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Abstract: In this paper, a parallel Smoothed Finite Element Method (S-FEM) package epSFEM using
incremental theory to solve elastoplastic problems is developed by employing the Julia language
on a multicore CPU. The S-FEM, a new numerical method combining the Finite Element Method
(FEM) and strain smoothing technique, was proposed by Liu G.R. in recent years. The S-FEM
model is softer than the FEM model for identical grid structures, has lower sensitivity to mesh
distortion, and usually produces more accurate solutions and a higher convergence speed. Julia, as an
efficient, user-friendly and open-source programming language, balances computational performance,
programming difficulty and code readability. We validate the performance of the epSFEM with two
sets of benchmark tests. The benchmark results indicate that (1) the calculation accuracy of epSFEM
is higher than that of the FEM when employing the same mesh model; (2) the commercial FEM
software requires 10,619 s to calculate an elastoplastic model consisting of approximately 2.45 million
triangular elements, while in comparison, epSFEM requires only 5876.3 s for the same computational
model; and (3) epSFEM executed in parallel on a 24-core CPU is approximately 10.6 times faster than
the corresponding serial version.

Keywords: elastic-plastic problems; incremental theory; Smoothed Finite Element Method (S-FEM);
Julia language; parallel programming

MSC: 35-04

1. Introduction

Currently, numerical methods are the most important tools for solving various sci-
entific and engineering problems [1]. For example, the Finite Element Method (FEM),
one of the most successful numerical methods, has been widely employed in different
scientific and engineering fields because of its mathematically rigorous proof and satisfac-
tory efficiency [2–4]. However, the shortcomings and deficiencies of FEM are becoming
increasingly significant [2,5–8]. (1) The FEM applies the problem domain of finite degrees
of freedom to the problem domain of infinite degrees of freedom, which makes the system
stiffness matrix “too rigid”. (2) The conventional FEM has high requirements for mesh
quality and cannot deal with distorted meshes. (3) When the conventional FEM uses simple
and low-order elements to calculate large and complex structures, the calculation accuracy
is often unsatisfactory, while when higher-order elements with higher accuracy are used,
the computational cost is quite expensive.

To cope with the above deficiencies of FEM or decrease the computational cost of
generating meshes, meshfree methods have emerged, such as Radial Point Interpola-
tion Method (RPIM), Element Free Galerkin (EFG) and Meshless Local Petrov–Galerkin
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(MLPG) [2,5,9,10]. The mesh-free methods can be used to analyze crack problems and
large deformation problems because mesh-free methods employ a group of scattered nodes
in the discrete problem domain, avoiding the requirement for continuity of the problem
domain. However, the more complex computational process of mesh-free methods leads to
the desire to achieve higher computational accuracy, which is not only computationally
time-consuming but also inefficient [7].

In recent years, the Smoothed Finite Element Method (S-FEM), a new numerical method
combining the FEM and strain smoothing technique was proposed by Liu G.R. et al. [7,11].
The system stiffness matrix of S-FEM model is softer than the FEM model for identical grid
structures, has lower sensitivity to mesh distortion, and usually produces more accurate
solutions and a higher convergence speed [7]. Due to the above characteristics, S-FEM
is frequently used in the fields of material mechanics [12,13], dynamics [14,15], fracture
mechanics [16], plate and shell mechanics [17], fluid structure interaction [18], acoustics [19],
heat transfer [20] and biomechanics [21].

Typical S-FEM models include cell-based S-FEM (CS-FEM) [15,22], node-based S-FEM
(NS-FEM) [23,24], edge-based S-FEM (ES-FEM) [14,16] for 2D and 3D problems and face-
based S-FEM (FS-FEM) [25] for 3D problems. In addition, there are hybrid and modified
types of S-FEM. For example, Chen et al. [26] proposed an edge-based smoothed extended
finite element method, ESm-XFEM, for the analysis of linear elastic fracture mechanics. An
improved ES-FEM method, bES-FEM, was proposed by Nguyen-Xuan et al. [27]. bES-FEM
can be applied to almost incompressible and incompressible problems. Xu et al. [28]
proposed a hybrid smoothed finite element method (H-SFEM) for solving solid mechanics
problems by combining FEM and NS-FEM based on triangular meshes. Zeng et al. [29]
proposed a beta finite element method (βFEM) based on the smooth strain technique
applied to the modeling of crystalline materials.

Compared with FEM, the calculation of the S-FEM has the following two differences.
First, we need to construct the smoothing domains and modify or reconstruct the strain field
in the S-FEM. Moreover, because the smoothing domain may involve a portion of adjacent
elements, the memory requirements for S-FEM will be larger [7]. The two differences
mentioned above may lead to a higher computational cost for the S-FEM than the FEM for
the same grid structure. However, given the calculation cost, the results calculated by the
S-FEM model are more accurate than the FEM, and thus, achieve higher efficiency. To make
S-FEM more applicable to large-scale engineering problems, parallel strategies of multicore
CPUs and/or multicore GPUs are usually used to improve and optimize the computational
power of S-FEM.

Currently, there are many software packages developed for utilizing FEM to solve
various scientific and engineering problems, while the development of software and library
packages for the S-FEM is still in progress [30]. Current S-FEM software packages are
mostly implemented in C++ and Fortran. However, static languages such as Fortran and
C/C++ have more complex language structures, are more difficult to learn, and require
high programming skills. Although high-level dynamic languages, such as MATLAB
and Python, are easy to learn, highly visual and interactive, the computing speed of
dynamic language is slow and there are expensive licensing fees associated with the use
of commercial software such as MATLAB. Julia is an efficient, user-friendly, open-source
programming language, developed by MIT in 2009 [31]. Furthermore, it balances the
problems of computing performance, programming difficulty and code legibility [32].

Many researchers have used the Julia language to develop software packages re-
lated to numerical computation. For example, Frondelius et al. [33] designed an FEM
structure by using the Julia language, which enables large-scale FEM models to be pro-
cessed by using distributed simple programming models across a cluster of computers.
Sinaie et al. [34] implemented the Material Point Method (MPM) in the Julia language. In
the large strain solid mechanics simulation, only Julia’s built-in characteristics are used,
which has better performance than the MPM code based on MATLAB. Zenan Huo et al. [35]
implemented a package of S-FEM for linear elastic static problems by using Julia lan-
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guage. Pawar et al. [36] developed a one-dimensional solver for the Euler equation, and an
arakawa spectral solver and pseudo-spectral solver for the two-dimensional incompressible
Navier–Stokes equation for the analysis of computational fluid dynamics using the Julia
language. Heitzinger et al. [37] used the Julia language to implement numerical stochastic
homogeneity of elliptic problems and discussed the advantages of using Julia to solve
multiscale problems involving partial differential equations. Kemmer et al. [38] designed
a finite element and boundary element solver using Julia to calculate the electrostatic
potential of proteins in structural solvents. Fairbrother et al. [39] developed a package for
Gaussian processes, GaussianProcesses.jl, using the Julia language. GaussianProcesses.jl
takes advantage of the inherent computational benefits of the Julia language, including mul-
tiple assignments and just-in-time compilation, to generate fast, flexible and user-friendly
packages for Gaussian processes.

