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Abstract: Metric fixed point theory has vast applications in various domain areas, as it helps in
finding analytical solutions under various contractive conditions, including non-linear integral-type
contractions. In our present work, we have established fixed point results in the setting of complex
valued partial metric space. Our results extend the results proven in literature. Using our main result,
we have provided an application to find the solution to the Urysohn-type integral equation.
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1. Introduction

Metric fixed point theory has its roots in the famous Banach Contraction Principle [1]
of 1922. The principle has been applied in the setting of various metric spaces for the past
several decades to establish fixed point results. In the past decade, many researchers have
reported fixed point results for conformal mappings in the setting of various topological
spaces, such as partial metric space, cone metric space, cone b-metric space and so on—
see [2–16]. In the sequel, Azam et al. [17] introduced complex valued metric spaces, which
is a special class of cone metric spaces, and established the following fixed point result for
mappings satisfying rational inequality.

Theorem 1. Let (X, d) be a complete complex-valued metric space and S,T : X → X be two
mappings. If S and T satisfy

d(Sx, Ty) � λd(x, y) +
µd(x, Sx), d(y, Ty)

1 + d(x, , y)

for all x, y ∈ X, where λ, µ are non-negative reals with λ + µ < 1, then S and T have a unique
common fixed point in X.

The above theorem paved the way for the study of the existence of fixed point theorems
in the setting of complex valued metric spaces. The results of Azam et al. [17] were
generalized by Fayyaz et al. [18] and Sintunavarat et al. [19]. Subsequently, Rao et al. [20]
proposed complex b-metric spaces and studied certain fixed point results in the setting of
complex b-metric spaces.
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Later, Dhivya and Marudhai [21] introduced the concept of complex partial metric
spaces and studied the associated topologies and proved some fixed point results in the
setting of complex partial metric spaces. Then, Gunaseelan et al. [22] introduced the concept
of complex partial b-metric spaces and proved fixed point theorems thereon. Fixed point
results using (CLR) and (E.A.) properties in complex partial b-metric spaces were studied
by Leema et al. [23]. Gunaseelan et al. [24] proved some fixed point theorems in the setting
of complex partial b-metric spaces, generalizing proven results.

A variety of real-world problems are described through integral equations. The Fred-
holm linear integral equation or its non-linear counterparts—the Hammerstein integral
equation and its generalization—and the Urysohn integral equation are most commonly
used to describe many scientific problems. Many authors have studied various types
of integral equations and associated theories, cf. [25–28]. In [27], sufficient conditions
for the existence of a principal solution of a non-linear Volterra integral equation of the
second kind on the half-line and on a finite interval were obtained. In [28], Sidorov et al.
established the uniform convergence for non-linear Hammerstein integral equations (a
class of Urysohn-type integral equations) in the neighborhood about the bifurcation point
using the implicit function theorem and the Schmidt lemma. The techniques used in [27,28]
can be applied to study operator equations in Banach spaces.

Various researchers have reported the application of fixed point results to find ana-
lytical solutions of various types of integral contractions. Recently, Debanath et al. [29]
reported the application of metric fixed point theory to solve real-world problems in
various domain areas, such as science, engineering and behavioral science, etc. In 2013,
Sintunavarat et al. [30] generalized the contractive conditions in [17] and presented an
application to study the existence of a solution to Urysohn integral equations in the setting
of complex metric spaces, cf. [19,30]. In the recent past, Rajagopalan et al. [31] established
the existence of an analytical solution to non-linear integral equations of Voltera type, while
Fahad et al. [32] applied the fixed point results to examine the analytical solutions of the
integral equation of Caratheodory-type functions in modular metric spaces. In the recent
past, Abood et al. [33] analyzed the existence of analytical and approximate solutions for
a fractional quadratic integral equation, while Sarim et al. [34] introduced the concept of
fuzzy cone metric spaces called fuzzy integrable functions and ξ fuzzy cone integrable
functions and established fixed point results in these spaces. More recently, Aslam et al. [35]
studied the application of fixed point results to find the solutions of Urysohn-type integral
equations in the setting of complex valued b-metric spaces.

