bernstein operators with a positive integer s were intro-
duced in [15] as

Lα,s
p (r; u) =

p

∑
i=0

{
(1− α)

(
p− s
i− s

)
ui−s+1(1− u)p−i + (1− α)

(
p− s

i

)
ui(1− u)p−s−i+1

+α

(
p
i

)
ui(1− u)p−i

}
r
(

i
p

)
, for p ≥ s

and

Lα,s
p (r; u) =

p

∑
i=0

(
p
i

)
ui(1− u)p−ir

(
i
p

)
, for p < s

which depend on shape parameter α, where u, α ∈ I , r(u) ∈ C[0, 1].
Finally, blending-type (α, λ, s)-Bernstein operators were constructed in [26] as follows:

L(α,s)
p,λ (r; u) =

p

∑
i=0

b̃α,s
p,i (λ; u)r

(
i
p

)
,

where 0 ≤ α ≤ 1, −1 ≤ λ ≤ 1 and s is a positive integer and the blending-type (α, λ, s)
basis is given as

b̃α,s
p,i (λ; u) =


b̃p,i(λ; u), if p < s
(1− α)

[
ub̃p−s,i−s(λ; u) + (1− u)b̃p−s,i(λ; u)

]
+αb̃p,i(λ; u), if p ≥ s

and b̃p,i(λ; u) is defined in Equation (1).
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Lemma 1 ([26],Theorem 2). If p ≥ s, for any 0 ≤ α ≤ 1 and −1 ≤ λ ≤ 1 we have

L(α,s)
p,λ (1; u) = 1;

L(α,s)
p,λ (t; u) = u + (1− α)λ

[
1− 2u + up−s+1 − (1− u)p−s+1

p(p− s− 1)

]
+ αλ

[
1− 2u + up+1 − (1− u)p+1

p(p− 1)

]
;

L(α,s)
p,λ (t2; u) = u2 +

[
p + (1− α)s(s− 1)

]
u(1− u)

p2 +
αλ

p

[
2u− 4u2 + 2up+1

(p− 1)

]
;

+
(1− α)λ

p

[
2u− 4u2 + 2up−s+1

(p− s− 1)

]
+

αλ

p2

[
up+1 + (1− u)p+1 − 1

(p− 1)

]
+

(1− α)λ

p2

[
up−s+1 + (1− u)p−s+1 − 1

(p− s− 1)

]
+

[
2su(up−s+1 − (1− u)p−s+1)

(p− s− 1)

]
.

3. Blending (α, λ, s)-Bernstein–Kantorovich Operators

Let L1[0, 1] denote the space of all Lebesgue integrable functions on the interval I . We
introduce the following sequence of operators involving shape parameters λ and α, and a
positive integer s :

K(α,s)
p,λ (r; u) = (p + 1)

p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

r(t)dt (2)

and call it blending (α, λ, s)-Bernstein–Kantorovich operators.

Lemma 2. Let s be a positive integer, λ ∈ [−1, 1] and α be a non-negative integer, then the
moments of blending (α, λ, s)-Bernstein–Kantorovich operators are as follows:

K(α,s)
p,λ (1; u) = 1;

K(α,s)
p,λ (t; u) =

1 + 2pu
2(p + 1)

+
αλ

(p + 1)(p− 1)

[
1− 2u + up+1 − (1− u)p+1

]
+

(1− α)λ

(p + 1)(p− s− 1)

[
1− 2u + up−s+1 − (1− u)p−s+1

]
;

K(α,s)
p,λ (t2; u) =

1 + 3pu(1 + pu)
3(p + 1)2 +

2(1− α)λu
(p− s− 1)(p + 1)2

[
(p + 1)up−s + p(1− 2u)− 1

]
+

2p2su2

(p− s− 1)(p + 1)2

[
up−s − (1− u)p−s

]
+

(p + (1− α)s(s− 1))u(1− u)
(p− 1)(p + 1)2

+
2αλu

(p− 1)(p + 1)2

[
(p + 1)up + p(1− 2u)− 1

]
.
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Proof. Since it is easy to prove the first part of the theorem we skip it. Bearing in mind the
definition of operators (2) and Lemma 1, we have

K(α,s)
p,λ (t; u) = (p + 1)

p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

t dt =
p

∑
i=0

b̃α,s
p,i (λ; u)

2i + 1
2(p + 1)

=
p

p + 1
L(α,s)

p,λ (t; u) +
1

2(p + 1)
L(α,s)

p,λ (1; u)

=
1 + 2pu
2(p + 1)

+ αλ

[
1− 2u + up+1 − (1− u)p+1

(p + 1)(p− 1)

]
+ (1− α)λ

[
1− 2u + up−s+1 − (1− u)p−s+1

(p + 1)(p− s− 1)

]
,

which completes the proof of second part. Now, we prove the third part:

K(α,s)
p,λ (t2; u) = (p + 1)

p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

t2 dt =
p

∑
i=0

b̃α,s
p,i (λ; u)

3i2 + 3i + 1
3(p + 1)2

=
p2

(p + 1)2L
(α,s)
p,λ (t2; u) +

p
(p + 1)2L

(α,s)
p,λ (t; u) +

1
3(p + 1)2L

(α,s)
p,λ (1; u)

=
1 + 3pu(1 + pu)

3(p + 1)2 +
2(1− α)λu

(p− s− 1)(p + 1)2

[
(p + 1)up−s + p(1− 2u)− 1

]
+

2p2su2

(p− s− 1)(p + 1)2

[
up−s − (1− u)p−s

]
+

(p + (1− α)s(s− 1))u(1− u)
(p− 1)(p + 1)2

+
2αλu

(p− 1)(p + 1)2

[
(p + 1)up + p(1− 2u)− 1

]
.

Corollary 1. The following relationships are satisfied:

K(α,s)
p,λ (t− u; u) = (p + 1)

[
p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

t dt− u
p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

dt

]

=
1− 2u

2(p + 1)
+

αλ

(p + 1)(p− 1)

[
1− 2u + up+1 − (1− u)p+1

]
+

(1− α)λ

(p + 1)(p− s− 1)

[
1− 2u + up−s+1 − (1− u)p−s+1

]
;

K(α,s)
p,λ ((t− u)2; u) = (p + 1)

[
p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

t2 dt− 2u
p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

t dt

]

+ (p + 1)u2
p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

dt

=
2(1− α)λu

(p− s− 1)(p + 1)2

[
(p + 1)(1− u)p−s+1 + (1− u)up−s − 1 + 2u

]
+

2p2su2

(p− s− 1)(p + 1)2

[
up−s − (1− u)p−s

]
+

(p + (1− α)s(s− 1))u(1− u)
(p− 1)(p + 1)2

+
2αλu

(p− 1)(p + 1)2

[
(p + 1)(up − up+1 − (1− u)up−s)− 1 + 2u

]
+

3u2 − 3u + 1
3(p + 1)2 .
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Theorem 1. Let r ∈ L1[0, 1], then we have

lim
p→∞
K(α,s)

p,λ (r; u) = r(u)

uniformly on [0, 1].

Proof. Using the commonly stated Bohman–Korovkin theorem [28,29], our aim is to prove
the following uniform convergence condition:

lim
p→∞
K(α,s)

p,λ (ek; u) = uk (k = 0, 1, 2)

where ek(u) = uk, u ∈ I . Clearly, from the first and second parts of Lemma 2, we obtain

lim
p→∞
K(α,s)

p,λ (e0; u) = 1 and lim
p→∞
K(α,s)

p,λ (e1; u) = u.

By the third part of Lemma 2, the following relationship is satisfied

K(α,s)
p,λ (e2; u)→ u2 (p→ ∞).

4. Convergence Properties

In this part, we focus on the convergence properties and a Voronovskaja-type approxi-
mation result of operators K(α,s)

p,λ through the notion of weighted B-statistical convergence.
Further, we estimate the rate of the weighted B-statistical convergence of the proposed
operators. We refer to [30,31] and the references therein for further information about
statistical convergence and its weighted forms, including the regular summability matrix.

Let K ⊆ N0 := N ∪ {0} and Kp = {k ≤ p : k ∈ K}. Then δ(K) = limp→∞
1
p

∣∣Kp
∣∣ is

called the natural density of K, if the limit exists. A sequence u = (up) is called statistically
convergent to a number L if, for each ε > 0, δ{p : |up − L| = ε} = 0. The notion of
weighted statistical convergence is given as:

Let q = (qp) be a sequence of non-negative numbers with q0 > 0 and Qp = ∑
p
k=0 qk → ∞

as p→ ∞, then u = (up) is weighted statistically convergent to a number L if, for every ε > 0,

1
Qp

∣∣{k 5 Qp : qk|uk − L| = ε}
∣∣→ 0 as p→ ∞.

In [32], a new matrix method, which is known as B-summability, was defined. Let
B = (Bi) be a sequence of infinite matrices with Bi = (bpk(i)). Then u ∈ `∞ is said to be B-
summable to the value B-lim u, if limp→∞(Biu)p = B− lim u uniformly for i = 0, 1, 2, · · · .