In this paper, a parallel incremental S-FEM software package epSFEM for elastic-plastic
problems is designed and implemented by utilizing the Julia language on a multi-core
CPU. Distributed parallelism and partitioned parallelism are used for the assembly of
the stiffness matrix, allowing multiple cells to be assembled simultaneously, avoiding
excessive for loops and saving computation time. The system of equations is solved using
the PARDISO [40] parallel sparse matrix solver. epSFEM applies to more common and
complex elastic-plastic mechanical problems in practical engineering. Moreover, epSFEM
adopts an incremental theory suitable for most load cases to solve elastic-plastic problems,
and the calculation results are more reliable and accurate.

The contributions of this paper can be summarized as follows:
(1) A parallel S-FEM package epSFEM using incremental theory to solve elastic-plastic

problems is developed by Julia language.
(2) The computational efficiency of epSFEM is improved by using distributed and

partitioned parallel strategy on a multi-core CPU.
(3) epSFEM features a clear structure and legible code and can be easily extended.
The rest of this paper is organized as follows. The theory related to S-FEM and Julia

language are presented in Section 2. The detailed implementation steps of the software
package epSFEM are described in Section 3. Two sets of numerical examples are used
to assess the correctness of the epSFEM and to evaluate its efficiency in Section 4. The
performance, strengths and weaknesses of the epSFEM and the future direction of work
are discussed in Section 5. Section 6 presents the main conclusions.

2. Background

In this section, the theoretical basis of the S-FEM and parallelization strategy of the
Julia language on a multicore CPU are introduced.

2.1. Smoothed Finite Element Method (S-FEM)
2.1.1. Overview of the S-FEM

The S-FEM is the implementation of the FEM by employing the strain smoothing
technique to modify or reconstruct the strain field such that more accurate or special
performance solutions can be obtained. NS-FEM, for example, has an upper bound solution
to the model because of its weak super-convergence, insensitivity to mesh deformation
and an overly soft system stiffness matrix. In the ES-FEM and FS-FEM models, there are
no unphysical modes, so both methods give good results for dynamic and static problems.
In the S-FEM, the most important goal is the modification of the compatible strain field or
reconstruction of the strain field only from the displacement field [11]. To guarantee the
stable and convergent properties of the established S-FEM model, this strain modification or
reconstruction needs to be conducted in an appropriate way to obtain special characteristics.
Strain modification or reconstruction can be implemented within the element, but it is
generally conducted across the element to obtain more information from adjacent elements.
Different modification or reconstruction methods correspond to separate S-FEMs, that is,
CS-FEM, NS-FEM, ES-FEM and FS-FEM.
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For two-dimensional static problems, ultra accurate numerical solutions can be ob-
tained using ES-FEM, and the calculation results of ES-FEM based on T3 elements are even
more accurate than traditional FEM with Q4 elements (same number of nodes) [11,14].
Therefore, the ES-FEM is employed to solve the two-dimensional elastic-plastic problem in
this paper, and the implementation steps are introduced as follows.

2.1.2. Workflow of the ES-FEM

The ES-FEM calculation process is similar to that of the FEM, except that the ES-FEM
needs to construct a smoothing domain on the basis of the FEM model and modify or
reconstruct the strain field. As shown in Figure 1, many techniques designed for FEM can
be adapted for ES-FEM. In short, the difference between the ES-FEM and FEM is that all
calculations of the FEM are based on elements, while all calculations of the ES-FEM are
conducted on smoothing domains.

FEM ES-FEM

Generate FEM mesh Generate FEM mesh and 

form smoothing domains 

Calculate the elements 

shape function matrix 

Calculate the smoothing 

domain shape function 

matrix 

Calculate the element 

strain matrix 
Calculate the smoothed strain 

matrix 

Calculate the element 

stiffness matrix 
Calculate the smoothed 

stiffness matrix 

Assemble system stiffness matrix

Impose displacement boundary 

conditions 

Solve system equations and calculate 

node displacement 

Element loop Edge loop 

Post-processing 

Figure 1. Flow chart of the FEM and ES-FEM.

The two-dimensional solid mechanics problem with problem domain Ω and bound-
ary Γ = Γu ∪ Γt are considered, where Γu is the essential boundary where displacement
conditions are prescribed and Γt is the natural or force boundary.

The calculation procedure of ES-FEM is as follows [7,11,14]:
(1) Discretization of the problem domains and construction of the smoothing domains
In the ES-FEM, general polygonal elements are used to divide the problem domain,

mainly T3 elements suitable for solving two-dimensional problems. When the T3 element is
used, the meshing can be the same as the standard FEM, such as the widely used Delaunay
triangulation method.
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As shown in Figure 2, on the basis of the polygonal element mesh, the smoothing do-
main is constructed. The problem domain is divided into Ne polygonal elements, including
Neg edges. The edge-based smoothing domain is composed of two nodes connecting one
edge and the centroid of its adjacent elements. The two nodes A and B connecting edge AB
and centroid D of the triangle element form the smoothing domain (ABD), see Figure 2. The
construction of the smoothing domain, such as the discrete problem domain, must follow
the principle of no gap and no overlap, that is, Ω = Ωs

1 ∪Ωs
2 ∪ . . . ∪Ωs

Ne
, Ωs

i ∩Ωs
j = ∅,

and i 6= j.

Figure 2. Polygon element mesh and the edge-based smoothing domain in ES-FEM.

(2) Creation of the displacement field
The generalized displacement field ũ at any point in the triangular element is approxi-

mated as:
ũ = ∑Nn

i=1 Ni(x)d̃i (1)

where Nn is the number of smoothing domain nodes, d̃i is the nodal displacement at node
i, and Ni(x) is the shape function:

Ni(x) =

 Ni(x)
. . .

Ni(x)


n×n

(2)

where n is the degree of freedom of the smoothing domain nodes.
The Gauss integration point interpolation distribution of the ES-FEM shape function is

illustrated in Figure 3. As shown in Figure 3, the commonly used linear triangular elements
are employed to divide the mesh. Here, the shape function values at the Gauss integral
point are calculated in two cases: boundary edge and internal edge. The results are shown
in Tables 1 and 2.

(3) Construction of the smoothed strain field
For triangular, quadrilateral and polygonal elements, strain smoothing techniques

can be used to construct the strain field directly from the boundary integrals of the shape
function without the need for coordinate mapping.
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s
k

��
�

Figure 3. Illustration of the interpolation distribution of the Gaussian integration points of the
ES-FEM shape function.

Table 1. The shape function entries at different points on the boundary of the smoothing domain
connected to the outer edge 1–2 in Figure 3.

