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Abstract: COVID-19 has been prevalent for the last two years. The transmission capacity of SARS-
CoV-2 differs under the influence of different epidemic prevention policies, making it difficult to
measure the infectivity of the virus itself. In order to evaluate the infectivity of SARS-CoV-2 in
patients with different diseases, we constructed a viral kinetic model by adding the effects of T cells
and antibodies. To analyze and compare the delay time of T cell action in patients with different
symptoms, we constructed a delay differential equation model. Through the first model, we found
that the basic reproduction number of severe patients is greater than that of mild patients, and
accordingly, we constructed classification criteria for severe and mild patients. Through the second
model, we found that the delay time of T cell action in severe patients is much longer than that in
mild patients, and accordingly, we present suggestions for the prevention, diagnosis, and treatment
of different patients.
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1. Introduction

The COVID-19 pandemic has lasted for two years, with over 526 million confirmed
cases and over 6 million deaths globally as of 29 May 2022 [1]. Clinically, patients with
mild and moderate disease often have mild clinical symptoms, while severe patients may
experience shortness of breath or even lung failure [2]. Compared with patients with mild
symptoms, those with severe symptoms have a stronger inflammatory innate immunity
response, often accompanied by a cytokine storm, which is also one of the main factors
leading to death caused by COVID-19 [3]. In terms of adaptive immunity, it takes more
time for effector T cells and B cells to fully mature in patients with severe disease [4], and B
cells can generate specific IgM and IgG to neutralize viruses [5].

The viral kinetic model is a dynamic model that describes the dynamic process of
viral infection in the body. Nowak et al. [6] developed a dynamic model to study the
dynamic process of HBV infection in the human body, which is considered the basic model
of viral infection dynamics [7]. The simplest viral kinetic model consists of only three
populations: the target cells, the infected cells, and free viruses [8], and more populations
can be added according to the research needs. For example, Baccam et al. [9] added an
eclipse phase, which refers to cells that have been infected but have not produced the
viruses. Jiao et al. [10] added CD4+ T cells based on the characteristics of HIV infection.

In order to study the effect of adaptive immunity on infection, Miao et al. [11] took
antibodies and CD8+T cells into consideration. Nowak et al. [12] and Rong et al. [13]
categorized free virus populations into drug-resistant and non drug-resistant viruses to
study the virulence of drugs against viruses. Pawelek et al. [14] considered the effect of
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interferons in the early stage of viral infection to gain insight into the antiviral effect of
innate immunity.

The basic reproduction number represents the average number of infected individuals
that an infected individual can produce. If R0 is greater than 1, the infection will spread. In
the early stage of the epidemic, a large number of studies calculated the basic reproduction
number for COVID-19’s transmission through the transmission dynamics model. The
overview of Alimohamadi et al. [15] can be referred to for details. Affected by the epidemic
prevention and control mechanisms employed by various countries, the basic reproduction
number of transmission may not reflect the infectivity of the virus itself, in which case
the calculation of the basic reproduction number based on the viral kinetic model has an
advantage in terms of reflecting the infectivity of the virus.

By using the basic virus kinetic model and changes in the viral load in experimental
animals, Goncalves et al. [16] calculated the basic reproduction number R0. Further,
Rodriguez et al. [17] analyzed the difference in R0 between young and old experimental
animals. Different from the previous two studies, Vaidya et al. [18] calculated the basic
reproduction number of different ferrets with the aid of a viral kinetic model with drug
treatment, and concluded that the average basic reproduction number of SARS-CoV-2
is 2.05.

Simple models are convenient for calculation; however, more complex models are
required to describe more complex immune responses. With the development of studies on
the infection mechanism of SARS-CoV-2, the viral kinetic model is becoming increasingly
complex. For example, in the early stage of COVID-19, Wang et al. [19] took CD8+T
cells into account in a model and assumed that SARS-CoV-2 could infect CD8+T, despite
there being insufficient evidence for this assumption. Goyal et al. [20] added the effect
of inflammatory macrophages on viral infection and damage to healthy cells. Further,
Jenner et al. [21] constructed a detailed model to describe the inhibitory effect of immune
cells on viral infection, the damage done by cytokines to the body, and the delayed response
of T cells. However, none of these models that describe immune responses in detail involve
the calculation of the infectivity of the virus—in other words, the basic reproduction number
R0. In addition, these studies did not perform a differential analysis between patients with
mild and severe disease using the basic reproduction number.

The delay in T-cell action differs significantly between patients with different symp-
toms [4]. Jenner et al.’s [21] construct for the delay in T-cell action does not consider the
variability between patients with mild and severe disease. Goyal et al. [20] found that the
use of moderately potent drugs before the onset of peak virus symptoms may cause the
body to develop drug resistance. Rodríguez et al. [22] developed a model to study immune
cell action in neocrown infections and showed that low clearance of CD8+T cells exacer-
bates the disease. Néant et al. [23] found that if virus production could be reduced by 90%
at the time of admission, the time to virus clearance would be reduced by 2.0–2.9 days. So
far, no studies have attempted to determine treatment regimens based on the T-cell content.

The formation of a distinction between mild and severe patients that does not depend
on the patient’s symptoms could be used to better protect mild cases that are prone to
turning severe. Finding an indicator to determine a patient’s optimal medication time
would also be of great clinical benefit. In this regard, this paper forms preliminary methods.