The method B = (Bi) is regular if and only if the following conditions hold true
(see [33,34]):

‖B‖ = supp,i ∑k |bpk(i)| < ∞;
limp→∞ bpk(i) = 0 uniformly in i for each k ∈ N;
limp→∞ ∑k bpk(i) = 1 uniformly in i, ∀k.
By R+ we denote the set of each regular method B with bpk(i) = 0 for each p, k

and i. Given a regular non-negative summability matrix B ∈ R+, u = (uk) is said to be
B-statistically convergent to the number ` if, for every ε > 0,

∑
k:|uk−`|=ε

bpk(i)→ 0

uniformly in i, (p→ ∞).
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Definition 1 ([35]). Let B = (Bi)i∈N ∈ R+. Further, let q = (qk) be a sequence of nonnegative
numbers with p0 > 0 and Qp = ∑

p
k=0 qk → ∞ as p → ∞. A sequence u = (uk) is said to be

weighted B-statistically convergent to the number ` if, for every ε > 0,

lim
m→∞

1
Qm

m

∑
p=0

qp ∑
k:|uk−`|=ε

bpk(i) = 0 uniformly in i, ∀k.

In this case, we denote it by writing
[
statB , qp

]
− lim u = `.

Theorem 2. Let B ∈ R+ and r ∈ C[0, 1]. Then

[statB , qp]− lim
p→∞
‖K(α,s)

p,λ (r; u)− r‖C[0,1] = 0.

Proof. Let r ∈ C[0, 1] and u ∈ I be fixed. In view of the Korovkin theorem, it is sufficient
to show that

[statB , qp]− lim
p→∞
‖K(α,s)

p,λ (ej; u)− ej‖C[0,1] = 0,

where ej(u) = uj, u ∈ I and j = 0, 1, 2. By Lemma 2 and Corollary 1 we deduce that

[statB , qp]− lim
p→∞
‖K(α,s)

p,λ (e0; u)− e0‖C[0,1] = 0. (3)

Using the definition of proposed operators and Corollary 1, for j = 1 one has

sup
u∈I

∣∣∣∣K(α,s)
p,λ (e1; u)− e1(u)

∣∣∣∣ = sup
u∈I

∣∣∣∣ 1 + 2pu
2(p + 1)

+
αλ

(p + 1)(p− 1)

[
1− 2u + up+1 − (1− u)p+1

]
+

(1− α)λ

(p + 1)(p− s− 1)

[
1− 2u + up−s+1 − (1− u)p−s+1

]
− u

∣∣∣∣
≤ 5

p + 1
.

Now, for a given ε′ > 0, choosing a number ε > 0 such that ε < ε′. Then setting

J :=
{

p ∈ N :
∥∥K(α,s)

p,λ (e1; u)− e1
∥∥ = ε′

}
, J1 :=

{
p ∈ N :

5
p + 1

= ε′ − ε

}
.

Thus we find that

1
Qm

m

∑
p=0

qp ∑
k∈J

bpk(i) ≤
1

Qm

m

∑
p=0

qp ∑
k∈J1

bpk(i).

Letting m→ ∞ in the last inequality we obtain

[statB , qp]− lim
p→∞
‖K(α,s)

p,λ (e1; u)− e1‖C[0,1] = 0. (4)
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By definition of the proposed operators and Lemma 2, we have the following relation-
ships:

sup
u∈I

∣∣K(α,s)
p,λ (e2; u)− e2(u)

∣∣ = sup
u∈I

∣∣∣∣ 2(1− α)λu
(p− s− 1)(p + 1)2

[
(p + 1)up−s + p(1− 2u)− 1

]
+

2p2su2

(p− s− 1)(p + 1)2

[
up−s − (1− u)p−s

]
1 + 3pu(1 + pu)

3(p + 1)2 +
(p + (1− α)s(s− 1))u(1− u)

(p− 1)(p + 1)2

+
2αλu

(p− 1)(p + 1)2

[
(p + 1)up + p(1− 2u)− 1

]
− u2

∣∣∣∣
≤ 10

(p− 1)(p + 1)2 .

In conclusion, using the same technique as above, we have the following result:

[statB , qp]− lim
p→∞
‖K(α,s)

p,λ (e2; u)− e2‖C[0,1] = 0. (5)

Therefore, we conclude the proof by combining (3), (4) and (5).

Definition 2 ([30]). Let B ∈ R+. A sequence u = (up) is statistically weighted B-summable to
L if, for each ε > 0,

lim
j

1
j

∣∣∣∣∣
{

m 5 j :
∣∣ 1
Qm

m

∑
n=0

qp

∞

∑
k=1

upbpk(i)− L
∣∣ = ε

}∣∣∣∣∣ = 0 uniformly in i.

In this case, we denote it by NB(stat)− lim u = L.

Theorem 3 ([30]). Let u = (up) be a bounded sequence. If u is weighted B-statistically convergent
to L then it is statistically weighted B-summable to the same limit L, but not conversely.

Corollary 2. Let B ∈ R+ and r ∈ C[0, 1]. Then

NB(stat)− lim ‖K(α,s)
p,λ (r, u)− r‖C[0,1] = 0.

Proof. The proof is a direct consequence of Theorems 2 and 3. Hence the details
are omitted.

Next, we estimate the rate of weighted B-statistical convergence of K(α,s)
p,λ to r ∈ C[0, 1]

with the help of modulus of continuity of first order.