Node Number 1 2 3 Node Attributes

1 1.0 0.0 0.0 Field node
2 0.0 1.0 0.0 Field node
3 0.0 0.0 1.0 Field node
A 1/3 1/3 1/3 Centroid of element
g1 1/2 1/2 0.0 Gauss point
g2 1/6 4/6 1/6 Gauss point
g3 4/6 1/6 1/6 Gauss point

Table 2. The shape function entries at different points on the internal smoothing domain connected
with the inner edges 3–5 in Figure 3.

Node Number 3 4 5 6 Node Attributes

3 1.0 0.0 0.0 0.0 Field node
4 0.0 1.0 0.0 0.0 Field node
5 0.0 0.0 1.0 0.0 Field node
6 0.0 0.0 0.0 1.0 Field node
B 1/3 1/3 1/3 0.0 Centroid of element
C 1/3 0.0 1/3 1/3 Centroid of element
g4 4/6 1/6 1/6 0.0 Gauss point
g5 1/6 1/6 4/6 0.0 Gauss point
g6 1/6 0.0 4/6 1/6 Gauss point
g7 4/6 0.0 1/6 1/6 Gauss point

In the ES-FEM, the smoothed strain ε̄ is computed as follows:

ε̄ =
∫

Ωs
k

ε̃(x)Φ(x)dΩ (3)
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where ε̃(x) = Ldu is the strain that satisfies the compatibility condition in the traditional
FEM, Φ(x) is the smoothing function, and Ωs

k is the smoothing domain, which can be
defined as follows:

Φ(x) =

{
1

As
k
, x ∈ Ωs

k

0, x /∈ Ωs
k

(4)

where As
k is the area of the smoothing domain.

Combining the Gaussian divergence theorem, the domain integral is transformed into
the edge integral to obtain the following smoothed strain calculation equation:

ε̄ =
∫

Ωs
k

ε̃(x)dΩ =
∫

Ωs
k

Ldũ(x)dΩ = (1/As
k)
∫

Γs
k

Ln(x)ũ(x)dΓ, x ∈ Ωs
k (5)

where Ld is the partial differential matrix operator, Ln is the outward unit normal vector
and Γs

k is the boundary of the edge-based smoothing domain.

Ln(x) =

 nx 0
0 ny

ny nx

 (6)

where nx and ny are the x-axis and y-axis components of the normal vector outside the
unit, respectively.

Similar to the FEM, the smoothed strain field is divided into:

ε̄(x) = ∑Nn
I B̄I(xk)dI (7)

where BI is the smoothed strain matrix:

B̄I(xk) =

 b̄Ix(xk) 0
0 b̄Iy(xk)

b̄Iy(xk) b̄Ix(xk)

 (8)

where b̄Ix(xk) and b̄Iy(xk) is defined as shown in Equation (9). The boundary integral
method is used to solve the smoothed strain matrix. This method is applicable to any
polygonal geometry in the smoothing domain. b̄Ix = (1/As

k)
∫

Γs
k

nx NI(x)dΓ = (1/As
k)∑NI

i=1 ni,x NI(xG
i )li

b̄Iy = (1/As
k)
∫

Γs
k

nyNI(x)dΓ = (1/As
k)∑NI

i=1 ni,yNI(xG
i )li

(9)

where NI is the number of segments of Γs
k, ni,x and ni,y are the outer normal vectors of the Ith

integration segment, xG
i is the midpoint of each segment of the boundary, that is, the Gauss

integration point, and NI(xG
i ) is the shape function value at the Gauss integration point.

(4) Establishment system of equations
The smoothed Galerkin weak form is utilized to establish the system equation in

the ES-FEM. During this process, only a simple summation calculation of the relevant
parameters of the smoothing domain is required.

The linear system of equations of ES-FEM is:

K̄ES−FEMd̄ = f̃ (10)

where d̄ is the displacement vector of all nodes in the S-FEM and f̃ is the vector of all loads.
K̄ES−FEM is the system stiffness matrix of the ES-FEM and defined as Equation (11):

K̄ES−FEM
IJ =

Neg

∑
k=1

∫
Ωs

k

B̄T
I cB̄JdΩ =

Neg

∑
k=1

B̄T
I cB̄J As

k (11)
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where c is the matrix of elasticity coefficients.
(5) Imposition of the boundary conditions
In the ES-FEM, the application process of displacement boundary conditions is similar

to that of the FEM because the shape function used in the S-FEM has the same delta
property as the FEM. The main methods include the direct method, set “1”, multiple large
numbers, Lagrange multiplier and penalty function. The force boundary conditions are
added directly to the corresponding nodes.

(6) Postprocessing
The weighted average rule is used to obtain the equivalent nodal stress in the smooth-

ing domain, and the shape function interpolation technique is used to obtain the continuous
stress field in the problem domain. The process is similar to the FEM. Finally, the accuracy
of the results is assessed in relation to the actual problem.

2.2. The Julia Language

Julia, officially released in 2012, is a flexible dynamic language for scientific and
numerical computation [41]. To solve large-scale numerical computation problems, parallel
computing is considered essential. There are useful built-in features in Julia that make
it easier for developers to design efficient parallel code. Three of the parallel strategies,
that is, coroutine, multithreaded and distributed computing, are dependent on a multicore
CPU. Developers can select the appropriate parallelism method for their needs. Parallel
computing on many-core GPUs can be conducted by using specific packages or utilizing
the built-in function of Julia and parallel arrays [1].

In this paper, parallelism on a multicore CPU is applied to effectively improve the
calculation and assembly efficiency of the global stiffness matrix. In the Julia language,
distributed computing based on a multicore CPU first redistributes tasks according to the
number of CPU cores of the computer and then dynamically allocates computing tasks to
each process so that multiple processes can be calculated at the same time, thus improving
the computing efficiency. In the parallel computing of Julia language, “SharedArray” is
used to reduce memory usage and improve computational efficiency. Moreover, when a
“SharedArray” is employed, multiple processes are allowed to operate on the same array in
the meantime [42,43].

3. The Implementation of Package epSFEM
3.1. Overview

A parallel S-FEM package using incremental theory to solve elastic-plastic problems is
developed on a multicore CPU. This package contains the following three components:

Preprocessing: The preprocessing includes mesh generation and the construction of
smoothing domains based on the mesh. After the preprocessing is completed, the model
details of constructing the smoothing domain can be obtained, and stored in sparate five
files: nodes, elements, internal edges, external edges and the centroids of mesh elements.

Solver: The solver uses incremental S-FEM to solve the elastoplastic problems, which
is the main part of the whole software package. It is mainly categorized into: (1) assembly
of the elastic stiffness matrix and (2) incremental loading and semismooth Newton method
iterations to solve the system of equations. The calculation procedure of the incremental
loading and semismooth Newton method iterations of the solver is illustrated in Figure 4.