The rest of this paper is arranged as follows. In Section 2, first and foremost, data
sources and processing are explained in detail. Additionally, we construct two viral kinetic
models that consider the effects of T cells and antibodies. One model is used to calculate
the basic reproduction number R0 (Model 1), and the other model is used to analyze the
T cell delay in viral infection (Model 2). Both models consider the effects of T cells and
antibodies. The difference is that we regard T cells as having a known dominant function in
Model 1, but Model 2 uses a delay differential equation. Finally, the method of parameter
estimation and the tools used are introduced in detail. In Section 3, this paper theoretically
distinguishes between patients with mild symptoms and others with severe symptoms
using real data fit the model. Additionally, the difference in viral infection in patients with
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mild or severe symptoms is analyzed. In practice, this paper can provide patients with
classification criteria based on the basic reproduction number and can be used as a basis
for diagnosis and treatment suggestions.

2. Methods
2.1. Patient Classification

According to The COVID-19 pneumonia diagnosis and treatment scheme of the
People’s Republic of China (trial version 9) [24], the severity of a patient’s condition can
be classified into 4 types: mild, moderate, severe, and critical. Compared with mild and
moderate types, patients with the severe and critical types show shortness of breath or even
respiratory failure. Therefore, clinical classification is simplified by using this standard. In
this study, the mild and moderate types are regarded as mild and the severe and critical
types as severe.

2.2. Data

The data used in this study were obtained from different studies, but these data are
only presented in the form of pictures in these papers, and there are no accurate data tables
available. We used WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/, accessed
on 13 April 2022) to extract data from the pictures in the main text or supplementary
materials. Finally, we analyzed and processed these data for use in our study.

2.2.1. Viral Load

The viral load can be used to describe the viral content in humans. Different studies
have selected different units, and log10(copies/mL) and 109 copies/mL are used as the
main units of viral load in this paper. A previous study provided time-varying data on
the viral load in 21 mild and 10 severe patients [25]. To ensure the accuracy of image data
acquisition, only four patients were selected from each.

Since the selected viral load data was in units of ∆Ct (Ctsample − Ctre f ), we used
Figure 2D from [26] which gives the relationship between N1 Ct and ∆Ct. We assumed
that N1 Ct is not different from the Ct values in other studies. After calculation, Ctre f = 25,
so Ct = ∆Ct + 25. Li K et al. [27] stated that the Ct values of 33 and 28 are equivalent
to 4.34 log10(copies/mL) and 5.83 log10(copies/mL), respectively. Similar to the practice
in [28], we constructed a linear relationship between the Ct value and log10(copies/mL):
1 log10(copies/mL) = −0.298 × (1 Ct) + 14.7. After injecting SARS-CoV-2 into volunteers,
Killingley et al. [29] found that symptoms appeared 2–4 days after the injection. The
selected data were recorded after the onset of symptoms. We assumed that symptoms
appeared 2 days after these patients were infected with the virus.

2.2.2. T Cells and Antibodies

For T cells, only CD8+T cells were selected for consideration in this paper. These are
immune cells with a killing effect on infected cells. We selected CD8+T, IgM, and IgG data
from Figure 3 in [30]. These data were obtained from a study of 707 patients, and statistics
on patients with moderate, severe, and critical disease were calculated. For convenience,
we used the data of the moderate and critical types. This selection method is reasonable,
because patients with moderate disease do not experience respiratory failure, while critical
patients do, which is consistent with the distinction standard between mild and severe
patients in this study.

2.3. Models

In this section, we describe the construction of two mathematical models. The first
model was used to estimate the basic reproduction number of viruses, and the second was
used to estimate the start time of T cells. The simple immunological mechanism employed
in these two models is shown in Figure 1. Uninfected cells transition to the eclipse phase
after being infected, but the virus is not produced. After a period of time, cells become

https://automeris.io/WebPlotDigitizer/
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completely infected and can be recognized by T cells, which can produce free viruses. Free
viruses can be neutralized by antibodies.
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Figure 1. Viral infection and immune response diagram. ‘Production’ means conversion between cells
or cell cleavage to produce viruses; ‘Clearance’ means virus inactivation or cell death; ‘Participate in
the production’ refers to viral infection; ‘Participate in the clearance’ includes the role of antibodies
against the virus and T cell-induced apoptosis in infected cells.

Rodriguez et al. [17] used the basic virus model to estimate the basic reproduction
numbers of young and old cynomolgus macaques. The basic virus kinetic model did not
add the effects of T cells and antibodies. In this paper, Model 1 ((1)–(4)) reflects the role of T
cells and antibodies,

dA
dt

= λA

(
1− A + E + I

Amax

)
A− βAV, (1)

dE
dt

= βAV − kE, (2)

dI
dt

= kE− δI I − δIT IT(t), (3)

dV
dt

= pI − cV − σMVUM(t)− σGVUG(t). (4)

On the basis of Model 1, we construct a delay differential equation Model 2 ((1)–(5)) to
study the delay response of T cells:

dT
dt

= ωI(t− τ)− δTT. (5)