Definition 3 ([30]). Let B ∈ R+. Suppose that (wk) is a positive non-decreasing sequence.
A sequence u = (uk) is said to be weighted B-statistically convergent to ` with the rate o

(
wk
)

if,
for any ε > 0,

lim
m→∞

1
wmQm

m

∑
p=0

qp ∑
k:|uk−`|=ε

bpk(i) = 0 uniformly in i. (6)

In this case, we denote it by uk − ` =
[
statB , qp

]
− o
(
wk
)
.

Theorem 4. Let (cp)p∈N and (dp)p∈N be two positive non-decreasing sequences and let B ∈ R+.
Assume that the following conditions hold true:

(i) ‖K(α,s)
p,λ (e0; u)− e0‖C[0,1] =

[
statB , qp

]
− o
(
cp
)
,
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(ii) ω(r; δp) =
[
statB , qp

]
− o

(
dp
)

on I , where δp := ‖K(α,s)
p,λ (µ; u; λ)‖1/2

C[0,1] with

µ(u) = (t− u)2, t ∈ I . Then

‖K(α,s)
p,λ − r‖C[0,1] =

[
statB , qp

]
− o
(
ep
) (

r ∈ C[0, 1]
)
,

where ω is the usual modulus of continuity and ep = max{cp, dp}.

Proof. Let r ∈ C[0, 1] and u ∈ [0, 1] be fixed. Since K(α,s)
p,λ is linear and monotone, we may

write that

|K(α,s)
p,λ (r(t); u)− r(u)| ≤ |K(α,s)

p,λ

(
|r(t)− r(u)|; u

)
+ |r(u)| |K(α,s)

p,λ (e0; u)− e0|

≤ ω(r, s)K(α,s)
p,λ

(
|t− u|

s
+ 1; u

)
+ |r(u)| |K(α,s)

p,λ (e0; u)− e0|

= ω(r, s)
{
K(α,s)

p,λ (e0; u) +
1
s2K

(α,s)
p,λ (µ; u)

}
+ |r(u)| |K(α,s)

p,λ (e0; u)− e0|. (7)

Taking the supremum over u ∈ [0, 1] on both sides of (7), we observe that

‖K(α,s)
p,λ − r‖C[0,1] ≤ ω(r, s)

{
1
s2 ‖K

(α,s)
p,λ (µ; u)‖C[0,1] + ‖K

(α,s)
p,λ (e0; u)− e0‖C[0,1] + 1

}
+ D‖K(α,s)

p,λ (e0; u)− e0‖C[0,1],

where D = ‖r‖C[0,1]. Now, if we take δp = ‖K(α,s)
p,λ (µ; u)‖1/2

C[0,1] in the last relation, we obtain

‖K(α,s)
p,λ − r‖C[0,1] ≤ ω(r, δp)‖K(α,s)

p,λ (e0; u)− e0‖C[0,1] + 2ω(r, δp) + D‖K(α,s)
p,λ (e0; u)− e0‖C[0,1]

≤ N
{

ω(r, δp)‖K(α,s)
p,λ (e0; u)− e0‖C[0,1] + ω(r, δp) + ‖K(α,s)

p,λ (e0; u)− e0‖C[0,1]
}

,

where N = max{2, D}. For a given ε > 0, we define the sets:

U =
{

p : ‖K(α,s)
p,λ − r(u)‖C[0,1] ≥ ε

}
,

U1 =
{

p : ω(r, δp)‖K(α,s)
p,λ (e0; u)− e0‖C[0,1] ≥

ε

3N

}
U2 =

{
p : ω(r, δp) ≥

ε

3N

}
,

U3 =
{

p : ‖K(α,s)
p,λ (e0; u)− e0‖C[0,1] ≥

ε

3N

}
.

Then the inclusion U ⊂ ∪3
j=1Uj holds and

1
emQm

m

∑
p=0

qp ∑
k∈U

bpk(i) ≤
1

emQm

m

∑
p=0

qp ∑
k∈U1

bpk(i) +
1

dmQm

m

∑
p=0

qp ∑
k∈U2

bpk(i)

+
1

cmQm

m

∑
p=0

qp ∑
k∈U3

bpk(i).

By hypotheses (i) and (ii), we have

‖K(α,s)
p,λ − r‖C[0,1] =

[
statB , qp

]
− o
(
ep
)
, ep = max{cp, dp}.

This completes the proof of Theorem 4.

Let C2[0, 1] be the space of all functions r ∈ C[0, 1] such that r′, r′′ ∈ C[0, 1].
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Theorem 5. Let B = (Bi)i∈N ∈ R+. Let r ∈ C[0, 1] and let u be a point of I at which r′′(u)
exists. Then

[statB , qp]− lim
p→∞

{
p[K(α,s)

p,λ (r, u)− r(u)]
}
= (

1
2
− u)r′(u) (uniformly in i).