Inspired by the above, in this article, we establish fixed point results in the setting of
complex partial metric spaces, extending the results of [21]. The achieved result has been
supported with a suitable example. We have also presented an application to find a unique
solution to a Urysohn integral equation. Throughout this paper, CPMS refers to complex
partial metric space.

The rest of the paper is organized as follows. In Section 2, we review certain basic
concepts and monographs reported in the literature. In Section 3, we present a fixed
point theorem and prove a corollary satisfying the contractive condition in the setting of
complex partial metric space and supplement the obtained results with a suitable example.
In Section 4, we present an application to find the analytical solution of a Urysohn-type
integral equation in the setting of complex partial metric space, using our main result.

2. Preliminaries

The following are required in the sequel.
Let { be the set of complex numbers and Z1, Z2, Z3 ∈ {. Let the partial order � on { be

defined as:
Z1 � Z2 if and only if Re(Z1) ≤ Re(Z2), Im(Z1) ≤ Im(Z2).
It is thus clear that Z1 � Z2 if one of the following holds:

(i) Re(Z1) = Re(Z2), Im(Z1) < Im(Z2),
(ii) Re(Z1) < Re(Z2), Im(Z1) = Im(Z2),
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(iii) Re(Z1) < Re(Z2), Im(Z1) < Im(Z2),
(iv) Re(Z1) = Re(Z2), Im(Z1) = Im(Z2).

Precisely, we can say Z1 � Z2 if Z1 6= Z2 and any one of (i), (ii) and (iii) holds and we
say Z1 ≺ Z2 if (iii) alone holds.

It may also be noted that

(a) 0 � Z1 � Z2 =⇒ |Z1| < |Z2|,
(b) Z1 � Z2 and Z2 ≺ Z3 =⇒ Z1 ≺ Z3,
(c) η, γ ∈ R and η ≤ γ =⇒ ηZ1 � γZ1 for all 0 � Z1 ∈ {.

Here, {+(= {(ζ,℘)|ζ,℘ ∈ R+}) represents non-negative complex numbers, while
R+(= {ζ ∈ R|ζ ≥ 0}) represents non-negative reals.

Usually, in a metric space, the self distance d(x, x) = 0, whereas in the case of a partial
metric space, it need not be equal to zero. Using this, Dhivya et al. [21] defined the complex
partial metric space given as below.

Definition 1 ([21]). Let X 6= ∅ and dcp : X× X → {+ be a map, such that for all Γ, Υ,Z ∈ X:

(i) 0 � dcp(Γ, Γ) � dcp(Γ, Υ);
(ii) dcp(Γ, Υ) = dcp(Υ, Γ);
(iii) dcp(Γ, Γ) = dcp(Γ, Υ) = dcp(Υ, Υ) if and only if Γ = Υ;
(iv) dcp(Γ, Υ) � dcp(Γ,Z) + dcp(Z, Υ)− dcp(Z,Z).

Then, dcp is a complex partial metric on X and the pair (X, dcp) is called a CPMS .

Definition 2 ([21]). Let (X, dcp) be a CPMS . Let {ζn} be any sequence in X.

(i) {ζn} converges to ζ, if limn→+∞ dcp(ζn, ζ) = dcp(ζ, ζ).
(ii) {ζn} is CP-Cauchy in (X, dcp) if

limn,m→+∞ dcp(ζn, ζm) exists and is finite.
(iii) (X, dcp) is a complete CPMS if for every CP-Cauchy sequence {ζn} in X if there exists

ζ ∈ X such that
limn,m→+∞ dcp(ζn, ζm) = limn→+∞ dcp(ζn, ζ) = dcp(ζ, ζ).

Definition 3 ([21]). Let X 6= ∅ and let Φ and Ψ be self maps on it. A point ζ ∈ X is called a
common fixed point of Φ and Ψ if ζ = Φζ = Ψζ.

The following theorem is the main result of Dhivya et al. [21].