Postprocessing: ParaView [44] is utilized to visualize the numerical calculation re-
sults. The WriteVTK.jl package in Julia is used to write the “vtu” format file needed for
ParaView visualization.
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Set incremental step

Initialize  unknown 

arrays

Loop in incremental 

steps

Elastic prediction

Plastic correction

Calculate D_tangent

Assemble  K_tangent

Calculate  internal force 

vector

Impose boundary 

conditions

Solve equations

Obtain  displacement 

increment dU  

Update  total 

displacement U

Iteration termination 

condition

criterion<1e-3

The number of 

iterations

it>50

The result does not 

converge

Update  hardening 

variables and plastic 

strain

Incremental step 

loading is complete

The output

Assemble tangent stiffness matrix

Establish system equations

Von Mises

NO

YES

YESYES

NO NO

Figure 4. Illustration of the calculation procedure of incremental loading and semismooth Newton
method iterations.

3.2. Preprocessing
3.2.1. Mesh Generation

Mesh generation is the first step of the numerical analysis, which also affects the
accuracy and efficiency of the numerical analysis. Currently, there are many mature mesh
generation algorithms and software. The focus of this paper is on the solver section, so a
simple direct generation method is used to generate the mesh and then divide the smooth-
ing domain on this basis. Because T3 elements have good adaptability and are most used
in science and engineering practice, we choose T3 elements to divide the problem domain.

3.2.2. Construction of the Smoothing Domain

Constructing the smoothing domain based on the meshing of the problem domain is
one of the key tasks of the S-FEM. According to the methods of constructing the smoothing
domain and storing model information in Refs. [35,45], the smoothing domain of the mesh
is constructed, and the model information after dividing the smoothing domain is output.
To get the best performance out of the Julia language, the following calculations can be
looped in the unit of column, and the model information is stored based on the column.
In this paper, we address the mesh details by integrating the features of ES-FEM and
Julia parallel computation and then utilize five matrices to save the mesh details in an
appropriate way; see Figure 5.

The “Node” matrix stores the x and y coordinates of the mesh nodes. The “Centroid”
matrix stores the x and y coordinates of the center of the cell. The node numbers corre-
sponding to the mesh cells are stored in the “Element”. The three node numbers of the
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triangular cells are stored in the three rows of “Element” in a counterclockwise order, and
the number of columns is the number of mesh cells.

In the ES-FEM, the smoothing domain is constructed by using edges as the basis. We
divide all the edges of the model into two categories: the outer edges are saved in the
“Edge_out” matrix, and the inner edges are saved in the “Edge_in” matrix. For the matrix
“Edge_out”, the two node numbers of the outer edge are stored in the first two rows, the
serial number of the triangle is appended to the third row, and the rest point of the triangle
is appended to the fourth row. Because one inner edge belongs to two triangles, the first
two rows store the node numbers of the inner edges, the third and fourth rows of “Edge_in”
are the serial numbers of neighboring triangles and the last two rows are the numbers of
the other points in the triangle.

1 2
2 3
4 4

 
 
 
  

5 6

5 6

x x
y y
 
 
 

1 2 3 4
2 3 4 1
1 2 2 1
4 4 2 2

 
 
 
 
 
 

2
4
1
2
1
3

 
 
 
 
 
 
 
 
 

1 2 3 4

1 2 3 4

x x x x
y y y y
 
 
 

Node Centroid

Element Edge_out Edge_in

: ID of the triangle 1-2-4
: ID of the triangle 2-3-4

Figure 5. Illustration of the matrices “Node”, “Centroid”, “Element”, “Edge_out” and “Edge_in”,
using two adjacent triangles as examples.

3.3. Solver

The incremental S-FEM is utilized to address the elastoplastic problem, choosing the
implicit constitutive integration algorithm of the linear kinematic hardening Von Mises
constitutive model and the corresponding consistent tangent modulus. First, the elastic
predicted stress is calculated according to the strain of the equilibrium iteration, and then
the modified stress is calculated according to a certain direction to make the stress return to
the updated yield surface [46,47]. The nonlinear equations are solved by employing the
semismooth Newton method.

The solution process is composed of two major procedures: (1) assembly of the elastic
stiffness matrix and (2) incremental loading and semismooth Newton method iterations.
The second procedure is composed of multiple incremental step cyclic calculations. Each
incremental step can be divided into three steps: (1) assembly of tangent stiffness matrix,
(2) solving of equations and (3) updating of hardening variables and plastic strain. Accord-
ing to the characteristics of parallel computing, the calculation of the latter step cannot be
dependent on the previous step, so when assembling the elastic stiffness matrix, the tangent
stiffness matrix can be calculated in parallel to improve efficiency. Distributed computing
is used in Julia to calculate the elastic stiffness matrix and the tangent stiffness matrix for
multiple elements in parallel. When solving the overall nonlinear system equations, we
utilize the semismooth Newton method for each iteration. For the set of equations in each
iteration, a parallel sparse equation solver, PARDISO, is used [40]. The detailed procedure
of the solver in epSFEM will be presented in the subsequent sections.

3.3.1. Assembly of Elastic Stiffness Matrix

After the model is preprocessed, it needs to be assembled with an elastic stiffness
matrix first. In epSFEM, we calculate the stiffness matrix of the associated smoothing
domain by dividing the outer edge and the inner edge, and the calculation process is
basically the same. Taking the internal edge as an example:
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(1) The areas of the two triangle elements that share the inner edge is attached are computed.
This process is conducted by procedure “area.jl” according to Equations (12)–(16):

a =

√
(x1 − x2)

2 + (y1 − y2)
2 (12)

b =

√
(x2 − x3)

2 + (y2 − y3)
2 (13)

c =
√
(x3 − x1)

2 + (y3 − y1)
2 (14)

p = (a + b + c)/2 (15)

A =
√
(p(p− a)(p− b)(p− c) (16)

where xi and yi is the coordinate of the node i.
(2) The length of each edge of the smoothing domain is calculated in Equation (17).

For the smoothing domain of the inner side, there are four edges. This process is realized
in the file “lp.jl”:

lp =

√
(x1 − x2)

2 + (y1 − y2)
2 (17)

(3) The normal outward vector v1 is calculated for each side of the smoothing domain.
This is performed in “vectorin.jl”, according to Equations (18)–(20):

y = y2 − y1 (18)

x = x1 − x2 (19)

v1 =

[
y√

(y2 + x2)

x√
(y2 + x2)

]
(20)

(4) Assembly of the global elastic stiffness matrix and the global smoothed strain
matrix. First, the stiffness matrix of the smoothing domain element is computed and
then assembled according to the smooth domain nodes. Due to the large number of zero
elements in the matrix, to reduce the memory occupation, the matrix is stored in a sparse
form. There are three common ways to construct sparse arrays: Compressed Sparse Row
(CSR), Compressed Sparse Column (CSC) and COOrdinate (COO).

First, the COO format is used to construct the global elastic stiffness matrix, since the
multi-dimensional arrays in Julia are stored according to column-based sequence. Then,
for the convenience of solving the subsequent system equations, we replace it with the CSC
format. To construct a sparse array according to COO format, we first need to construct
three one-dimensional arrays, that is, IK_elast, JK_elast and VK_elast.