If r ∈ C2[0, 1], the convergence is also uniform in u ∈ I .

Proof. Let r ∈ C2[0, 1] and u ∈ [0, 1] be fixed. By taking into account Taylor’s expansion
with Peano’s form of reminder we conclude that

r(t)− r(u) = (t− u)r′(u) +
1
2
(t− u)2r′′(u) + (t− u)2 ru(t), (8)

where ru(t) is the remainder term such that ru(t) ∈ C[0, 1] and ru(t) → 0 as t → x.
Applying K(α,s)

p,λ to identity (8), we get

K(α,s)
p,λ (r, u)− r(u) = r′(u)K(α,s)

p,λ (t− u; u) +
r′′(u)

2
K(α,s)

p,λ ((t− u)2; u) +K(α,s)
p,λ ((t− u)2ru(t); u). (9)

By multiplying both sides of (9) by p and using the Cauchy–Schwarz inequality,
we have

pK(α,s)
p,λ ((t− u)2ru(t); u) ≤

√
p2K(α,s)

p,λ ((t− u)4; u)
√
K(α,s)

p,λ (ru(t); u).

Hence, in view of Lemma 2 and boundedness of the expression [statB , qp]−
lim p2K(α,s)

p,λ ((t− u)4; u), we have

[statB , qp]− lim
p→∞

p
[
K(α,s)

p,λ ((t− u)2ru(t); u)
]
= 0,

which completes the proof.

5. Some Approximation Theorems Including Pointwise and Weighted Approximation

In this part, we provide some pointwise and weighted approximation results for
operators K(α,s)

p,λ . Moreover, we establish two local approximation theorems for K(α,s)
p,λ by

the second-order modulus of smoothness and the usual modulus of continuity.
Lipschitz class is defined as follows: Let 0 < ρ ≤ 1, T ⊂ R+ = [0, ∞) and C(R+)

denote the space of all continuous functions r on R+. Then, a function r in CB(R+) belongs
to Lip(ρ) if the condition

|r(t)− r(u)| ≤ Sr,ρ|t− u|ρ (t ∈ T, u ∈ R+)

holds, where the constant Sr,ρ depends on r and ρ.

Theorem 6. Let r ∈ CB(R+), 0 < ρ ≤ 1 and T ⊂ R+ then, for each u ∈ R+,

|K(α,s)
p,λ (r, u)− r(u)| ≤ Sr,ρ

{(
2(1− α)λu

(p− s− 1)(p + 1)2

[
(p + 1)(1− u)p−s+1

]
×
(
(1− u)up−s − 1 + 2u

)
+

2p2su2

(p− s− 1)(p + 1)2

[
up−s − (1− u)p−s

]
+

3u2 − 3u + 1
3(p + 1)2 +

2αλu
(p− 1)(p + 1)2

[
(p + 1)(up − up+1 − (1− u)up−s)− 1 + 2u

]
+
(p + (1− α)s(s− 1))u(1− u)

(p− 1)(p + 1)2

)ρ/2

+ 2dρ(u, T)

}
,



Mathematics 2022, 10, 2027 11 of 21

where d(u, T) is the distance between u and T, defined by

d(u, T) = inf{|t− u| : t ∈ T}.

Proof. Let v ∈ T̄ so that |u− v| = d(u, T), where T̄ is a closure of T, then one has

|r(t)− r(u)| ≤ |r(u)− r(v)|+ |r(t)− r(v)| (u ∈ R+).

By the help of relation

|K(α,s)
p,λ (r, u)− r(u)| ≤ K(α,s)

p,λ (|r(u)− r(v)|; u) +K(α,s)
p,λ (|r(t)− r(v)|; u)

we have

|K(α,s)
p,λ (r, u)− r(u)| ≤ Sr,ρ

{
|x− v|ρ +K(α,s)

p,λ (|t− v|ρ; u)
}

≤ Sr,ρ

{
|x− v|ρ +K(α,s)

p,λ (|t− u|ρ + |x− v|ρ; u)
}

= Sr,ρ

{
2|x− v|ρ +K(α,s)

p,λ (|t− u|ρ; u)
}

.

We obtain the following relationships applying Hölder inequality to the above inequal-
ity for A = 2/ρ and B = 2/(2− ρ) :

|K(α,s)
p,λ (r, u)− r(u)| ≤ Sr,ρ

{
2dρ(u, T) +K(α,s)

p,λ

1
A
(|t− u|Aρ; u)K(α,s)

p,λ

1
B
(1B; u)

}
= Sr,ρ

{
2dρ(u, T) +K(α,s)

p,λ

ρ
2
(|t− u|2; u)

}
.

We complete the proof by Lemma 2.