Theorem 2 ([21]). Let (X,�) be a partially ordered set. Let dcp be a complex partial metric on
X such that (X, dcp) is a complete CPMS . Let f,q : X → X be a pair of weakly increasing
mappings and suppose that, for every comparable ζ,℘ ∈ X, we have either

dcp(fζ,q℘) � a
dcp(ζ,fζ)dcp(℘,q℘)

dcp(ζ,℘)
+ bdcp(ζ,℘),

whenever dcp(ζ,℘) 6= 0, a ≥ 0, b ≥ 0 and a + b < 1, or

dc(fζ,q℘) = 0 if dcp(ζ,℘) = 0.

ϑ ∈ X is a common fixed point of f and q with dcp(ϑ, ϑ) = 0, if either f or q is continuous.

Now, we present our main result.
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3. Main Results

Throughout this paper, u represents the class of functions £ : {+ → [0, 1) so that

£(ζα)→ 1 ⇒ |ζα| → 0,

for any sequences {ζα} in {+.

Theorem 3. Let (X, dcp) be a complete CPMS and let f,q : X → X be two maps. Consider the
two maps e, g : {+ → [0, 1), such that, for all ζ,℘ ∈ X,

(i) e(ζ) + g(ζ) < 1;

(ii) the mapping £ : {+ → [0, 1) defined by £(ζ) =
e(ζ)

1− g(ζ)
belongs to u;

(iii) dcp(fζ,q℘) � e(dcp(ζ,℘))dcp(ζ,℘) +
g(dcp(ζ,℘))dcp(ζ,fζ)dcp(℘,q℘)

1 + dcp(ζ,℘)
.

Then, there exists a unique common fixed point for f and q in X.

Proof. Let ζ0 ∈ X be arbitrary. Consider a sequence {ζα} in X such that

ζ2α+1 = fζ2α, ζ2α+2 = qζ2α+1, ∀α ∈ N∪ {0}. (1)

By using Equation (1), we obtain

dcp(ζ2α+1, ζ2α+2)

= dcp(fζ2α,qζ2α+1)

� e(dcp(ζ2α, ζ2α+1))dcp(ζ2α, ζ2α+1)

+
g(dcp(ζ2α, ζ2α+1))dcp(ζ2α,fζ2α)dcp(ζ2α+1,qζ2α+1)

1 + dcp(ζ2α, ζ2α+1)

= e(dcp(ζ2α, ζ2α+1))dcp(ζ2α, ζ2α+1)

+
g(dcp(ζ2α, ζ2α+1))dcp(ζ2α, ζ2α+1)dcp(ζ2α+1, ζ2α+2)

1 + dcp(ζ2α, ζ2α+1)

= e(dcp(ζ2α, ζ2α+1))dcp(ζ2α, ζ2α+1)

+ g(dcp(ζ2α, ζ2α+1))dcp(ζ2α+1, ζ2α+2)

(
dcp(ζ2α, ζ2α+1)

1 + dcp(ζ2α, ζ2α+1)

)
� e(dcp(ζ2α, ζ2α+1))dcp(ζ2α, ζ2α+1) + g(dcp(ζ2α, ζ2α+1))dcp(ζ2α+1, ζ2α+2),

which implies that

dcp(ζ2α+1, ζ2α+2) �
(

e(dcp(ζ2α, ζ2α+1))

1− g(dcp(ζ2α, ζ2α+1))

)
dcp(ζ2α, ζ2α+1)

= £
(
dcp(ζ2α, ζ2α+1)

)
dcp(ζ2α, ζ2α+1). (2)
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Similarly,

dcp(ζ2α+2, ζ2α+3)

= dcp(ζ2α+3, ζ2α+2)

= dcp(fζ2α+2,qζ2α+1)

� e(dcp(ζ2α+2, ζ2α+1))dcp(ζ2α+2, ζ2α+1)

+
g(dcp(ζ2α+2, ζ2α+1))dcp(ζ2α+2,fζ2α+2)dcp(ζ2α+1,qζ2α+1)