IK_elast, JK_elast and VK_elast denote the row number, column number and value of
each entry in the global stiffness matrix according to the order of each row. Since the sparse
functions can accumulate the entries at the same position automatically, the magnitudes of
IK_elast, JK_elast and VK_elast can be predetermined.

The assembly method of the global smoothed strain matrix is basically the same as the
stiffness matrix, except that when it is assembled, the rows are carried out according to the
elements, and the columns are carried out according to the nodes. Three one-dimensional
arrays, IB, JB and VB, are constructed in advance.

For parallel computing, the six arrays of IK_elast, JK_elast, VK_elast, IB, JB and VB
need to be converted to “SharedArrays” in advance, and the elastic stiffness matrix is
assembled in parallel using the “@distributed” macro in Julia. Because the stiffness matrix
calculation of each element has no data dependence, there will be no data interference
when performing parallel computing.

The number of processes needs to be added using the function “addprocs” before
all parallel computing starts. In the parallel elastic stiffness matrix assembly, we use
the “@distributed” macro to automatically allocate tasks to each process according to the
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number of processes and the total number of tasks for parallel computing of the loop. The
total number of tasks currently is equal to the total number of smoothing domains. The
“@distributed” macro is executed asynchronously on the loop; it will generate independent
tasks on all available processes and return immediately without waiting for the computing
to complete. To wait for the computing task to complete, the “@sync” macro must be used
before the call. The procedure of assembling the elastic stiffness matrix for the internal
edges by distributed parallel computation is illustrated in Algorithm 1. After the global
stiffness matrix and the global smoothed strain matrix are assembled, the “Sparse” function
is used to convert them into the CSC format.

Algorithm 1 Parallel calculation and assembly of the elastic stiffness matrix

Input: Node, Centroid, Element, Edge_in, shear, bulk
Output: K_elast, B

1: Set the number of CPU cores for the Julia program.
2: Set IK_elast, JK_elast, VK_elast, IB, JB and VB to SharedArrays.
3: @sync @distributed begin
4: for every internal edge do
5: Compute the area of the interior quadrilateral.
6: Compute the side lengths of the interior quadrilateral.
7: Compute the normal unit vectors of the four sides of the interior quadrilateral.
8: Compute the smoothed strain matrix of an interior quadrilateral.
9: Compute the stiffness matrix of an interior quadrilateral.

10: Compute the elastic coefficient matrix.
11: Assemble global stiffness matrix and smoothed strain matrix.
12: end for
13: end
14: K_elast = sparse (IK_elast, JK_elast, VK_elast)
15: B = sparse (IB, JB, VB)

3.3.2. Assembly of the Tangent Stiffness Matrix

The tangent stiffness matrix of the model needs to be calculated when solving the elastic-
plastic problem using incremental theory. Equation (21) is used instead of Equation (22) to
calculate the global tangent stiffness matrix. Among them, elastic stiffness matrix Kelast,
smoothed strain matrix B and elastic matrix Delast can be obtained in advance at the stage
of assembling the elastic stiffness matrix; only elastoplastic matrix Dtangent depends on
the plastic model, and must be partially reorganized or modified in each Newton iteration.
When most portions of the model are in the elastic stage, Dtangent −Delast is more sparse
than Dtangent [48,49].

Ktangent = Kelast + BT(Dtangent −Delast)B (21)

Ktangent = BTDtangentB (22)

Dtangent is calculated by the constitutive integral. The implicit discrete method is used
to solve the constitutive integral, that is, elastic prediction and plastic correction. For the
constitutive relation, the linear kinematic hardening Von Mises model is employed.

The steps to calculate the tangent stiffness matrix are as follows:
(1) Calculation of the smoothed strain field. Since the global smoothed strain matrix B

has been calculated and assembled in the stage of assembling the elastic stiffness matrix,
the smoothed strain field ε can be acquired according to the strain coordination Equation
ε = Bu.



Mathematics 2022, 10, 2024 13 of 25

(2) The implicit Von Mises constitutive integral algorithm is used to obtain the stress
S and tangent operator DS of the model, by procedure “constitutive_problem1.jl”. The
formula, according to [48–51], is:

Tk(εk) =

{
σtr

k ,
∣∣str

k

∣∣ ≤ Y,
σtr

k −
2G

2G+a (
∣∣str

k

∣∣−Y)ntr
k ,
∣∣str

k

∣∣ > Y
(23)

where Tk(εk) represents the stress–strain operator, σtr
k = C(εk − ε

p
k−1), str

k = IDσtr
k − βk−1,

ntr
k =

str
k
|str

k |
, a is the hardening parameters and Y is the yield stress.

T0
k (εk) =

{
C,
∣∣str

k

∣∣ ≤ Y,
C− 4G2

2G+a ID + 4G2

2G+a
Y
|str

k |
(ID − ntr

k ⊗ ntr
k ),
∣∣str

k

∣∣ > Y (24)

where T0
k (εk) is the derivative of the stress–strain operator, C = KI⊗ I + 2GID, I⊗ I is

the unit second-order tensor, ID = I− I⊗I
3 , K = E/3(1− 2µ) is the bulk modulus and

G = E/2(1 + µ) is the shear modulus.
The modification of hardening variable βk and plastic strain ε

p
k is:

βk =

{
βk−1,

∣∣str
k

∣∣ ≤ Y,
βk−1 +

a
2G+a (

∣∣str
k

∣∣−Y)ntr
k ,
∣∣str

k

∣∣ > Y (25)

ε
p
k =

{
ε

p
k−1,

∣∣str
k

∣∣ ≤ Y,
ε

p
k−1 +

1
2G+a (

∣∣str
k

∣∣−Y)ntr
k ,
∣∣str

k

∣∣ > Y
(26)

where βk−1 hardening tensor from the previous incremental step and ε
p
k−1 plastic strain

tensor from the previous incremental step.
To check whether plastic correction is needed, the array CRIT of 1× s_n_e is defined

representing the yield criterion, that is,
∣∣str

k

∣∣ − Y , and the corresponding logical array
IND_p of 1× s_n_e with the smoothing domain of plastic behavior, where s_n_e represents
the total number of smoothing domains. The parallel implementation of the implicit Von
Mises constitutive integral is shown in Algorithm 2.

In the parallel computing of constitutive integrals, all processes can access the underly-
ing data. To avoid conflicts, we first construct a “myrange” function to assign tasks to each
process according to the number of CPU cores added. Then, the main computing process is
defined as a kernel function “assembly_tangent”, and a wrapper “shared_constructive” is
defined to encapsulate the kernel function. Finally, the function “constitutive_problem” is
constructed to call the packaged kernel function for partition parallel computing. The “con-
stitutive_problem” function minimizes the communication between the processes so that
each process can continue to compute the allocated part for a period of time, and improve
the efficiency of parallelism. The “@async” macro is used to wrap arbitrary expressions into
tasks. For any content within its scope, Julia will start to run this task and then continue to
execute the next code in the script without waiting for the current task to complete before
executing it. The “@sync” macro means that the next task will not be executed until the
dynamic closure defined by the macro “@async” is completed.

