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Abstract: In this paper, we consider the problem of approximating the safety margin of a single
instance of a technical system based on inaccurate observations at specified time points. The solution
to this problem is based on the selection of a certain set of reference points in time, in a small
neighbourhood of which a sufficiently large number of inaccurate measurements are carried out.
Analogously with the failure rate, it is assumed that the rate of decrease in the safety margin
over time is represented by a polynomial of the fourth degree, and the safety margin itself is a
polynomial of the fifth degree. A system of linear algebraic equations is constructed that determine
the coefficients of this polynomial through its values and the values of its derivative at reference
points in time. These values themselves are estimated by the method of linear regression analysis
based on numerous observations in a small neighbourhood of reference points in time. A detailed
computational experiment is carried out to verify the accuracy of the approximation of a fifth-degree
polynomial and alternative ways of estimating it are constructed in the vicinity of points where the
quality of approximation is insufficient.

Keywords: safety margin; linear regression estimate; plan of experiment; prediction algorithms;
polynomial

MSC: 60J28; 60JXX

1. Introduction

In the theory of reliability, it is known that one of the most popular curves, which has
already become classical, is the behaviour of the failure rate depending on time (operating
time). An idealized view of the curve is shown in Figure 1.

Figure 1. Failure rate graph λ(t).
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Such curves were obtained as a result of statistical processing of data on failures
during testing and operation of many technical systems. As a rule, three sections can be
distinguished on such a curve.

The section I shown in Figure 1 is called the run in stage, it is characterized by an
increased failure rate, which decreases over time. This is due to the presence of hidden
defects in the new facility, as well as all kinds of design and production errors, the elimina-
tion of which reduces the failure rate. The section I I is called the normal operation stage.
Here, the failure rate is usually approximately (practically) constant. This stage essentially
determines the actual resource of the object, its margin of safety. The section I I I is called
the ageing stage. At this site, the failure rate increases as a result of irreversible processes
that lead to deterioration of the quality of the elements and the object as a whole.

In accordance with the decreasing or increasing failure rate, reliability theory con-
siders “younger” or “ageing” objects and their corresponding distributions describing
the distribution of uptime of objects. This classification of failure rate distributions was
given in [1,2] and was further developed in the works of [3,4], including the most recent
publications [5,6]. To analyse the failure rate, a sufficiently large statistics of observations
of a large number of identical systems is required. It is worth mentioning that the middle
stage of the life of the system is very important. Furthermore, some authors have recently
considered such curves with the long flat regions [6–10]. Nevertheless in this paper, such
systems are not considered. It should be noted that the assumption made in the paper about
a system in a single instance does not apply to systems in a large series and vice versa.

However, the high level of technogenic emergencies observed in recent years makes
it relevant to solve a number of new problems of the risk theory [11–13]. The problem
of reducing technogenic risks is becoming particularly relevant in relation to technical
facilities whose failures are associated with large losses and negative consequences. As a
rule, these are complex systems manufactured in a small number of copies or even in a
single copy. Such a statement of the problem can be attributed to the section of technical
gerontology [14].

Under these conditions, the use of the ideas of the functional-parametric approach
of the theory of technogenic risks [15] may become promising in solving the problem of
technogenic risk management. Functional-parametric approach may be used to solve the
considered problem, since it does not imply the presence of a statistics of large series of
similar systems and with the help of the concept of safety margin allows us to investigate
the decrease in the reliability of the system in a single exemplar.

The functional-parametric approach is based on the concept of the safety margin of
the system and on a deterministic (mainly linear) model of its decrease. There are some
stochastic modifications of this model based on a random initial value or on random
measurements of the safety margin.

The description of the failure rate of technical systems in terms of younger and ageing
distributions is more qualitative than quantitative. Therefore, it is also advisable to use the
analogy between the failure rate and the rate of reduction in the safety margin on a qualita-
tive rather than quantitative level. Indeed, during the lapping period, the uncomplicated
mode of operation, it is natural to believe that the intensity of the decrease in the margin of
safety decreases over time with the gradual debugging of the system. In contrast with the
ageing of the system, the intensity of the decrease in the margin of safety increases, since
all its parts begin to work insufficiently accurately. If we move from a complex system to
its elements, which can be produced in series, then this pattern fully corresponds to the
behaviour of these components. These features of the behaviour of a complex system are
sufficiently fully reflected in [16,17].