1 + dcp(ζ2α+2, ζ2α+1)

= e(dcp(ζ2α+2, ζ2α+1))dcp(ζ2α+2, ζ2α+1)

+
g(dcp(ζ2α+2, ζ2α+1))dcp(ζ2α+2, ζ2α+3)dcp(ζ2α+1, ζ2α+2)

1 + dcp(ζ2α+1, ζ2α+2)

= e(dcp(ζ2α+2, ζ2α+1))dcp(ζ2α+2, ζ2α+1)

+ g(dcp(ζ2α+2, ζ2α+1))dcp(ζ2α+2, ζ2α+3)

(
dcp(ζ2α+1, ζ2α+2)

1 + dcp(ζ2α+1, ζ2α+2)

)
� e(dcp(ζ2α+2, ζ2α+1))dcp(ζ2α+2, ζ2α+1)

+ g(dcp(ζ2α+2, ζ2α+1))dcp(ζ2α+2, ζ2α+3),

which implies that

dcp(ζ2α+2, ζ2α+3) �
(

e(dcp(ζ2α+2, ζ2α+1))

1− g(dcp(ζ2α+2, ζ2α+1))

)
dcp(ζ2α+2, ζ2α+1)

= £
(
dcp(ζ2α+2, ζ2α+1)

)
dcp(ζ2α+2, ζ2α+1). (3)

From Equations (2) and (3), we have

dcp(ζα, ζα+1) � £
(
dcp(ζα−1, ζα)

)
dcp(ζα−1, ζα), ∀α ∈ N.

Finally, we obtain

|dcp(ζα, ζα+1)| ≤ £
(
dcp(ζα−1, ζα)

)
|dcp(ζα−1, ζα)| ≤ |dcp(ζα−1, ζα)|, ∀α ∈ N. (4)

This implies that the sequence {|dcp(ζα−1, ζα)|}α∈N is monotonically non-increasing
and bounded below. Hence, |dcp(ζα−1, ζα)| → g for some g ≥ 0. We claim that g = 0.

Suppose not. Let us assume g > 0. Letting α→ +∞ in (4), we obtain £
(
dcp(ζα−1, ζα)

)
→

1. Since £ ∈ u, we obtain |dcp(ζα−1, ζα)| → 0. This is a contradiction. Thus, g = 0, that is

|dcp(ζα−1, ζα)| → 0. (5)

To show that {ζα} is a CP-Cauchy, we shall prove that the subsequence {ζ2α} is a
CP-Cauchy sequence based on Equation (5). Let us suppose that {ζ2α} is not a CP-Cauchy.
Then, there exists µ ∈ { with 0 ≺ µ, and for all i ∈ N ∪ {0}, there exists βk > αk ≥ k
such that

dcp(ζ2αk , ζ2βk ) � µ. (6)
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Further, corresponding to αk, we can choose βk in such a way that it is the smallest
integer with βk > αk ≥ k satisfying Equation (6), and,

dcp(ζ2αk , ζ2βk−2) ≺ µ.

By the definition of a CPMS , we derive that

µ � dcp(ζ2αk , ζ2βk ) (7)

≺ c + dcp(ζ2βk−2, ζ2βk−1) + dcp(ζ2βk−1, ζ2βk ). (8)

This implies

|µ| ≤ |dcp(ζ2αk , ζ2βk )| ≤ |µ|+ |dcp(ζ2βk−2, ζ2βk−1)|+ |dcp(ζ2βk−1, ζ2βk )|.

Therefore, we have

|µ| ≤ lim
k→+∞

|dcp(ζ2αk , ζ2βk )| ≤ |µ|. (9)

Further, we have

dcp(ζ2αk , ζ2βk+1) � dcp(ζ2αk , ζ2βk ) + dcp(ζ2βk+1, ζ2βk )− dcp(ζ2βk , ζ2βk )

� dcp(ζ2αk , ζ2βk ) + dcp(ζ2βk+1, ζ2βk )

and

|dcp(ζ2αk , ζ2βk+1)| ≤ |dcp(ζ2αk , ζ2βk )|+ |dcp(ζ2βk+1, ζ2βk )|.