Let u ∈ R+ and 0 < ρ ≤ 1, then Lipschitz-type maximal function of order ρ [36] is
expressed as

ωρ(r; u) = sup
v∈R+ ,v 6=u

|r(v)− r(u)|
|v− u|ρ . (10)

We provide a local direct estimate for K(α,s)
p,λ by the next theorem.

Theorem 7. Let r ∈ CB(R+) and 0 < ρ ≤ 1, then, we have

|K(α,s)
p,λ (r, u)− r(u)| ≤ ωρ(r; u)

{
3u2 − 3u + 1

3(p + 1)2 +
(p + (1− α)s(s− 1))u(1− u)

(p− 1)(p + 1)2

+
2p2su2

(p− s− 1)(p + 1)2

[
up−s − (1− u)p−s

]
+

2(1− α)λu
(p− s− 1)(p + 1)2

[
(p + 1)(1− u)p−s+1 + (1− u)up−s − 1 + 2u

]

+
2αλu

(p− 1)(p + 1)2

[
(p + 1)(up − up+1 − (1− u)up−s)− 1 + 2u

]} ρ
2

for all u ∈ R+.



Mathematics 2022, 10, 2027 12 of 21

Proof. We have the following relations

|K(α,s)
p,λ (r, u)− r(u)| = |K(α,s)

p,λ (r, u)− r(u)K(α,s)
p,λ (1; u)|

≤ K(α,s)
p,λ (|r(t)− r(u)|; u)

≤ ωρ(r; u)K(α,s)
p,λ (|t− u|ρ; u)

by the help of (10). Further, applying Hölder inequality to the last inequality for

A = 2/ρ and B = 2/(2− ρ)

we observe that

|K(α,s)
p,λ (r, u)− r(u)| ≤ ωρ(r; u)K(α,s)

p,λ

B
2
(|t− u|2; u).

The last inequality, together with Lemma 2 and the relation in (10) concludes the proof.

Let ψ(u) = 1 + u2 be a weight function then, the weighted space Bψ(R+) denotes the
set of all functions r on R+ having the property

|r(u)| ≤ ψ(u)Sr,

where a constant Sr > 0 depending on r. It is known that Bψ(R+) is a Banach space
equipped with the norm

‖r‖ψ = sup
u∈R+

|r(u)|
ψ(u)

.

Moreover, Cψ(R+) denotes the subspace of all continuous functions in Bψ(R+) and

C∗ψ(R+) =

{
r ∈ Cψ(R+) : lim

u→∞

|r(u)|
ψ(u)

< ∞
}

.

Theorem 8. Let ψ(u) = 1 + u2 then, for all r ∈ C∗ψ(R+), we have

lim
p→∞
‖K(α,s)

p,λ (r, u)− r‖ψ = 0.

Proof. In view of the weighted Korovkin theorem, Definition 1 and Corollary 1, it is easy
to see that

lim
p→∞
‖K(α,s)

p,λ (ei; u)− ei‖ψ = 0

holds for i = 0, 1, 2. This completes the proof.

Theorem 9. Let ψ(u) = 1 + u2 and r ∈ C∗ψ(R+) then, one has

lim
p→∞

sup
u∈R+

|K(α,s)
p,λ (r, u)− r(u)|

ψ1+θ(u)
= 0. (11)

Proof. We have the following relationshops for any fixed γ > 0:
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sup
u∈R+

|K(α,s)
p,λ (r, u)− r(u)|

ψ1+θ(u)
≤ sup

u≤γ

|K(α,s)
p,λ (r, u)− r(u)|

ψ1+θ(u)
+ sup

u≥γ

|K(α,s)
p,λ (r, u)− r(u)|

ψ1+θ(u)

≤ ‖K(α,s)
p,λ (r, u)− r‖C[0,γ] + ‖r‖ψ sup

u≥γ

|K(α,s)
p,λ (1 + t2; u)|

ψ1+θ(u)

+ sup
u≥γ

|r(u)|
ψ1+θ(u)

. (12)

Using the fact |r(u)| ≤ ψ(u)N we have

sup
u≥γ

|r(u)|
ψ1+θ(u)

≤
‖r(u)‖ψ

(1 + γ2)1+θ
.

Let ε > 0 be given. We can choose γ to be so large that the following inequality holds:

‖r(u)‖ψ

(1 + γ2)1+θ
< ε/3. (13)

By the help of Corollary 1, we obtain

‖r‖ψ

|K(α,s)
p,λ (1 + t2; u)|

ψ1+θ(u)
→ 0 (p→ ∞).

Further, for the choice of γ as large enough, we have

‖r‖ψ sup
u≥γ

|K(α,s)
p,λ (1 + t2; u)|

ψ1+θ(u)
< ε/3. (14)

Moreover, bearing in mind the Korovkin theorem, the first term on the right-hand side
of inequality (12) becomes

‖K(α,s)
p,λ (r; u)− r‖C[0,γ] < ε/3. (15)

Combining the results in (13)–(15), we obtain the desired result.