In these two models, A is the target cells of the virus, i.e., the uninfected cells. Similar
to Jenner et al. [21], we assumed that uninfected cells follow the logistic growth law.
Both E and I represent cells that have been infected. E is the eclipse phase cells, and I is
the completely infected cells, which can lyse to produce viruses. T(t), UG(t), and UM(t)
represent T cells, IgG, and IgM, respectively. After exposure to the virus, healthy cells are
transformed into cells in the eclipse phase at the rate β, and after 1/k days, they become
completely infected. Infected cells decrease at a certain rate (δI) due to NK cell killing or
other immune functions and are also induced to undergo apoptosis by T cells after T cells
are produced. Free viruses can be produced by infected cells at a rate p, which can be
reduced due to the effect of antibodies or other immune functions, such as complements.
In Model 1, similar to [11], T(t), UG(t), and UM(t) are regarded as known time-dependent
functions. In Model 2, the assumption of T(t) is removed. In addition, because of the
growth and development of T cells, they are assumed to be produced after τ day. The
meanings of all variables and parameters are shown in Table 1:
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Table 1. The variables and the parameters in the Model 1 and Model 2.

A Uninfected cells (109 cells/mL)
E Eclipse phase cells (109 cells/mL)
I Completely infected cells (109 cells/mL)
V Free virus (109 copies/mL)
T CD8+T cells (109 cells/mL)
UM Antibody IgM (AU/mL)
UG Antibody IgG (AU/mL)

Amax maximum uninfected cells (109 cells/mL)
λA the production rate of uninfected cells (1/day)
β the infection rate of uninfected cells ((109 copies/mL)−1(1/day))
k the transition rate from the eclipse phase cells (1/day)
I the death rate of completely infected cells (1/day)
δIT the death rate of infected cells by T cells killing ((109 cells/mL)−1(1/day))
p the production rate of virus (1/day)
c the death rate of free virus (1/day)
σM the death rate of free virus by IgM neutralizing ((109 copies/mL)−1(1/day))
σG the death rate of free virus by IgG neutralizing ((109 copies/mL)−1(1/day))
ω the production rate of T cells by completely infected cells recruiting (1/day)
τ the delay time of T cells (day)
δT the death rate of T cells (1/day)

The basic reproduction number R0 represents the average number of infected cells
that can be generated by infected cells. In order to calculate R0, some studies have as-
sumed that V is proportional to I and have shown that the actual value of dV/dt is
very tiny [31,32], approximately equal to 0. Similarly, using their method, we assumed
V = pI/(c + σMUM + σGUG) and substituted it into (4) to simplify it into the following
differential equation group ((6)–(8)):

dE
dt

=
βpAI

c + σMUM + σGUG
− kE, (6)

dI
dt

= kE− δI I − δIT IT, (7)

dA
dt

= λA

(
1− A + E + I

Amax

)
A− βpAI

c + σMUM + σGUG
. (8)

Using the method in [33], we calculated the basic reproduction number R0:
Firstly, we needed to calculate the disease-free equilibrium (DFE) X0 = [A0, E0, I0, T0,

UG0 , UM0 ], where A0 = A(0), and the following equations are satisfied ((9)–(11)):

0 =
βpA0 I0

c + σMUM0 + σGUG0

− kE0, (9)

0 = kE0 − δI I0 − δIT I0T0, (10)

0 = λA

(
1− A0 + E0 + I0

Amax

)
A0 −

βpA0 I0

c + σMUM0 + σGUG0

. (11)

Secondly, we needed to distinguish between the source and clearance in the infected
cell population, that is, the following vector function γ, v, and we solved the differential
Dγ, Dv:

γ(E, I) =
(

βpAI/(c + σMUM + σGUG)
kE

)
, v(E, I) =

(
kE

δI I + δIT IT

)
, (12)
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F = Dγ =

(
0 βpA/(c + σMUM + σGUG)
k 0

)
, V = Dv =

(
k 0
0 δI + δITT

)
. (13)

Finally, the DFE was substituted into (13), and the basic reproduction number was
calculated by R0 = ρ(FV−1|X0), where ρ(A) means the spectral radius of matrix A and
FV−1 is called the next generation matrix. DFE is locally asymptotically stable if R0 < 1
but unstable if R0 > 1 [33]. We calculated R0 as follows:

R0 =

√
βpA0(

c + σMUM0 + σGUG0

)
(δI + δITT0)

. (14)

2.4. Data Fitting and Parameter Estimation

In order to reduce the number of free parameters, this study referred to other similar
studies to determine the estimates of some parameters and DFE, as shown in Table 2:

Table 2. The variables and parameters in Model 1 and Model 2.

A0 A(0) 0.16 Reference [21]
E0 E(0) 0 Directed estimate
I0 I(0) 0 Directed estimate
T0 T(0) 1.1 × 10−4 Reference [21]

UM0 25 (mild patients) 15 (severe patients) Reference [30]
UG0 40 (mild patients) 35 (severe patients) Reference [30]

UM(0) 0 Directed estimate
UG(0) 0 Directed estimate

Amax 0.16 Directed estimate
λA 0.74 Reference [21]
k 3 Reference [17]

δIT 238 Reference [21]
‘Directed estimate’ refers to the reasonable assumptions given in this paper based on the general viral dynamics
model. Before viral infection, the infected cell (E,I) content should be 0, and the antibodies against the SARS-CoV-2
have not been secreted. In addition, we assumed that the maximum growth rate of healthy cells is the initial state.