By using Equations (5) and (9) and as k→ +∞, we obtain

|dcp(ζ2αk , ζ2βk+1)| → |µ|. (10)

By the definition of a CPMS , we derive that

dcp(ζ2αk , ζ2βk+1)

� dcp(ζ2αk , ζ2αk+1) + dcp(ζ2αk+1, ζ2βk+2) + dcp(ζ2βk+2, ζ2βk+1)

− dcp(ζ2βk+2, ζ2βk+2)− dcp(ζ2αk+1, ζ2αk+1)

� dcp(ζ2αk , ζ2αk+1) + dcp(ζ2αk+1, ζ2βk+2) + dcp(ζ2βk+2, ζ2βk+1)

= dcp(ζ2αk , ζ2αk+1) + dcp(fζ2αk ,qζ2βk+1) + dcp(ζ2βk , ζ2βk+1)

� dcp(ζ2αk , ζ2αk+1) + e(dcp(ζ2αk , ζ2βk+1))dcp(ζ2αk , ζ2βk+1)

+
g(dcp(ζ2αk , ζ2βk+1))dcp(ζ2αk ,fζ2αk )dcp(ζ2βk+1,qζ2βk+1)

1 + dcp(ζ2αk , ζ2βk+1)

+ dcp(ζ2βk , ζ2βk+1)}

= dcp(ζ2αk , ζ2αk+1) + e(dcp(ζ2αk , ζ2βk+1))dcp(ζ2αk , ζ2βk+1)

+
g(dcp(ζ2αk , ζ2βk+1))dcp(ζ2αk , ζ2αk+1)dcp(ζ2βk+1, ζ2βk+2)

1 + dcp(ζ2αk , ζ2βk+1)

+ dcp(ζ2βk , ζ2βk+1),
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which implies that

|dcp(ζ2αk , ζ2βk+1)|

≤ |dcp(ζ2αk , ζ2αk+1)|+ e(dcp(ζ2αk , ζ2βk+1))|dcp(ζ2αk , ζ2βk+1)|

+ g(dcp(ζ2αk , ζ2βk+1))

∣∣∣∣∣dcp(ζ2αk , ζ2αk+1)dcp(ζ2βk+1, ζ2βk+2)

1 + dcp(ζ2αk , ζ2βk+1)

∣∣∣∣∣
+ |dcp(ζ2βk , ζ2βk+1)|

≤ |dcp(ζ2αk , ζ2αk+1)|+ e(dcp(ζ2αk , ζ2βk+1))|dcp(ζ2αk , ζ2βk+1)|

+ g(dcp(ζ2αk , ζ2βk+1))

∣∣∣∣∣dcp(ζ2αk , ζ2αk+1)dcp(ζ2βk+1, ζ2βk+2)

1 + dcp(ζ2αk , ζ2βk+1)

∣∣∣∣∣
+ |dcp(ζ2βk , ζ2βk+1)|

≤ |dcp(ζ2αk , ζ2αk+1)|+
e(dcp(ζ2αk , ζ2βk+1))

1− g(dcp(ζ2αk , ζ2βk+1))
|dcp(ζ2αk , ζ2βk+1)|

+ g(dcp(ζ2αk , ζ2βk+1))

∣∣∣∣∣dcp(ζ2αk , ζ2αk+1)dcp(ζ2βk+1, ζ2βk+2)

1 + dcp(ζ2αk , ζ2βk+1)

∣∣∣∣∣
+ |dcp(ζ2βk , ζ2βk+1)|

≤ |dcp(ζ2αk , ζ2αk+1)|+ £(dcp(ζ2αk , ζ2βk+1))|dcp(ζ2αk , ζ2βk+1)|

+ g(dcp(ζ2αk , ζ2βk+1))

∣∣∣∣∣dcp(ζ2αk , ζ2αk+1)dcp(ζ2βk+1, ζ2βk+2)