In order to give a local approximation theorem, we need to remember certain notions
regarding the modulus of continuity, modulus of smoothness and Peetre’s K-functional.

The modulus of continuity w(r, δ) of r ∈ C[a, b] is defined by

w(r, δ) := sup{|r(u)− r(v)| : u, v ∈ [a, b], |u− v| ≤ δ},

where δ > 0. The following inequality is satisfied for any δ > 0 and each u ∈ [a, b]:

|r(u)− r(v)| ≤ ω(r, δ)

(
|u− v|

δ
+ 1
)

.

The second-order modulus of smoothness of r ∈ C[0, 1] is defined as follows:

w2(r,
√

δ) := sup
0<h≤

√
δ

sup
u,u+2h∈I

{|r(u + 2h)− 2r(u + h) + r(u)|},

and the related K-functional is defined by

K2(r, δ) = inf
{
||r− g||C[0,1] + δ||g′′||C[0,1] : g ∈W2[0, 1]

}
,
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where δ > 0 and W2[0, 1] = {g ∈ C[0, 1] : g′, g′′ ∈ C[0, 1]}. It is also known that the in-
equality

K2(r, δ) ≤ C w2(r,
√

δ) (16)

holds for all δ > 0, in which the absolute constant C > 0 is independent of δ and r (see [37]).
Now, we establish a direct local approximation theorem for operators K(α,s)

p,λ .

Theorem 10. The following inequality is satisfied for the operators K(α,s)
p,λ :

|K(α,s)
p,λ (r, u)− r(u)| ≤ C w2

(
r,

ψn(u)
2

)
+ w(r, αp(u)),

where C is an absolute positive constant, ψp(u) = 1
2

√
βp(u) + α2

p(u) and

αp(u) = K(α,s)
p,λ ((t− u); u), βp(u) = K(α,s)

p,λ ((t− u)2; u)

such that both terms αp(u) and βp(u) converge to zero when p→ ∞.

Proof. We construct the operators K(α,s)
p,λ , which preserves constants and linear functions

for u ∈ [0, 1]:

K(α,s)
p,λ (r; u) = K(α,s)

p,λ (r, u) + r(u)− r
[

1 + 2pu
2(p + 1)

+
αλ

(p + 1)(p− 1)

(
1− 2u + up+1 − (1− u)p+1

)
+

(1− α)λ

(p + 1)(p− s− 1)

(
1− 2u + up−s+1 − (1− u)p−s+1

)]
. (17)

Let t, u ∈ [0, 1], then Taylor’s expansion formula for g ∈W2[0, 1] is

g(t) = g(u) + (t− u)g′(u) +
∫ t

u
(t− s)g′′(s)ds. (18)

Applying K(α,s)
p,λ to both sides of (18), we get

K(α,s)
p,λ (g; u)− g(u) = g′(u)K(α,s)

p,λ (t− u; u) + K(α,s)
p,λ

( ∫ t

u
(t− s)g′′(s)ds; u

)
= K(α,s)

p,λ

( ∫ t

u
(t− s)g′′(s)ds; u

)
−
∫ αp(u)+u

u

(
αp(u) + u− s

)
g′′(s)ds.

So

|K(α,s)
p,λ (g; u)− g(u)| ≤ K(α,s)

p,λ

(∣∣∣ ∫ t

u
|t− s| |g′′(s)|ds

∣∣∣; u
)
−
∫ αp(u)+u

u

∣∣αp(u) + u− s
∣∣ |g′′(s)| ds

≤ ‖g′′‖C[0,1]
(
K(α,s)

p,λ ((t− u)2; u) +K(α,s)
p,λ

2
(t− u; u)

)
.

We get the following relationships taking (17) into account:

‖K(α,s)
p,λ (g; u)‖C[0,1] ≤ ‖K

(α,s)
p,λ (g; u)‖C[0,1] + ‖g(u)‖C[0,1] + ‖g(αp(u) + u)‖C[0,1] ≤ ‖3g‖C[0,1]. (19)
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By (17) and (19) we get

|K(α,s)
p,λ (r, u)− r(u)| ≤ |K(α,s)

p,λ ( f − g; u)|+ |K(α,s)
p,λ (g; u)− g(u)|

+ |g(u)− r(u)|+ |r(αp + u)− r(u)|

≤ 4‖r− g‖C[0,1] + ψ2
p(u)‖g

′′‖C[0,1] + w(r, αn(u)),

where g ∈W2[0, 1] and r ∈ C[0, 1]. By inequality (16) and taking infimum on the right-hand
side of the above inequality over all g ∈W2[0, 1], we get

|K(α,s)
p,λ (r, u)− r(u)| ≤ 4K2(r, ψ2

n(u)/4) + w(r, αp(u)) ≤ C w2

(
r,

ψp(u)
2

)
+ w(r, αp(u)),

which completes the proof.