For Model 1, we first estimate the parameters σM and σG. For (4), we regard pI as the
time-varying parameter varying in Model 1, that is, pI = a(t) and express it as the form of
polynomial of order r, then (4) can be simplified as follows:

Y(t) =
dV
dt

+ cV

= a(t)− σMXM(t)− σGXG(t)

= a0 + a1t + · · ·+ artr + (−σM)XM(t) + (−σG)XG(t),

(15)

where a0, a1, · · · , ar denote the coefficient of the polynomial, XM(t) = V(t)UM(t), XG(t) =
V(t)UG(t). If there is an n-dimensional time vector t = [t1, t2, t3, t4], (15) can be transformed
into the following linear regression equation:


Y(t1)
Y(t2)

...
Y(tn)

 =


1 t1 · · · tr

1 XM(t1) XG(t1)
1 t2 · · · tr

2 XM(t2) XG(t2)
...

...
...

...
...

1 tn · · · tr
n XM(tn) XG(tn)




a0
...

ar
(−σM)
(−σG)

, (16)

where {Y(ti) = dV(ti)/dt+ cV(ti)|i = 1, 2, · · · , n} is the dependent variable and {tik, XM(ti),
XG(ti) |k = 1, 2, · · · , r; i = 1, 2, · · · , n} is the independent variable. If regression Equation (16)
is solved, the specific value of Y(ti) needs to be calculated. According to the two-stage
local polynomial estimation method used in the time-varying parameter estimation [34],
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we used the local polynomial estimation to fit V(t). For a specific time node t0, the points
in its neighborhood can have the following q-order polynomial based on Taylor expansion:

V(t) ≈ β0(t0) + β1(t0)(t− t0) + · · · βq(t0)(t− t0)
q.

The coefficient estimates are as follows:

β̂(t0) =
(

β0(t0), β1(t0), · · · , βq(t0)
)T

=
(

XT
q W1Xq

)−1
XqW1YV ,

Xq =

 1 t1 − t0 · · · (t1 − t0)
q

...
...

...
1 tn − t0 · · · (tn − t0)

q

, W1 =

 Kh1(t1 − t0)
. . .

Kh1(tn − t0)

,

YV = [V(t1), V(t2), · · · , V(tn)]
T .

where Kh1(t) = K(t/h1)/h1, K(t) is the kernel function, and h1 is the bandwidth. Obviously,
there can be dV(t0)/dt and V(t0) estimates:

V̂(t0) = β0(t0),
dV(t0)

dt
= β1(t0).

According to the above, we simplified the estimation problem of σG and σM into the
linear regression problem with constraints (σG, σM > 0), and the least square method can
be used to solve it.

For the other parameters in Model 1, we chose the sum of residual squares of the viral
load (V) as the minimization objective function (RSSV) and used genetic algorithm, simu-
lated annealing algorithm, and nonlinear least squares method to estimate the parameters.

For Model 2, the estimated values of the same parameters are given based on the esti-
mated parameters in Model 1. For the estimation of τ and ω, δT , the T cell (T) residual sum
of squares (RSST) was used to minimize the objective function to estimate these parameters.

RSSV =
n

∑
i=1

{
log10

(
V̂(ti)

)
− log10(V̄(ti))

}
,

RSST =
n

∑
i=1

{
T̂(ti)− T̄(ti)

}
,

where V̂(ti) and V̄(ti) represent the estimated value and actual value, respectively, of viral
load on day ti in copies/mL; T̂(ti) and T̄(ti) represent the estimated and actual T cell
concentrations on day ti, respectively, in 109 cells/mL.

In order to determine the distribution of each parameter and evaluate the distribution
difference of each parameter between different diseases, we calculated the distribution
of the estimated parameters. However, existing studies provided less viral load data to
distinguish between severe and mild patients, resulting in a smaller data sample being
selected in this paper. In order to solve this problem, this study used a bootstrap sampling
method to estimate the statistical distribution of each parameter. In addition, the solver
ode23s and dde23 in Matlab2021a were used to solve ((1)–(5)).

3. Results
3.1. Basic Reproduction Number and Patient Classification Method

We used the cube spline interpolation method to smooth T(t), UM(t), and UG(t) data,
and data with values of less than 0 were expressed as 0. The change in T cells was relatively
stable. At the same time, the results from mild patients were obviously higher than those
from the severe patients. The amount of antibodies will change significantly after two
weeks, as shown in the Figure 2.
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Figure 2. (A) Dynamic changes of T cells over time; (B) Dynamic changes of IgM over time; (C) Dy-
namic changes of IgG over time. In this paper, the initial value of T cells is treated as [21], and the
initial values of IgM and IgG are treated as 0. Other data are from [30].