1 + dcp(ζ2αk , ζ2βk+1)

∣∣∣∣∣
+ |dcp(ζ2βk , ζ2βk+1)|

≤ |dcp(ζ2αk , ζ2αk+1)|+ £(dcp(ζ2αk , ζ2βk+1))|dcp(ζ2αk , ζ2βk+1)|

+ g(dcp(ζ2αk , ζ2βk+1))

∣∣∣∣∣dcp(ζ2αk , ζ2αk+1)dcp(ζ2βk+1, ζ2βk+2)

1 + dcp(ζ2αk , ζ2βk+1)

∣∣∣∣∣
+ |dcp(ζ2βk , ζ2βk+1)|.

As k→ +∞, we have

|µ| ≤
(

lim
k→+∞

£(dcp(ζ2αk , ζ2βk+1))

)
|µ| ≤ |µ|.

That is

lim
k→+∞

£(dcp(ζ2αk , ζ2βk+1)) = 1.

Since, £ ∈ u, we obtain |dcp(ζ2αk , ζ2βk+1)| → 0, which contradicts the fact that 0 ≺ µ.
Hence, {ζ2α} is a CP-Cauchy, which proves that {ζα} is a CP-Cauchy sequence. By the
completeness of X, there exists a point ϑ ∈ X such that ζα → ϑ as α→ +∞ and

dcp(ϑ, ϑ) = lim
n→+∞

dcp(ζn, ϑ) = lim
n→+∞

dcp(ζn, ζm). (11)
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Next, we claim that fϑ = ϑ. On the contrary, if fϑ 6= ϑ, then dcp(ϑ,fϑ) > 0. Then,
we have

dcp(ϑ,fϑ)

� dcp(ϑ, ζ2α+2) + dcp(ζ2α+2,fϑ)− dcp(ζ2α+2, ζ2α+2)

� dcp(ϑ, ζ2α+2) + dcp(ζ2α+2,fϑ)

= dcp(ϑ, ζ2α+2) + dcp(qζ2α+1,fϑ)

= dcp(ϑ, ζ2α+2) + dcp(fϑ,qζ2α+1)

� dcp(ζ2α+2, ϑ) + e(dcp(ϑ, ζ2α+1))dcp(ϑ, ζ2α+1)

+
g(dcp(ϑ, ζ2α+1))dcp(ϑ,fϑ)dcp(ζ2α+1,qζ2α+1)

1 + dcp(ϑ, ζ2α+1)

= dcp(ζ2α+2, ϑ) + e(dcp(ϑ, ζ2α+1))dcp(ϑ, ζ2α+1)

+
g(dcp(ϑ, ζ2α+1))dcp(ϑ,fϑ)dcp(ζ2α+1, ζ2α+2)

1 + dcp(ϑ, ζ2α+1)

� dcp(ζ2α+2, ϑ) + e(dcp(ϑ, ζ2α+1))dcp(ϑ, ζ2α+1)

+ g(dcp(ϑ, ζ2α+1))
dcp(ϑ,fϑ)dcp(ζ2α+1, ζ2α+2)

1 + dcp(ϑ, ζ2α+1)
,

which implies that

|dcp(ϑ,fϑ)| ≤ |dcp(ζ2α+2, ϑ)|+ e(dcp(ϑ, ζ2α+1))|dcp(ϑ, ζ2α+1)|

+ g(dcp(ϑ, ζ2α+1))

∣∣∣∣dcp(ϑ,fϑ)dcp(ζ2α+1, ζ2α+2)

1 + dcp(ϑ, ζ2α+1)

∣∣∣∣.
As α → +∞, we have |dcp(ϑ,fϑ)| = 0, which is a contradiction. Hence, fϑ = ϑ. It

follows that, similarly, qϑ = ϑ. Therefore, ϑ = fϑ = qϑ. Hence, ϑ is a common fixed point
of f and q.