To analyse a system in a single instance, it is assumed that its unit properties are
close to the properties of the average for the ensemble of systems. This assumption
arose from observations of changes in the ensemble of systems. The effectiveness of
such an assumption may be justified in practice. Let us consider a simple illustrative
example of a system that has a pronounced weak link. As such a link, we may take,
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for example, two rubbing surfaces with a coating of a certain thickness. At the initial stage,
various irregularities are erased and therefore the rate of reduction in the coating thickness
decreases. Over time, when the coating thickness becomes small, the ageing of the coating
material, fractures and run-outs occurring in the system increase the rate of coating erasure.

Within the framework of this approach, the decrease in the safety margin of a tech-
nical system over time is investigated in accordance with a certain deterministic model.
The simplest model of this type is a linear model of decreasing safety margin. It leads to the
use of linear regression analysis to predict the safety margin of a technical product [18,19].

However, such a model is incomplete, since for systems presented in a single instance,
the rate of decrease in the safety margin also decreases at the initial stage and increases at
the last stage of the system functioning. Therefore, to solve the problem of predicting the
safety margin within the framework of the regression method of estimating the parameters
of the system, the use of a more complex regression function in the form of a fifth degree
polynomial is required. As an example, we point to the function x(t), for which the graph
of the function

− x′(t) = (t− 5)4 + 1, (1)

characterizing the rate of decrease in the safety margin (see Figure 2), is identical to the
typical schedule of decreasing failure rate (see Figure 1). Here x′(t) is the first derivative
of x(t).

It should be emphasized that the function x(t) is taken only as an example by analogy
with Figure 1. In fact, it is possible to represent the function x(t) as a polynomial of the
third degree. However, then the area of constancy of its derivative will be small. We can
choose the function x(t) in the form of a polynomial of the seventh degree, which, however,
will significantly complicate all calculations. Therefore, the choice of the function x′(t) in
accordance with the formula (1) allows for various modifications, common among which is
the presence of a small coefficient in comparison with others with the highest degree of
the argument.

The choice of polynomials of the fifth or higher degree for this purpose is determined
by the complexity of the study, the amount of necessary calculations. However, even with
such a simplified analysis, it is possible during the computational experiment to see the
presence of a small parameter in the model that affects the quality of the forecast.

Figure 2. Function graph −x′(t).

In this paper, by analogy with [20–22], it is proposed to estimate the coefficients
of the polynomial x(t) from multiple observations in small neighbourhoods of a set of
points t = t0, t1, t2 (let us call these points reference points). Technically, such multiple
observations require the use of non-destructive testing devices.
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This task is solved in two stages. First, a system of linear algebraic equations con-
necting the coefficients is solved a0, . . . , a5 of function x(t) with meanings x(t), x′(t),
t = t0, t1, t2. As a result, the coefficients a0, . . . , a5 are found as some linear combinations of
values x(t), x′(t), t = t0, t1, t2.

Then, based on multiple observations in small neighbourhoods of the points of the
experimental plan, estimates x̂(t), x̂′(t) are built using linear regression analysis of mean-
ings x(t), x′(t), t = t0, t1, t2. Estimates x̂(t), x̂′(t) are constructed using linear regression
analysis, but applied to the non-linear function x(t) in small neighbourhoods of points
t = t0, t1, t2. However, the difference between this function and its linear approximation
is quite small [22]. Therefore, it is possible to construct an estimate of the error of linear
regression coefficients and prove the validity of these estimates when striving to infinity
the number of observations in the vicinity of the points of the experimental plan.

At the last stage, in the relations expressing the coefficients of the polynomial x(t)
in terms of the values x(t), x′(t), instead of these values, their consistent estimates are
substituted by x̂(t), x̂′(t), t = t0, t1, t2. Thus, consistent estimates of â0, . . . , â5 coefficients
of the polynomial x(t) are constructed.