(3) Calculation of the global tangent stiffness matrix. First, the sparse elastoplastic
matrix Dtangent is constructed according to the tangent operator DS obtained by the
constitutive integral and then the global tangent stiffness matrix is calculated according to
Equation (21).
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Algorithm 2 Parallel implementation of implicit Von Mises constitutive integral algorithm

Input: E, Ep_prev, Hard_prev, shear, bulk, a, Y, S, DS, IND_p
Output: S, DS, IND_p

1: Set the number of CPU cores for the Julia program.
2: Set E, Ep_prev, Hard_prev, S, DS, IND_p to ShareArray.
3: Assign the number of tasks for each process according to the number of processes.
4: for number of tasks in each process do
5: Check whether the smoothing domain yields according to the yield criterion.
6: Elastic prediction of stress tensor.
7: Calculate the consistent tangent operator.
8: Plastic correction of the stress tensor.
9: Plastic correction of the consistent tangent operator.

10: end for
11: Parallel computing using “remotecall” in Julia language.

3.3.3. Solution of System of Equations

In this process, the internal force of the model is calculated by using the stress obtained
from the constitutive relationship and the smoothed strain matrix. Then, the displacement
boundary conditions are applied by the direct method; that is, the corresponding rows and
columns with displacement boundary conditions of “0” are deleted. A logical array Q is
designed, which sets the displacement boundary condition of “0” to “0” and the rest to
“1”. Then, the stiffness matrix, displacement and force are calculated with a logical array
index. After that, the Pardiso.jl package is added and the “MKLPardisoSolver” solver in the
package is used to solve the system of equations. Finally, the node displacement increment
“dU” of one Newton iteration in an incremental step can be obtained.

In this paper, the semismooth Newton method is employed to solve nonlinear system
of equations and check whether iteration is convergent according to Algorithm 3. “MKLPar-
disoSolver” is the solver in the Pardiso.jl package, Q is the logical array corresponding to
the displacement boundary conditions, f is the external force vector, F is the internal force
vector, the subscript k represents the kth incremental step and the superscript it represents
the it-th iteration step, and ‖U‖2

e = UTKelastU. In each Newton iteration, the tangent
stiffness matrix Ktangent is used to solve the linear problem, which corresponds to the
system of linear equations:

Kit
k dUit = fk − Fk (27)

Algorithm 3 Newton iteration terminates judgment

1: initialization U0
k=Uk

2: for it = 1, 2, 3 . . . do
3: ps = MKLPardisoSolver()
4: dUit[Q] = solve(ps, Kk

it[Q1, Q1], (fk − Fk
it))

5: Uit
k = Uit−1

k + dUit

6:
∥∥dUit

∥∥
e/(
∥∥∥Uit−1

k

∥∥∥
e
+
∥∥Uit

k

∥∥
e) ≤ criterion

7: end for
8: set Uk = Uit

k

3.3.4. Update of Hardening Variable and Plastic Strain

After each incremental step is calculated, the hardening variable and plastic strain
need to be updated by using Equations (25) and (26). Based on the implicit constitutive
integration algorithm of Algorithm 2, the modification of the hardening variable and plastic
strain is added. The parallel strategy in this part is consistent with Algorithm 2.
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3.4. Postprocessing

After the execution of the solver, the widely used visualization software ParaView is
used to visualize the numerical computational results. The relevant package WriteVTK.jl in
Julia can write VTK XML files and use ParaView to visualize multidimensional datasets [44].
The VTK format files support include straight line (.vtr), structured mesh (.vts), image data
(.vti), unstructured mesh (.vtu) and polygon data (.vtp) [52].

An unstructured mesh “vtu” format file is designed. Its implementation steps are
as follows: (1) we need to define a cell type, which is defined in this paper as “VTKCell-
Types.VTK_TRIANGLE”, representing the linear triangular element; (2) the “MeshCell”
function is used to define the mesh model and obtain an array containing all mesh cells;
(3) to generate a “vtu” format file, we need to initialize the file with mesh nodes and element
information and then add node displacement data and other information to the file; (4) we
can save the file as a “vtu” format file.

4. Validation and Evaluation of epSFEM

In this section, two sets of benchmark tests are performed on a powerful computational
platform to evaluate the correctness and efficiency of epSFEM. The details of the workstation
computer used are shown in Table 3.

Table 3. Specifications of the workstation computer for performing the benchmark tests.

Specifications Details

CPU Intel Xeon Gold 5118 CPU
CPU Cores 24
CPU Frequency 2.30 GHz
CPU RAM 128 GB
OS Windows 10 professional
IDE Visual studio Code
Julia Version 1.5.2

4.1. Validation of the Accuracy of epSFEM

To validate the correctness of epSFEM, we use the model shown in Figure 6a to perform
elastoplastic analysis and compare its calculation accuracy with traditional finite element
software. In this example, a symmetric displacement boundary condition is set up on the
left and bottom of the computational model. The traction force of Ft = 200 N/m acts on the
top of the model along the normal direction, and the traction force is added in increments
through the cyclic load shown in Figure 6b. The elastic parameters are: E = 206,900 (Young’s
modulus) and µ = 0.29 (Poisson’s ratio). The parameters related to plastic materials are
specified as follows: a = 1000 , Y = 450

√
(2/3) . The mesh computational model with

150 triangular elements is illustrated in Figure 7a, and the computational model after
constructing the smoothing domain is shown in Figure 7b.

To demonstrate the accuracy of the calculation, the displacement calculation of the
model in Figure 6a is conducted, and comparisons are made in the three following cases.

(1) epSFEM is employed to calculate the displacement of a mesh model, which includes
341 nodes and 600 triangular elements (T3 elements); see Figure 8a.

(2) According to Ref. [49], the conventional FEM is used to calculate the displacement
of a mesh model, which includes 341 nodes and 600 triangular elements (T3 elements); see
Figure 8b.

(3) According to Ref. [49], the conventional FEM is employed to calculate the displace-
ment of a highly accurate mesh model that includes 231,681 nodes and 76,800 eight-node
quadrilateral elements (Q8 elements).

The displacements of the top node of the model calculated by the above three methods
are compared in Figure 9. As shown in Figure 9, the displacement calculated by epSFEM
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has higher accuracy than FEM-T3 and slightly lower accuracy than FEM-Q8. Hence, the
correctness of epSFEM is proven.

x2

x1

1
0

5 5

fT

(a)

fT

t

1 2 3 4

200

-200

(b)

Figure 6. (a) Simplified 2D geometry of the elastic-plastic problem and (b) history of the traction force.

(a) (b)

Figure 7. (a) A mesh computational model with 150 triangular elements and (b) a computational
model after constructing the smoothing domain.
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Figure 8. (a) The contour of displacement calculated using epSFEM and (b) the contour of displace-
ment calculated using FEM-T3.
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Figure 9. Comparison curves of node displacements at the top of the model calculated by differ-
ent methods.