The study presented in [29] on symptoms of COVID-19 and the immune response
provided information on the dynamic change in viral load used for data fitting. The
volunteers were young adults aged between 20 and 29 years old with mild symptoms, so
we used the data from mild patients and the dynamic process presented in [30]. With the
method described earlier, we used the Epanechnikov function (17) as the kernel function
for the local estimated polynomial, from which we selected bandwidth 5 and determined
the polynomial order to be 4,

K(x) =

{
0.75

(
1− x2), if |x| ≤ 1,

0, otherwise.
(17)

The fitting results are shown in Figure 3. For the estimate of V(t), refer to the
curve shown in Figure 3A. To clearly show the degree of fit between the fitting data
and the original data, we constructed Figure 3B, because the units of the original data were
log10(copies/mL).
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Figure 3. Fitting viral load data using local polynomial estimation. (A) Unit: 109 copies/mL; (B) Unit:
log10(copies/mL).

Based on the method defined in Section 2.4, we defined c = 1.81 [21] with final estimates
of σG = 0.0042 and σM = 0.0372. Furthermore, we assumed that the two parameters of
severe disease patients and mild disease patients were consistent.

After fitting Model 1 ((1)–(4)) with the viral loads of mild and severe patients, the
estimated parameters and basic reproduction number were obtained, as shown in Table 3,
and the model fitting details are shown in Figure 4. The peak viral load of SARS-CoV-2 was
shown to occur in the first week [35], which is consistent with the results shown the model
in this paper. As shown in Table 3, the basic reproduction numbers of the 4 mild patients
were 2.48, 1.85, 2.46, and 2.29 with an average basic reproduction number of 2.27, and the
basic reproduction numbers of the four severe patients were 4.13, 2.79, 3.06, and 2.81 with
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an average basic reproduction number of 3.20. An R0 value of greater than 1 indicates that
the viral infection will continue to develop, and an R0 value of less than 1 indicates that
the viral infection will disappear, which suggests that regardless of whether symptoms are
mild or severe, the eight patients will all require drug treatment to control the spread of the
virus in vivo. Additionally, R0 can be used to test the medicine’s efficacy or the effect of a
vaccine on patients [18]. The severe disease patients require an efficacy rate of 68.75%, and
the mild ones require an efficacy rate of 55.94%, on average ((R0 − 1)/R0).
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Figure 4. Dynamic changes in eight patients’ viral loads: patients 1, 2, 3, and 4 are mild disease
patients; patients 5, 6, 7, and 8 are severe disease patients. The peak viral load of mild patients (11.24,
8.97, 9.39, 10.11) is greater than that of severe patients (12.22, 12.16, 11.64, 12.39), and the viral load of
mild patients peaks earlier than that of severe patients.

Table 3. Some parameter values in Model 1 and Model 2.

β p δI c V0 R0

Patient 1 0.054 1.45 × 105 13.90 11.93 1.87 × 10−4 2.48
Patient 2 4.28 1.37 × 103 18.02 12.71 9.67 × 10−4 1.85
Patient 3 3.80 3 × 103 19.12 13.26 9.74 × 10−4 2.46
Patient 4 0.58 1.23 × 104 13.20 13.95 6.56 × 10−4 2.29

Mean 2.18 4.04 × 104 16.06 12.96 6.69 × 10−4 2.27

Patient 5 7.24 × 10−3 1.49 × 105 1.03 7.76 4.55 × 10−4 4.13
Patient 6 7.74 × 10−3 1.68 × 105 7.28 1.74 7.61 × 10−4 2.79
Patient 7 3.07 × 10−2 3.19 × 104 4.94 1.42 1.39 × 10−2 3.06
Patient 8 4.60 × 10−3 1.36 × 105 4.21 1.05 9.66 × 10−4 2.81

Mean 1.26 × 10−2 1.22 × 105 4.36 2.99 4.01 × 10−3 3.20
Patient 1, 2, 3, and 4 are mild patients; Patient 5, 6, 7, and 8 are severe patients.

Parameter β reflects the intensity of the effect of the viral infection on healthy cells.
This is generally affected by two aspects: the infection mechanism of the virus itself is
affected by the affinity of receptors on healthy cells and the cells’ antiviral mechanism also
exerts a great influence. Smoking and some drugs for other diseases may upregulate the
activity of the receptor [36]. Viruses can evade immunity by enhancing viral adhesion and
increasing the viral invasion [37]. Interferons can prevent viruses from infecting healthy
cells [38]. At the initial stage of the virus entering the human body, the immunocyte-like
plasma dendritic cells (pDC) secrete massive concentrations of interferons [3]. The β of
severe disease patients is significantly lower than that of mild disease patients, indicating
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that, in the late stage of the immune response, the severe disease patients probably retain
a higher level of interferons, which has a negative influence on normal cell function.
Medical research shows that COVID-19 patients with severe disease often have high
concentrations of interferons and cytokines, mainly protein interleukin 6 (IL-6), which
renders the cytokine storm, and causes functional damage to the body [3]. In terms of
clinical treatment, there is a corresponding new treatment method involving the injection
of an IL-6 inhibitor [24]. Generally, the β value distribution of severe disease patients is
much more concentrated (Figure 5A), signifying that the unstable generation of interferons
is common for severe patients.