2. Calculation of Coefficients of a Polynomial x(t)

Let us now proceed to calculating the coefficients of the polynomial x(t) =
5

∑
i=0

aiti

from the system of equations defined when we assume for simplicity of calculations, that
t = 0,±1, 

x(0) = a0,
x′(0) = a1,
x(1) = a5 + a4 + a3 + a2 + a1 + a0,
x′(1) = 5a5 + 4a4 + 3a3 + 2a2 + a1,
x(−1) = −a5 + a4 − a3 + a2 − a1 + a0,
x′(−1) = 5a5 − 4a4 + 3a3 − 2a2 + a1.

(2)

The system of Equations (2) can be represented as the equation A−→a = −→x , where

A =



1 0 0 0 0 0
0 1 0 0 0 0
1 1 1 1 1 1
0 1 2 3 4 5
1 −1 1 −1 1 −1
0 1 −2 3 −4 5

, −→a =



a0
a1
a2
a3
a4
a5

, −→x =



x(0)
x′(0)
x(1)
x′(1)

x(−1)
x′(−1)

.

The solution of this equation can be represented in vector form −→a = A−1−→x or in a
coordinate form

a0 = x(0),
a1 = x′(0),
a2 = −2x(0) + x(1) + x(−1)− x′(1)/4 + x′(−1)/4,
a3 = −2x′(0) + 5x(1)/4− 5x(−1)/4− x′(1)/4− x′(−1)/4,
a4 = x(0)− x(1)/2− x(−1)/2 + x′(1)/4− x′(−1)/4,
a5 = x′(0)− 3x(1)/4 + 3x(−1)/4 + x′(1)/4 + x′(−1)/4.

(3)

Remark 1. The formula (3) considers a special case when the moments t = 0,±1. In the general
case, when the moments t take the values t0, t1, t2 matrix A = ||ai,j||5i,j=0 is defined by the equalities

a2p,j = tj
p, a2p+1,j = jtj−1

p , p = 0, 1, 2, j = 0, 1, . . . , 5. Using well-known algorithms and
programs for calculating the inverse matrix A−1, it is possible to construct estimates of the coeffi-
cients of a polynomial of arbitrary degree for given moments t. Algorithms of matrix inversion are:
Gaussian elimination [23], Newton’s method [24], Eigen decomposition of a matrix [25], Cholesky
decomposition [26], and Blockwise inversion [27].
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Remark 2. If the function x(t) =
2r+1

∑
i=0

aiti is a polynomial of odd degree 2r + 1, then by choosing

the points t0, t1, . . . , tr, it is not difficult to construct the matrix A in the same way, calculate the
inverse matrix A−1 and by the values x(ti), x′(ti), i = 0, . . . , r, determine the vector −→a of the
coefficients of this polynomial. This technique is transferred to a polynomial of even degree and by
slightly more complex constructions to polynomials of general type.

For example, for the function x(t) = ∑3
i=0 choosing t0 = 0, t1 = 1, it is easy to obtain

the equalities {
a0 = x(0), a1 = x′(0), a2 = 3x(1)− 3x(0)− 2x′(0)− x′(1),
a3 = x′(1) + x′(0)− 2x(1) + 2x(0).

(4)

3. Estimation of the Values of the Polynomial x(t) and Its Derivatives from
Inaccurate Observations

Let us now proceed to the construction of estimates x̂(k), x̂′(k) of the quantities
x(k), x′(k), k = 0,±1 according to inaccurate observations y(k + ih) = x(k + ih) + ε(k +
ih), i = 0,±1,±2, . . . ,±n, where h is a time interval between neighbouring observations
and ε(k + ih) are errors of observations. Here, the independent random variables ε(k + ih)
have zero mean and finite variance σ2. Let us use the following modification of the linear
regression analysis method proposed in [22], assuming

x̂(k) =
∑n

i=−n y(k + ih)
2n + 1

, x̂′(k) =
∑n

i=−n y(k + ih)ih
∑n

i=−n(ih)2 .