4.2. Evaluation of the Efficiency of epSFEM

To better analyze the computing efficiency of epSFEM, the computational efficiency of
the serial and parallel versions of the epSFEM are recorded and compared. Five mesh mod-
els were created based on the same size model, shown in Figure 6a. Detailed information
on the mesh is shown in Table 4.

Table 4. Details of the used five mesh models.

Mesh Models (T3) Number of Nodes Number of Elements

1 173,761 345,600
2 308,481 614,400
3 609,301 1,215,000
4 909,701 1,815,000
5 1,231,361 2,457,600

In epSFEM, the calculation procedure can be composed of two steps: (1) assembly of
the elastic stiffness matrix and (2) incremental loading and semismooth Newton method
iterations. In this paper, we focus on the solution of elastic-plastic problems, so the time
consumption is predominantly in the second step, which is composed of multiple incre-
mental cyclic loading steps. Each of the incremental steps can be composed of three stages:
(1) assembly of tangent stiffness matrix, (2) solving of system of equations and (3) updating
of hardening variables and plastic strain. Since the Pardiso.jl package is employed to
solve equations in serial and parallel code, the efficiency of solving equations in serial and
parallel ways are not discussed. For the assembly of the elastic stiffness matrix, its time
consumption accounts for a small proportion in the whole elastic-plastic analysis, which is
not discussed in this paper. The parallel method of the hardening variable and plastic strain
update part is consistent with the parallel method of tangent stiffness matrix assembly.
Therefore, we mainly evaluate the computing efficiency of assembling the tangent stiffness
matrix in this paper.

As shown in Figure 10, the time to compute the parallelizable section of the tangent
stiffness matrix in the serial and parallel versions for five different scale mesh models is
compared. As shown in Figure 10, it takes only approximately 335 s to compute a mesh
model, including 2.45 million elements on the parallel version, while it takes approximately



Mathematics 2022, 10, 2024 18 of 25

3537.6 s to compute the same model on the serial version. On the 24-core CPU, the parallel
speedup can reach 10.6.

To reflect the computational efficiency of epSFEM, we also made a comparison between
commercial software and epSFEM in terms of the time required to calculate the five scale
models, as shown in Table 4. The total time required for the solver computing is recorded
for comparison. As shown in Figure 11, for a model containing 2.45 million elements,
ABAQUS requires 10,619 s to compute, while the parallel version of epSFEM needs only
5876.3 s to complete the computation. The parallel version of epSFEM is approximately
1.8 times faster than ABAQUS.
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Figure 10. Comparison of serial and parallel epSFEM computing time of the parallelizable section of
the tangent stiffness matrix.
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Figure 11. Comparison of the computation time of serial and parallel epSFEM and ABAQUS solvers
for elastic-plastic problems.

ABAQUS was also used to calculate the displacements for a mesh model with 341 nodes
and 600 triangular cells and to compare the displacements obtained by ABAQUS with
those obtained by epSFEM_T3 and FEM_Q8 in Section 4.1. Using the displacement solution
of FEM_Q8 as the reference solution, it can be seen that the displacement calculation
accuracy of epSFEM is higher than that of ABAQUS; see Figure 12. It can be seen from the
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above results that the calculation time of epSFEM is shorter than that of ABAQUS when
calculating the same mesh model, and the calculation accuracy of epSFEM is higher than
that of ABAQUS, so the calculation efficiency of epSFEM is higher than that of ABAQUS.
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Figure 12. Comparison curves of node displacements at the top of the model calculated with ABAQUS
and epsFEM.

5. Discussion

In this section, the capability, strengths and weaknesses of the epSFEM software
package, as well as the future direction of work, are discussed.

5.1. Comprehensive Evaluation of epSFEM
5.1.1. Computational Accuracy

The accuracy of the calculation is the first guarantee for whether a software package
can be used. To verify the correctness of the epSFEM calculation, a numerical example is
used in Section 4.1. As listed in Table 5, the total displacement results of the six nodes at
the top y = 10 m of the model are selected for comparison. Taking the displacements of
FEM-Q8 as the baseline and comparing the displacements of epSFEM-T3 and FEM-T3 with
them, it can be shown that the displacements of epSFEM-T3 are significantly closer to the
baseline. The result difference is expressed by relative error. As seen in Table 5, for the
node displacement at x = 0 and y = 10 m, the error of FEM-T3 compared with FEM-Q8
is 25.24%, while the error of epSFEM-T3 compared with FEM-Q8 is only 2.96%. This is
because the S-FEM is based on the smoothing domain calculation that optimizes the system
stiffness matrix and enables the displacements to be closer to the reference values.

Table 5. Validation of the accuracy of the epSFEM by comparison of calculated displacements.

Position
Method Relative Error

FEM-T3 epSFEM-T3 FEM-Q8 FEM-T3 epSFEM-T3

0.0 m 0.02223 m 0.02704 m 0.02784 m 25.24% 2.96%
2.0 m 0.02095 m 0.02583 m 0.02680 m 27.92% 3.76%
4.0 m 0.01787 m 0.02217 m 0.02423 m 35.59% 9.29%
6.0 m 0.01267 m 0.01572 m 0.01640 m 29.44% 4.33%
8.0 m 0.00744 m 0.00896 m 0.00924 m 24.19% 3.13%
10.0 m 0.00626 m 0.00788 m 0.00819 m 30.83% 3.93%
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5.1.2. Computational Efficiency

In this paper, the efficiency of computation is contrasted in two aspects: parallel
speedup of parallelizable code and solver computation time; see Figures 10 and 11.

In this paper, we recorded the time required to compute the parallelizable portion of
the tangent stiffness matrix, that is, constitutive integral algorithm, for seven different size
mesh models using serial and parallel epSFEM. As shown in Table 6, the parallel speedup
is 10.2 for the computing model with 38,400 elements, increases to 14.8 for the computing
model with 0.6 million elements and decreases to 10.0 for the computational model with
1.2 million elements, after which the parallel speedup increases slightly with the increase of
the computational model size and basically stabilizes.

Table 6. The parallel speedup of the parallelizable section of the tangential stiffness matrix.

Number of Nodes Number of Elements
Computing Time (s)

Single-Core Multi-Core (24-Core) Parallel Speedup

19,521 38,400 69.7 6.83 10.2
77,441 153,600 283.3 23.5 12.05
173,761 345,600 772.2 56.5 13.7
308,481 614,400 1297.6 87.7 14.8
609,301 1,215,000 1728.6 172.9 10.0
909,701 1,815,000 2546 251.9 10.1
1,231,361 2,457,600 3537.6 335 10.6

The reasons why the parallel speedup shows a pattern of increasing then decreasing
and finally converging as the mesh scale increases are analyzed are as follows: (1) Parallel
computing includes the time to allocate tasks; the amount of computation allocated to
each process cannot be exactly the same, and there is the problem of load imbalance for
each process, so the parallel speedup cannot reach the ideal parallel speedup. (2) When
the mesh scale is small, such as 38,400 to 614,400, the total computation time increases
as the mesh scale increases, the percentage of assigned tasks in the total time decreased,
and the parallel speedup increases. (3) When the mesh scale increases to 1.2 million, the
performance of the code decreases due to the larger memory allocation required and the
increased garbage collection time during the code run. In the benchmark tests of this paper,
the above effects do not have a significant impact on the overall performance of epSFEM as
the scale continues to increase. On the contrary, it tends to a steady state.