Let us suppose ϑ̂ to be another fixed point, such that ϑ̂ = fϑ̂ = qϑ̂. We have

dcp(ϑ, ϑ̂) = dcp(fϑ,qϑ̂)

� e(dcp(ϑ, ϑ̂))dcp(ϑ, ϑ̂) +
g(dcp(ϑ, ϑ̂))dcp(ϑ,fϑ)dcp(ϑ̂,qϑ̂)

1 + dcp(ϑ, ϑ̂)

= e(dcp(ϑ, ϑ̂))dcp(ϑ, ϑ̂).

which means that |dcp(ϑ, ϑ̂)| ≤ e(dcp(ϑ, ϑ̂))|dcp(ϑ, ϑ̂)|. Since 0 ≤ e(dcp(ϑ, ϑ̂)) < 1, we
obtain |dcp(ϑ, ϑ̂)| = 0. Therefore, ϑ = ϑ̂.

Corollary 1. Let (X, dcp) be a CPMS and q : X → X be a mapping. If there exist two maps
e, g : {+ → [0, 1) such that for all ζ,℘ ∈ X,

(i) e(ζ) + g(ζ) < 1;

(ii) The mapping £ : {+ → [0, 1) defined by £(ζ) =
e(ζ)

1− g(ζ)
belongs to u;

(iii) dcp(qζ,q℘) � e(dcp(ζ,℘))dcp(ζ,℘) +
g(dcp(ζ,℘))dcp(ζ,qζ)dcp(℘,q℘)

1 + dcp(ζ,℘)
.

Then, q has a unique fixed point in X.
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Proof. The result follows by putting f = q in Theorem 3 .

Example 1. Let X = {1, 2, 3, 4} together with the order ζ � ℘ if ζ ≤ ℘. Then, � is a partial
order in X. Define dcp : X× X → {+ as follows:

(ζ,℘) dcp(ζ,℘)
(1,1), (2,2) 0
(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(3,3) eik

(1,4),(4,1),(2,4),(4,2),(3,4),(4,3),(4,4) 3eik

Obviously, (X, dcp) is a complete CPMS , for k ∈ [0, π
2 ]. Define f,q : X → X by fζ = 1,

q(ζ) =

1 if ζ ∈ {1, 2, 3}

2 if ζ = 4.

Define e, g : {+ → [0, 1) by e(ζ) = 1
2 , g(ζ) = 1

3 . We have the following cases:

1. ζ = 1 with ℘ ∈ X − {4}, =⇒ f(ζ) = f(℘) = 1 and dcp(f(ζ),q(℘)) = 0 satisfying
the conditions of Theorem 3.

2. If ζ = 1, ℘ = 4, then fζ = 1, q℘ = 2,

dc(fζ,q℘) = e2ik � 3
2

eik

=
3
2

eik + g(dcp(ζ,℘))
(0)3eik

3eik

= e(dcp(ζ,℘))dcp(ζ,℘)

+ g(dcp(ζ,℘))
dcp(ζ,fζ)dcp(℘,q℘)

1 + dcp(ζ,℘)
.

3. If ζ = 2, ℘ = 4, then fζ = 1, q℘ = 2,

dcp(fζ,q℘) = eik �
(

3
2
+

1
3

)
eik

=
3
2

eik + g(dcp(ζ,℘))
(eik)3eik

3eik

= e(dcp(ζ,℘))dcp(ζ,℘)

+ g(dcp(ζ,℘))
dcp(ζ,fζ)dcp(℘,q℘)

1 + dcp(ζ,℘)
.

4. If ζ = 3, ℘ = 4, then fζ = 1, q℘ = 2,

dcp(fζ,q℘) = eik �
(

3
2
+

1
3

)
eik

=
3
2

eik + g(dcp(ζ,℘))
(eik)3eik

3eik

= e(dcp(ζ,℘))dcp(ζ,℘)

+ g(dcp(ζ,℘))
dcp(ζ,fζ)dcp(℘,q℘)

1 + dcp(ζ,℘)
.
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5. If ζ = 4, ℘ = 4, then fζ = 1, q℘ = 2,

dcp(fζ,q℘) = eik � 3
(

1
2
+

1
3

)
eik

=
3
2

eik + g(dcp(ζ,℘))
(3eik)3eik

3eik

= e(dcp(ζ,℘))dcp(ζ,℘)

+ g(dcp(ζ,℘))
dcp(ζ,fζ)dcp(℘,q℘)

1 + dcp(ζ,℘)
.