If hn is much smaller than one, the polynomial x(k + ih) deviates slightly from its
linear approximation x̃(k + ih) = x(k) + x′(k)ih, i = 0,±1,±2, . . . ,±n (see the formula (5)
obtained by Taylor formula with the residual term in the form of Lagrange). Indeed,
∃ C = C(k, nh) such that

sup
k−hn≤t≤k+hn

x′′(t) ≤ C < ∞ ⇒ |x(k + ih)− x̃(k + ih)| ≤ Ci2h2

2
. (5)

Hence we obtain the inequality (where Ex̂(k) is an expectation of random variable
x̂(k)),

|x(k)− Ex̂(k)| =
∣∣∣x(k)− ∑n

i=−n x(k+ih)
2n+1

∣∣∣ ≤ ∑n
i=−n |x(k+ih)−x̃(k+ih)|

2n+1

≤ ∑n
i=−n

Ch2i2
2n+1 � n2h2.

(6)

Here, for non-negative sequences an, bn, n = 0, 1, . . ., the icon an � bn corresponds to

the relation lim sup
an

bn
< ∞.

In turn, the variance

Varx̂(k) =
1

(2n + 1)2

n

∑
i=−n

Var(x(k + ih) + ε(k + ih)) =
2nσ2

(2n + 1)2 ≤
σ2

n
.

Let us evaluate now

|x′(k)− Ex̂′(k)| =
∣∣∣∣x′(k)− ∑n

i=−n x(k + ih)ih
∑n

i=−n(ih)2

∣∣∣∣ = ∣∣∣∣∑n
i=−n(x̃(k + ih)− x(k + ih))ih

∑n
i=−n(ih)2

∣∣∣∣
≤

C ∑n
i=−n h2i2|ih|

∑n
i=−n(ih)2 ≤

2C ∑n
i=−n h3i3

∑n
i=−n(ih)2 � hn.
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In turn,

Varx̂′(k) =
σ2 ∑n

i=−n(ih)
2

(∑n
i=−n(ih)2)2 =

σ2

∑n
i=−n(ih)2 �

σ2

h2n3 .

Assume that h = h(n) = n−α then for 1 < α <
3
2

we have

|x(k)− Ex̂(k)| → 0, |x′(k)− Ex̂′(k)| → 0, Varx̂(k)→ 0, Varx̂′(k)→ 0, n→ ∞. (7)

Hence follow (for n→ ∞) the convergence in probability estimates of x̂(k) to x(k) and
estimates of x̂′(k) to x′(k).

The obtained relations for the estimates of âj also imply their convergence to the
coefficients aj, j = 0, . . . , 5, of the polynomial x(t). Now in order to construct estimates
from inaccurate observations of the process x(t) âj of parameters aj, j = 0, . . . , 5 it is
enough to build estimates x̂(k), x̂′(k), k = 0,±1 and use them to determine the estimates
of âi using the equalities

â0 = x̂(0),
â1 = x̂′(0),
â2 = −2x̂(0) + x̂(1) + x̂(−1)− x̂′(1)/4 + x̂′(−1)/4,
â3 = −2x̂′(0) + 5x̂(1)/4− 5x̂(−1)/4− x̂′(1)/4− x̂′(−1)/4,
â4 = x̂(0)− x̂(1)/2− x̂(−1)/2 + x̂′(1)/4− x̂′(−1)/4,
â5 = x̂′(0)− 3x̂(1)/4 + 3x̂(−1)/4 + x̂′(1)/4 + x̂′(−1)/4.

(8)

4. Computational Experiments

Experiment 1. Construct estimates of the coefficients of the polynomial

x(t) = − t3

3
+ 5t2 − 26t + 2626,

satisfying the equality −x′(t) = (t− 5)2 + 1. To do this, we will choose random errors
ε(k + ih), k = 0,±1, i = 0,±1, . . . ,±n, evenly distributed on the segment [−1/4, 1/4], let
us put n = 104, h = n−5/4 and make N = 103 independent estimates of the coefficients

a0 = 2626, a1 = −26, a2 = 5, a3 = −1
3

. In Table 1, the set of values of the estimates of
each of the coefficients is divided into five intervals of the same length and the number of
hits of each of the coefficients in the corresponding interval is calculated. The results of the
computational experiment (Table 1) show that the drop in accuracy is due to the presence
of a small parameter |a5| = 0.2 is much smaller than min(|a0|, |a1|, |a2|) = 5.