Parameter p reflects the rate at which cells break down to produce viruses. Generally,
patients with severe disease have higher p values. This signifies that SARS-CoV-2 RNA in
the cells of severe disease patients can be better replicated and might expresses an immune
escape mechanism such as affecting cells’ antiviral state by using specified proteins [37,38]
different from those used in mild disease patients. On one hand, interferons can reduce viral
infection in cells, and on the other hand, they can reduce viral replication in cells. Severe
disease patients have low β values but high p values, which signifies that, in severe disease
patients, they have a limited impact on viral replication. In clinical treatment studies, the
impact of interferons on viral replication can be studied. Overall, mild and severe disease
patients have overlapping values, but there is a more concentrated distribution of severe
patients (Figure 5B), which indicates that while some mild patients have these effects but
they are more common in severe disease patients.

 severe

Figure 5. Bootstrap sampling distribution of Model 1 parameters. (A) log10β; (B) p; (C) δI ; (D) c; (E)
V0; (F) R0. The kurtosis of β, p, δI , V0, R0 of mild patients is −0.54, 0.53,−0.13, 0.0011,−0.23,−0.46;
the kurtosis of severe patients is −0.222,−0.15,−0.22,−0.19,−0.36,−0.05. Kurtosis can reflect the
concentration of data around the mean: the higher the kurtosis is, the greater the concentration is.
The distribution of each parameter was found to be significantly different between patients with mild
and severe disease using the Mann–Whitney test (p-value < 1).

Parameter δI indicates the death of infected cells other than T cells and allows us to
consider the killing effect of NK cells or the apoptosis induced by other immune cells [3].
Severe disease patients were shown to have cells with a lower killing effect than mild
disease patients, which is consistent with medical studies. For instance, NK cells in severe
disease patients are suppressed by the cytokine storm [3]. Overall, the δI value distribution
of severe disease patients is more concentrated than in mild disease patients, and the
distribution of the two is quite different.
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Parameter c indicates the inactivation of free viruses by cells other than antibodies,
such as the killing of viruses by neutrophil extracellular traps (NETs), macrophage phago-
cytosis of cells, and so on. The c value of mild disease patients is significantly higher than
that of severe ones, possibly because immune cells are inhibited to varying degrees. For
instance, the NET reaction leads to the pyroptosis of macrophages [3], and macrophages can
transmit information to promote T cell maturation, which affects the initiation of adaptive
immunity [38]. Overall, the concentration of c values in mild and severe disease patients
is comparable, while the distributions of the two are quite different (Figure 5D), which
indicates that these processes are common in severe disease patients but rarely occur in
mild disease patients.

V0 indicates patients’ initial viral load, and severe disease patients have a higher initial
viral load than mild disease patients, which means that severe disease patients not only
have a higher viral load in the middle and late stages of viral infection [39], but also inhale
more viruses in the early stages. Mild disease patients have a more concentrated overall
distribution (Figure 5E). At the same time, a relatively low level of viral infection occurs
in the initial stage for severe disease patients. This signifies that, in the early stages of
infection, potential severe disease patients inhale SARS-CoV-2 more easily, and although
there is the possibility of relatively low inhalation, there is a strong onset of illness due to
differences in the immune system.

Generally, although the difference in the basic reproduction number R0 is relatively
small between severe and mild disease patients, it can be used to differentiate severe
and mild disease patients. To provide better clinical guidance, we classified patients
with different R0 values into severe and mild disease α quantiles. By calculating the
quantile of the bootstrap sample from Figure 5F, we determined that because the proportion
of moderate to severe patients accounted for 20% [40] of all patients, mild and severe
disease patients accounted for α = 80% and α = 20% of all patients, respectively, giving
basic reproduction values of 2.39 and 2.93, respectively. That is, patients with a basic
reproduction number of less than 2.39 have an 80% probability of developing mild disease,
and patients with a basic reproduction number of more than 2.93 have an 80% probability
of developing severe disease. We provide the classification of patients in (Figure 6). It
should be emphasized that the selection of quantiles is not fixed; they should be selected by
integrating factors such as epidemic prevention and the economic conditions. We intend
to provide a feasible method to distinguish mild disease patients, severe disease patients,
and at-risk patients that does not rely on clinical symptoms. Doing so, on the one hand,
could avoid excessive occupation of medical resources and, on the other hand, could better
identify at-risk patients so that they can receive increased attention.

asymptomatic mild severerisk

R0
Figure 6. Classification of patients based on basic reproduction number. If R0 ≤ 1, the patient is
asymptomatic. If 1 ≤ R0 < 2.39 ,the patient is mild. If 2.39 ≤ R0 < 2.93 , the patient is at risk of
becoming severe. If R0 ≥ 2.93, the patient is severe. Patients at risk of mild to severe disease should
be focused on.

Both antibody clearance of viruses and the killing effect of T cells on infected cells are
indispensable to human immunity. Here, based on the calculation formula for the basic
reproduction number (14), we suppose that δI = σG = σM = 0 can be used to simulate change
of basic reproduction number in the absence of adaptive immunity (Figure 7).
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Figure 7. With the basic reproduction number (R0) and without T cells and antibodies (R00): (A) mild
patients; (B) severe patients. The red line indicates the boundary between at-risk and mild patients.
The blue line indicates the boundary between at-risk and severe patients.