Theorem 11. Let r ∈ C1[0, 1]. For any u ∈ [0, 1], the following inequality holds:

|K(α,s)
p,λ (r, u)− r(u)| ≤ |αp(u)| |r′(u)|+ 2

√
βp(u)w

(
r′,
√

βp(u)
)
.

Proof. We have the following relationship

r(t)− r(u) = (t− u)r′(u) +
∫ t

u
(r′(s)− r′(u))ds

for any t, u ∈ [0, 1]. Applying K(α,s)
p,λ to the sides of the above relationship, we obtain

K(α,s)
p,λ (r(t)− r(u); u) = r′(u)K(α,s)

p,λ (t− u; u) +K(α,s)
p,λ

( ∫ t

u
(r′(s)− r′(u))ds; u

)
.

It is well known that for any ζ > 0 and each s ∈ [0, 1],

|r(s)− r(u)| ≤ w(r, ζ)

(
|s− u|

ζ
+ 1
)

, r ∈ C[0, 1].

By the above inequality we have∣∣∣∣ ∫ t

u
(r′(s)− r′(u))ds

∣∣∣∣ ≤ w(r′, ζ)

(
(t− u)2

ζ
+ |t− u|

)
.

Hence, we have

|K(α,s)
p,λ (r, u)− r(u)| ≤ |r′(u)| |K(α,s)

p,λ (t− u; u)|+ w(r′, ζ)

{
1
ζ
K(α,s)

p,λ ((t− u)2; u) +K(α,s)
p,λ (t− u; u)

}
. (20)

We get the following inequality if we apply the Cauchy–Schwarz inequality on the
right hand side of (20):

|K(α,s)
p,λ (r, u)− r(u)| ≤ |r′(u)||αp(u)|+ w(r′, ζ)

(1
ζ
K(α,s)

p,λ

1/2
((t− u)2; u) + 1

)
K(α,s)

p,λ

1/2
((t− u)2; u).

We prove the theorem if we choose ζ as ζ = β1/2
p (u).

6. Convergence by Graphics

In this section, we provide some graphics that demonstrate the consistency, accuracy
and convergence of the proposed blending operators for different kinds of functions.
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Example 1. Consider the trigonometric function

r1(u) =
1
5

(
0.5u2 + 4

)
sin(3πu)

on the closed interval I . In Figures 1 and 2, we demonstrate approximation and maximum error of
approximation of the proposed operators with the values s = 3, α = 0.9 and λ = 1.

Example 2. Consider the piece-wise function

r2(u) =


8u 0 ≤ u ≤ 1

5
4(1+u)

3
1
5 < u ≤ 1

2
4(2−u)

3
1
2 < u ≤ 4

5

8(1− u) 4
5 < u ≤ 1

on the interval I (see [38]). In Figures 3 and 4, we fix the values s = 3, α = 0.9 and λ = 1, and
change the values of p to see the approximation behavior and maximum error of approximation of
the proposed operators.

Example 3. Consider the trigonometric function

r3(u) =
cos(7πu)
2.5u2 − 10

on the closed interval I . In Figures 5 and 6, we demonstrate approximation and maximum error of
approximation of the proposed operators with certain different values of s, α and λ, and the fixed
value of p = 20.

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

function p=25 p=50 p=100

Figure 1. Approximations by K(α,s)
p,λ for function r1(u).
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Figure 2. Maximum error of approximation for function r1(u).
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Figure 3. Approximations by K(α,s)
p,λ for function r2(u).
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Figure 4. Maximum error of approximation for function r2(u).
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Figure 5. Approximations by K(α,s)
p,λ for function r3(u).
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Figure 6. Maximum error of approximation for function r3(u).

Therefore, we demonstrate the consistency and accuracy of convergence behavior for
the proposed blending-type operators via certain computer graphics. The graphics show
that the proposed operators approximate different kinds of functions for different values of
parameters λ, α and s.

7. Conclusions

Many convergence results, including weighted B-statistical, pointwise and weighted
convergences, are obtained for the following introduced blending (α, λ, s)-Bernstein–
Kantorovich operators:

K(α,s)
p,λ (r; u) = (p + 1)

p

∑
i=0

b̃α,s
p,i (λ; u)

∫ i+1
p+1

i
p+1

r(t)dt

The proposed operators extend the current literature for certain values of λ, α and the
positive integer s :

(i) If we take α = 1, λ = 0 and s = 2, K(α,s)
p,λ becomes the classical Kantorovich operators

defined in [3].
(ii) If we take α = 1 and s = 2, K(α,s)

p,λ becomes the λ−Kantorovich operators defined
in [6,39].

(iii) If we take λ = 0 and s = 2, K(α,s)
p,λ becomes the α−Kantorovich operators defined

in [4].

As a continuation of this study, we will focus on a bivariate version of the proposed
operators defined in this paper.
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