Table 1. a0 = 2626, a1 = −26, a2 = 5, a3 = −1/3.

Distribution a0 Relative Distribution a1 Relative
Intervals Frequencies Intervals Frequencies

(2626.02318; 2626.02326) 0.076 (−26.00609; −26.00434) 0.040
(2626.02326; 2626.02334) 0.440 (−26.00434; −26.00259) 0.280
(2626.02334; 2626.02341) 0.376 (−26.00259; −26.00085) 0.484
(2626.02341; 2626.02349) 0.102 (−26.00085; −25.99910) 0.174
(2626.02349; 2626.02357) 0.006 (−25.99910; −25.99736) 0.022

Distribution a2 Relative Distribution a3 Relative
Intervals Frequencies Intervals Frequencies

(4.93801; 4.96285) 0.030 (−0.39637; −0.37248) 0.022
(4.96285; 4.98770) 0.280 (−0.37248; −0.34810) 0.156
(4.98770; 5.01254) 0.492 (−0.34810; −0.32472) 0.474
(5.01254; 5.03739) 0.176 (−0.32472; −0.30083) 0.298
(5.03739; 5.06223) 0.022 (−0.30083; −0.27695) 0.050
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Experiment 2. Now we construct estimates of the coefficients of the polynomial

x(t) = −0.2t5 + 5t4 − 50t3 + 250t2 − 626t + 2626,

satisfying the equality −x′(t) = (t − 5)4 + 1 (see (1)). To do this, we will choose ran-
dom errors ε(k + ih), k = 0,±1, i = 0,±1, . . . ,±n, evenly distributed on the segment
[−1/4, 1/4], let ’s put n = 104, h = n−5/4 and make N = 103 independent estimates
of the coefficients a0 = 2626, a1 = −626, a2 = 250, a3 = −50, a4 = 5, a5 = −0.2. In
Table 2, the set of values of the estimates of each of the coefficients is divided into five
intervals of the same length and the number of hits of each of the coefficients in the corre-
sponding interval is calculated. The minimum a−i and maximum a+i , i = 0, . . . , 5, values
of all coefficients are separately found in N = 103 simulations. The confidence level is
determined in Table 1 using Distribution intervals. According to these estimates, the small-
est x−(t) and the largest x+(t) on the semi axis of the t ≥ 0 function are constructed
x±(t) = a±5 t5 + a±4 t4 + a±3 t3 + a±2 t2 + a±1 t + a±0 .

Table 2. a0 = 2626, a1 = −626, a2 = 250, a3 = −50, a4 = 5, a5 = −0.2.

Distribution a0 Relative Distribution a1 Relative
Intervals Frequencies Intervals Frequencies

(2626.26350; 2626.26352) 0.027 (−626.09609; −626.09557) 0.043
(2626.26352; 2626.26353) 0.221 (−626.09557; −626.09506) 0.270
(2626.26353; 2626.26354) 0.483 (−626.09506; −626.09455) 0.455
(2626.26354; 2626.26356) 0.243 (−626.09455; −626.09403) 0.201
(2626.26356; 2626.26357) 0.026 (−626.09403; −626.09352) 0.031

Distribution a2 Relative Distribution a3 Relative
Intervals Frequencies Intervals Frequencies

(250.03414; 250.03838) 0.041 (−50.17271; −50.16861) 0.031
(250.03838; 250.04262) 0.271 (−50.16861; −50.16451) 0.169
(250.04262; 250.04686) 0.458 (−50.16451; −50.16041) 0.441
(250.04686; 250.05110) 0.203 (−50.16041; −50.15631) 0.289
(250.05110; 250.05534) 0.027 (−50.15631; −50.15221) 0.070