According to the patient classification given in this paper (Figure 6), when the roles
of the T cells and antibodies are lost, patient 4 changes from a mild disease to an at-risk
patient (Figure 7A), and the corresponding medical treatment is required; patients 6 and 8
are converted from at-risk patients to severe disease patients (Figure 7B). The non-immune
basic reproduction number (R00) in all patients increases, and the growth rate in severe
disease patients is greater (R0−R00). This suggests that patients with severe disease are
more dependent on their immune capacity, although their immune capacity is relatively
more unstable.

Overall, the basic reproduction number R0 is a relatively good tool to evaluate the
infectivity of the virus in the human body. Although the difference is small, severe disease
patients generally have higher R0 values than mild disease patients. We can also take R0 as
the standard to distinguish mild and severe disease patients. The reason for severe and
mild disease patients having different R0 values is that mild disease patients always have
a more stable antiviral effect and a stronger ability to kill viruses and infected cells. The
triggers for severe illness come from viral infection and excessive activation of immunity.
Although severe disease patients do not have good immunity, they are more dependent
on T cells and antibodies than mild disease patients. Clinically, when the classification
criteria of patients given in this paper are used for different patients, particularly for at-risk
patients, the right medicine can be prescribed and the corresponding treatment provided.

3.2. T Cells Delay and Treatment Regimen

After being infected by a virus, infected cells secrete cytokines, and immature T cells
gradually differentiate with some time delay. Since adaptive immunity is more efficient,
severe disease patients show later detection of antibodies and T cells. We simulated this
process using Model 2. The parameter estimates are shown in Table 4 and the distribution
is shown in Figure 8.

Table 4. Some parameter values in Model 2.

ω τ δT ω τ δT

Pt 1 0.031 1.85 0.015 Pt 5 1.18 × 10−4 10.95 0.026
Pt 2 0.038 1.28 0.066 Pt 6 6.38 × 10−4 12.43 0.024
Pt 3 0.042 2.82 0.014 Pt 7 4.13 × 10−4 13.50 0.023
Pt 4 0.029 1.30 0.030 Pt 8 4.71 × 10−4 11.16 0.026

Mean 0.025 1.81 0.031 Mean 4.10 × 10−4 12.01 0.025
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 severe

Figure 8. Bootstrap sampling distribution of Model 2 parameters: (A) ω; (B) δT ; (C) τ; The kurtosis
of ω, δT , τ of severe patients is −0.61, −0.42, and −0.41; the kurtosis of mild patients is −0.29, 0.062,
and 10.95. The distribution of each parameter was found to be significantly different between patients
with mild and severe disease using the Mann–Whitney test (p-value < 1).

On average, the recruitment rate of infected cells to T cells in mild patients was found
to be 0.025, higher than the value of 0.00041 found for severe patients, while the T cell
clearance was shown to be greater than in severe patients. However, after observing every
patient, we found that except for patient 2, all patients had relatively low clearance of T
cells. New mature T cells appeared in severe disease patients after an average of 12.01 days,
while in mild disease patients, T cells only took an average of 1.81 days to appear. The
main factor contributing to the difference between severe and mild disease patients is
the adaptive immune delay time, i.e., the complete maturation time of T cells. Overall,
the recruitment rate and clearance rate of T cells were found to be more concentrated in
severe disease patients, showing that severe disease patients have low recruitment of T
cells and weak clearance of T cells. All mild disease patients had a T cell delay time of less
than 3 days, while severe disease patients had a T cell delay time of more than 10 days.
Thus, intensive care is required by all clinically available patients who have not produced
large amounts of T cells on the first day after the appearance of symptoms, i.e., three days
after infection.

The viral load of severe disease patients is usually higher than that of mild disease
patients [39], which can also be used as the criteria for evaluating disease changes. In
clinical treatment, general treatment of mild patients is generally undertaken first, i.e., bed
rest, detection of vital signs, oxygen treatment, and so on. For severe disease patients, drug
treatment can be adopted [24]. We assumed that on the day of symptom appearance, i.e.,
the second day after infection, general treatment was given to patients, and the duration
of medication was dependent on the situation. The effect of different treatments with an
average viral load of seven days was described. Drug treatment can reduce the viral load
of patients [41]. An animal experiment showed that the effect of reducing the viral load
is related to the drug dosage, and it was proven that some drugs, such as massetini, can
reduce the viral load by more than 99% [42]. Hyperbaric oxygen therapy can reduce the
viral load, so changes in the viral load are often used to observe the effect of treatment [43].

In summary, based on a reasonable analysis, we assume that general treatment reduces
the viral load by 50%, and drug treatment reduces it by 90%. We used representative severe
and mild disease patients, i.e., the mean values of parameters from Model 2 to describe the
medical process.

Whether drug treatment or general treatment is used, for mild disease patients, the
viral load decreases every day, and the effect of drug treatment is more obvious (Figure 9A).
However, for severe disease patients, if medication is taken the day after viral infection, the
viral load rises again after a period of decline (Figure 9B), showing that this drug treatment
start time is not the best for mild disease patients. If drug treatment is taken on the third
day after infection, i.e., combined treatment, the viral load will decline significantly.
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Figure 9. Changes in the viral load without treatment and following general treatment, drug treatment,
and combined treatment: (A) mild patients (combined treatment refers to general treatment and drug
treatment starting the day after infection); (B) severe patients (combined treatment refers to general
treatment starting the day after infection and drug treatment starting the third day after infection).