Theorem 3 is satisfied. Hence, f and q have the unique common fixed point 1.

4. Application

We now present our application to Urysohn-type integral equations. Consider the systemζ(h) = a(h) +
∫ y

x U1(h, s, ζ(s))ds

℘(h) = a(h) +
∫ y

x U2(h, s,℘(s))ds,
(12)

where

1. ζ(h) and ℘(h) are unknown variables for each h ∈ [x, y], x > 0,
2. a(h) is the deterministic free term defined for h ∈ [x, y],
3. U1(h, s) and U2(h, s) are deterministic kernels defined for h, s ∈ [x, y].

Let X = (C[x, y],Rn), q > 0 and dcp : X× X → Rn be defined by

dcp(ζ,℘) = |ζ − ℘|+ 2 + i(|ζ − ℘|+ 2),

for all ζ,℘ ∈ X.
Obviously, (C[x, y],Rn, dcp) is a complete CPMS . We consider the Urysohn-type

integral system as in Equation (12) with the following:

1. a(h) ∈ X;
2. There exist two mappings e, g : {+ → [0, 1) by e(ζ) = 1

2 and g(ζ) = 0 such that
e(ζ) + g(ζ) < 1;

3. U1, U2 : [x, y]× [x, y]×Rn → Rn are continuous functions such that

|U1(h, s, ζ(s))−U2(h, s,℘(s))| � |ζ − ℘|
2(y− x)

− 2
y− x

.

Theorem 4. Let (C[x, y],Rn,℘cp) be a complete CPMS , and then the system in Equation (12),
satisfying 1–3 above, has a unique common solution.

Proof. For ζ,℘ ∈ X and q ∈ [x, y], let us define continuous maps, f,q : X → X by

fζ(h) = a(h) +
∫ y

x
U1(h, s, ζ(s))ds,

and

q℘(h) = a(h) +
∫ y

x
U2(h, s,℘(s))ds.
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Next, we have

dcp(fζ(h),q℘(h)) = |fζ(h)−q℘(h)|+ 2 + i(|fζ(h)−q℘(h)|+ 2)

=
∫ y

x
|U1(h, s, ζ(s))−U2(h, s,℘(s))|ds + 2

+ i
( ∫ y

x
|U1(h, s, ζ(s))−U2(h, s,℘(s))|ds + 2

)

�
∫ y

x

(
|ζ − ℘|

2(y− x)
− 2

y− x

)
ds + 2

+ i
( ∫ y

x

(
|ζ − ℘|

2(y− x)
− 2

y− x

)
ds + 2

)

=
|ζ − ℘|

2
+ i
(
|ζ − ℘|

2

)

� |ζ − ℘|
2

+ 1 + i
(
|ζ − ℘|

2
+ 1
)

= e(ζ)(|ζ − ℘|+ 2 + i(|ζ − ℘|+ 2))

= e(ζ)dcp(ζ,℘) + g(dcp(ζ,℘))
dcp(ζ,fζ)dcp(℘,q℘)

1 + dcp(ζ,℘)
.

Thus, all the conditions of Theorem 3 are fulfilled and hence the system of Equation (12)
has a unique common solution.

5. Conclusions

It is a proven fact that the Banach contraction principle and its generalization in the
setting of various topological spaces can be applied to find fixed point results and analytical
solutions to various types of contractions, including integral-type contractions. In the
first part of our paper, we established common fixed point theorems in the setting of a
CPMS . In the application section, we applied the derived result to find the solution of
Urysohn-type integral equations, in the setting of the CPMS . It is an open problem to
further investigate the fixed point results for multi-valued contractions in the setting of
complex valued partial metric spaces.
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