TimerOutputs.jl package is used to test the time consumption and memory allocation
in each part of the calculation process and generate the formatted table to output [53]. As
listed in Table 7, the allocation of time and memory for each part of the parallel epSFEM
solver when the number of elements is 600,000. Table 7 shows that the time proportion of
the elastic stiffness matrix is very small, which is only 0.07% when the number of elements
is 600,000. Therefore, we focus on the time and memory consumption of each part of the
incremental loading and the semismooth Newton iteration, which is the plastic section in
Table 7. Figure 13 presents the time occupancy of the tangent stiffness matrix assembly,
solving equations, hardening variables and plastic strain updating when calculating the
model with 2.45 million elements using the serial and parallel versions of epSFEM. Because
the hardening variable and plastic strain only need to be updated once for each incremental
step, the time proportion is the smallest. The tangent stiffness matrix assembly and solving
equations need to be calculated not only for each incremental step, but also for each
iteration, so the time proportion is longer. As shown in Figure 13, the proportion of time
spent solving the equations in parallel computing is considerably larger than in serial
computing, accounting for approximately 80%.
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Table 7. Time and memory allocation of each part of the parallel epSFEM solver when the number of
elements is 600,000.

Tot /% Measured Time Allocation

1256.9 s/100% 337.83 GiB/100%
Section ncalls Time %tot avg alloc %tot avg

solver 1 1256.9 s 100% 1256.9 s 337.83 GiB 100% 337.83 GiB
elastic 1 0.9 s 0.07% 0.9 s 1.83 GiB 0.54% 1.83 GiB
plastic 1 1256 s 99.93% 1256 s 336 GiB 99.46% 336 GiB

solving 132 946 s 75.3% 7.16 s 62.6 GiB 18.53% 486 MiB
assembly 132 246 s 19.6% 1.86 s 256 GiB 75.78% 1.94 GiB

constitutive 132 87.7 s 6.98% 664 ms 62.0 MiB 0.02% 481 KiB
K_tangent 132 150.1 s 11.95% 1.14 s 252 GiB 74.6% 1.91 GiB

hardening and strain 40 33.0 s 2.62% 824 ms 1.03 GiB 0.3% 26.3 MiB

In summary, epSFEM combines the features of incremental theory and the parallel
strategy of the Julia language to achieve a parallel and efficient incremental S-FEM for
solving the elastoplastic problem. Although epSFEM can take full advantage of multicore
processors, it still requires a considerable amount of time to solve linear system equations
for large sparse matrices. Moreover, due to the use of incremental theory, the calculation
of the latter incremental step depends on the previous incremental step, and multiple
incremental steps cannot be calculated in parallel, which also limits the computational
efficiency of the code.

17.50%

80.41%

2.09% Assemble Tangent

Stiffness Matrix

Solve Equations

Update Hardening

Variables and

Plastic Strain

41.50%

46.50%

12%

(a) (b)

Figure 13. The proportion of time in each part of the epSFEM solver when calculating the model with
2.45 million elements using (a) the serial version of epSFEM and (b) the parallel version of epSFEM.

5.2. Comparison with Other S-FEM Programs

Compared with the S-FEM packages implemented with C++, epSFEM code is more
readable and convenient for further development, and has lower requirements for program-
ming ability. In contrast with the S-FEM packages implemented by MATLAB, epSFEM
does not require the payment of licensing fees for the Julia language; additionally, the
computational efficiency of the Julia language is higher than that of MATLAB. Moreover,
epSFEM has a clear structure and modular implementation, and each calculation step is
highly customized and has the characteristics of high efficiency and simplicity.

The epSFEM is suitable to more common and complex elastoplastic mechanical prob-
lems in practical engineering and has a wider range of applications than the elastic S-FEM
package implemented using the Julia language. In contrast with the elastic-plastic S-FEM
package with total strain theory realized by the Julia language, epSFEM uses incremen-
tal theory suitable for most loading situations to solve elastic-plastic problems, and the
calculation results are more reliable and accurate.
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5.3. Outlook and Future Work

epSFEM is an incremental ES-FEM to solve two-dimensional elastoplastic problems.
The next step is to expand it to an incremental FS-FEM to solve three-dimensional elasto-
plastic problems. Currently, the S-FEM has been commonly utilized in material mechanics
and biomechanics, but it is still less applied in the field of geotechnical mechanics [54,55].
We plan to extend epSFEM to use the Mohr-Coulomb criterion combined with the strength
reduction method to analyze the deformation and failure of slopes. With the maturity of
artificial intelligence technology such as machine learning and deep learning, mechanical
analysis and numerical simulation methods can be well integrated with machine learning,
which provides a new direction for computational mechanics [56–59]. In the future, the
authors wish is to use machine learning combined with epSFEM to solve partial differential
Equations (PDEs), or study parameter inversion.

6. Conclusions

In this paper, a parallel incremental S-FEM package epSFEM for elastic-plastic prob-
lems has been designed and implemented by the Julia language on a multicore CPU.
epSFEM has a clear structure and legible code and can be easily developed further. epSFEM
utilizes incremental S-FEM to solve elastic-plastic mechanics problems for complex load
cases more common in practical engineering, and the calculation results are more accurate
and reliable. A partitioned parallel strategy was designed to improve the computational ef-
ficiency of epSFEM. This strategy can avoid conflicts when accessing the underlying data in
parallel computing. To demonstrate the correctness of epSFEM and assess its efficiency, two
sets of benchmark tests were performed in this paper. The results indicated that (1) when
calculating the same mesh model, the calculation accuracy of epSFEM is higher than that
of the traditional FEM; (2) it requires only 5876.3 s to calculate an elastoplastic model,
consisting of approximately 2.45 million T3 elements using the parallel epSFEM software
package, while it needs 10,619 s to calculate the same model using the commercial FEM
software ABAQUS; (3) on a 24-core CPU, the parallel execution of epSFEM is approximately
10 times faster than the corresponding serial version.
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Abbreviations
COO COOrdinate
CPU Central Processing Unit
CSC Compressed Sparse Column
CS-FEM Cell-based Smoothed Finite Element Method
CSR Compressed Sparse Row
EFG Element Free Galerkin
ES-FEM Edge-based Smoothed Finite Element Method
FEM Finite Element Method
FS-FEM Face-based Smoothed Finite Element Method
GPU Graphics Processing Unit
MLPG Meshless Local Petrov-Galerkin
MPM Material Point Method
NS-FEM Node-based Smoothed Finite Element Method
PDEs Partial Differential Equations
RPIM Radial Point Interpolation Method
S-FEM Smoothed Finite Element Method
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