Distribution a4 Relative Distribution a5 Relative
Intervals Frequencies Intervals Frequencies

(4.94005; 4.94861) 0.034 (−0.19552; −0.19550) 0.031
(4.94861; 4.95717) 0.287 (−0.19550; −0.19548) 0.333
(4.95717; 4.96572) 0.495 (−0.19548; −0.19547) 0.521
(4.96572; 4.97428) 0.175 (−0.19547; −0.19545) 0.112
(4.97428; 4.98284) 0.009 (−0.19545; −0.19543) 0.003

In Figure 3, based on the results of the computational experiment, graphs of the
functions x(t), x−(t), x+(t) on the segment [0, 12] are constructed with solid and dotted
lines. These graphs show how much the lower estimate of x−(t) and the upper estimate of
x+(t) deviate from its exact value.

In Figure 2, shows the curve of the dynamics of the rate of decrease in the safety
margin. However, for the purposes of forecasting, it is important to know the dynamics of
changes in the safety margin itself, shown in Figure 3. Figure 3 shows that the accuracy
of the approximation of the function x(t) by the functions x−(t), x+(t) decreases with
an increase in the absolute value of |x′′(t)| is its second derivative. The results of the
computational experiment (Table 1) show that the drop in accuracy is due to the presence
of a small parameter |a5| = 0.2� min(|a0|, . . . , |a4|) = 5.
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Figure 3. Graphs of the function x(t) with a solid line and the functions x−(t), x+(t) dotted.

Experiment 3. Therefore, there is a need to choose a more accurate forecast of the
function x(t), even if it is more complex. To do this, by analogy with Section 3, estimates
of the functions x(kδ), x′(kδ), k = 0, . . . , m, were constructed for n = 104, h = n−11/8,
δ = 0.2, m = 60 and for them, the forecast estimates x̂(kδ)+ τx̂′(kδ) on segments kδ+ nh ≤
τ ≤ (k + 1)δ + nh, k = 0, . . . , m. The results of these assessments are presented in Figure 4.
From this figure it can be seen that due to more frequent measurement of the values of
x(kδ), x′(kδ), k = 0, . . . , m, the accuracy of estimates increases. However, even in this case,
estimates in the region of large values of |x′′(t)| is lower than in the region of small values
of |x′′(t)|.

Figure 4. Graphs of the function x(t) with a dotted line and forecast curves with solid lines on the
segment [2, 8].

5. Conclusions

Thus, algorithms have been developed for constructing estimates of the function x(t),
which determines the dynamics of the safety margin of a technical system existing in a
single instance. It is found that the solution of this problem requires the development
of at least two alternative approaches. The reason for such complexity of the problem is
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established, due to the fact that the coefficient at the highest degree of the polynomial
x(t) is small with respect to all other coefficients. Therefore, the suppression of errors
in the evaluation of the function x(t) requires the inclusion of a small parameter δ in an
alternative evaluation algorithm. At the same time, additional experiments show that in
the area of relative stability of the function x(t), an increase in the parameter δ is possible
and therefore a decrease in the volume of observations.

6. Discussion

The solution of the considered problem is based on the analogy between the statistics
of systems with a large number of instances and systems in a single instance. This analogy
turned out to be quite complicated, since it contained a hidden small parameter. It is
possible that this problem may require consideration of polynomials of higher degree.
In any case, this task does not have a single solution, and short-term forecasts will be
required along with forecasting the safety margin for a long time interval.

In our opinion, this problem requires the use of various approaches for its solution.
This is clearly seen from computational experiments when the higher coefficient of the
polynomial becomes a small parameter. Apparently, along with the polynomial approxima-
tion of the function x(t), other approximations are also possible, for example in the form of
B-splines. However, this requires a separate study, since the experiment plan will have to
be adapted to B-splines. This circumstance was already identified during Experiment 3,
in which the ageing period was clearly associated with an increase in the rate of decrease
in the safety margin. Thus, the polynomial approximation becomes a preliminary stage in
solving the problem of predicting the safety margin.
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