For mild patients, general treatment reduces the viral load by 0.293, and drug treatment
reduces the viral load by 0.846. Early drug treatment has a better ability to reduce the viral
load (Figure 10). In severe patients, general treatment reduces the viral load by 0.463, and
drug treatment reduces it by 0.602. Combined treatment, i.e., taking drug treatment on
the third or fourth day after infection, better reduces the average viral load of a week, i.e.,
better efficacy.
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Figure 10. Relationship between the drug treatment start time and the average viral load in a week
with combined treatment: (A) mild patients (the average viral load increased after delayed drug
treatment); (B) severe patients (the average viral load decreased first and then increased with the
onset of drug treatment)

Overall, the third day after infection is the best time for combined treatment of po-
tential severe disease patients, and T-cells generally appear in the bodies of severe disease
patients after the third day. As a result, the detection of T cells in vivo should be done
when a patient has symptoms. If the value is lower than 2 × 105 cells/mL, drug treat-
ment should be initiated (Figure 11). We suggest that the content of T cells should be
detected, and the treatment plan should be adjusted in a timely and accurate manner with
clinical examination.
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Figure 11. T cell changes in mild and severe disease patients without treatment. The T cell concentra-
tion is measured on the third day, and if the value is lower than 2 × 105 cells/mL (red part), drug
treatment should be administered the same day; if it is higher than 2 × 105 cells/mL and lower
than 4 × 105 cells/mL (yellow part), more clinical information should be used to determine whether
drug treatment is needed; if it is higher than 4×105 cells/mL (green part), general treatment should
be continued.

4. Discussion

In this paper, SARS-CoV-2 was taken as the research object, and the viral kinetic
model was used to simulate the infection mechanism of COVID-19 and the human immune
system. Additionally, the immune difference between mild and severe disease patients
was analyzed and compared in an attempt to give clinical explanations for the results and
further provide clinical suggestions. Two main research methods were used, and the results
are as follows: First, by constructing Model 1 to estimate the basic reproduction number
and specific parameters of other models, it was found that the basic reproduction number
of severe disease patients is generally greater than that of patients with mild symptoms,
but the difference is small. The reason for the difference in R0 is the different response
characteristics of patients’ immune systems. A classification method for patients was
proposed based on the distribution of R0. Secondly, Model 2 was constructed to function
as an effective tool to estimate and calculate the maturation time of T cells. Studies have
shown that the maturation time of T cells is longer in severe disease patients, which is
consistent with clinical medical results. Combining the two points, it appears to be the
difference in immune system characteristics that determines whether a patient has severe or
mild symptoms, and this can be used to provide different clinical treatment suggestions for
different patients. This paper suggests that, in terms of personal protection, it is important
to enhance one’s own resistance. In terms of the prevention and control of the epidemic, it
is recommended, where possible, to apply more stringent epidemic prevention mechanisms
to the population with poor immune capacity. In terms of clinical treatment, corresponding
treatments can be given according to T cell observations.

Compared with similar studies [17], this paper has some similarities and differences.
Similar to previous studies, we distinguished different types of research objects and ana-
lyzed the differences based on the viral infection model. The results show that different
immune abilities are the main cause of the differences between research objects. Some
previous studies used laboratory animals rather than actual patients, which may be due to
a relative lack of data. This study used real patient data, making the results more consistent
with clinical results. The data, however, are relatively scarce and difficult to obtain, so the
sample size used in this study was small, and the parameter distribution given may not
be accurate.

Some shortcomings also exist. First of all, the data on the viral load used in this study
were no different in terms of sampling, but the difference in results was possibly caused by
different methods of sampling [17]. Additionally, in this study, relatively few data were
used, and the sample size was small, so our results may differ from the overall results. In
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the context of the COVID-19 pandemic, more comprehensive data are desired to ensure
that the results are objective and reasonable.

5. Conclusions

SARS-CoV-2 infects different people with different levels of severity. The basic repro-
duction number R0 of severe disease patients is greater than that of mild disease patients.
This is because, in severe disease patients, the immune system has a poor capacity to clear
infected cells and free viruses. In addition, viruses can replicate more frequently in cells.

In this paper, we constructed two mathematical model to evaluate the infectivity of
SARS-CoV-2 in patients with different disease levels. We used the first model to calculate
the basic reproduction number and then classify severe and mild patients. The other model
can be used to analyze and compare the delay time of T cell action in patients with different
symptoms. For example, patients with R0 less than 2.93 and greater than 2.39 may be
identified as high-risk patients, 20% of which are severe patients. If the clinical symptoms
of patients are mild at this time, they are advised to undergo clinical observation. T cells
take longer to mature in severe disease patients, so they can be used as an early standard to
determine the treatment plans of patients. The best time for severe patients to undergo drug
treatment is on the third day after infection, i.e., the first day after the onset of symptoms.
Therefore, more attention should be paid to patients who fail to show a high level of T cells,
regardless of their clinical symptoms, to determine whether a combination of drugs and
general treatment is required as early as possible.

In future, we will introduce some thresholds with statistical characteristics to further
characterize the impact of the uncertainty of incubation period on virus transmission [44],
and explore expression and replication of virus genes at the single cell level [45] and the
multi-scale modeling of gene random expression and virus transmission [46].
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