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Abstract: As applied sciences grow by leaps and bounds, semiparametric regression analyses have
broad applications in various fields, such as engineering, finance, medicine, and public health. Single-
index varying-coefficient model is a common class of semiparametric models due to its flexibility
and ease of interpretation. The standard single-index varying-coefficient regression models consist
mainly of parametric regression and semiparametric regression, which assume that all covariates
can be observed. The assumptions are relaxed by taking the models with missing covariates into
consideration. To eliminate the possibility of bias due to missing data, we propose a probability
weighted objective function. In this paper, we investigate the robust variable selection for a single-
index varying-coefficient model with missing covariates. Using parametric and nonparametric
estimates of the likelihood of observations with fully observed covariates, we examine the estimators
for estimating the likelihood of observations. For variable selection, we use a weighted objective
function penalized by a non-convex SCAD. Theoretical challenges include the treatment of missing
data and a single-index varying-coefficient model that uses both the non-smooth loss function and
the non-convex penalty function. We provide Monte Carlo simulations to evaluate the performance
of our approach.

Keywords: single-index varying-coefficient model; missing data; variable selection; inverse probability
weighting; sparsity
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1. Introduction

Traditional statistical techniques are based on completely observed data. However, in
many scientific experiments, such as questionnaire survey, medical research and psycholog-
ical science, respondents are unwilling to provide some information which the researchers
need. In addition, there are many factors that cannot be controlled in the research process,
and it is often impossible to obtain all the desired data. When data are missing, traditional
statistical techniques cannot be directly applied. Some statisticians consider using the
observed data to draw valid conclusions in this situation. Until now, in order to deal with
missing data, various methods have been employed such as complete-case analysis (CC)
(Yates [1] and Healy and Westmacott [2]), imputation and inverse probability weighting
(IPW), and methods based on likelihood. The IPW method proposed by Horvitz and
Thompson [3] a way to deal with the missing data problems, which selects the inverse
of the probability as the estimated weight so that it is not distorted by random missing
data. It has earned extensive attention in the field of missing data research. There are
also some related literatures, such as Robins et al. [4], Wang et al. [5], Little and Rubin [6],
Liang et al. [7], Tsiatis [8], etc. However, when the error distribution is highly tailed or
skewed, the results of the two aforementioned methods are not stable because they are
based on least squares (LS) method.
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In most regression models, it is critical to choose the proper loss function ρ(·) to
make the resulting estimator robust. Therefore, researchers pay more attention to loss
functions that have higher robustness. The exponential squared loss that has robustness
is defined as ψη(t) = 1− exp(−t2/η), where η is the tuning parameter that determines
the robustness degree of the estimator. For large η, ψη(t) is approximately equal to t2/η.
Thus the proposed estimator is the same as the LS estimator in some extreme circumstances.
When η is small, observations with absolute values of ti = Yi − xT

i β will lead to a great
loss of ψη(ti), whose influence upon the estimate of β is insiganificant. Thus, making η
smaller limits the impact of outliers on the estimator but also reduces the sensitivity of the
estimator. Moreover, quantile regression (QR) has become an increasingly popular method
because regression methods based on exponential squared loss are more resistant to the
effects of outliers than LS. Such exponential loss functions have been used in classification
problems in AdaBoost (Friedman et al. [9]) and variable selection in regression models
(Wang et al. [10]).

As applied sciences grow, research on semiparametric models has been extensively
developed due to the high degree of flexibility and ease of interpretation. The singleindex
varying-coefficient model (SIVCM) is a common semiparametric model. The main advan-
tage of the model is that it avoids the curse of dimensionality. Another is that it has the
explanatory power like parametric models. Generally, it takes the following form

Y = gT(βT
0 X)Z + ε, (1)

where Y is the dependent variable, (X, Z) are the covariates and (X, Z) : Rp × Rq. g(·)
and β0 represent the vector of unknown functions and unknown parameters, respectively,
whose dimension are q× 1 and p× 1. ε is the disturbance term with zero mean and finite
variance σ2 which is independent of (X, Z). Furthermore, assume that the Euclidean norm
of β0 is equal to 1 and its first component is positive. Moreover, in order to avoid the
influence due to the lack of uniqueness of the index direction β0, g(x) cannot take the form
of g(x) = αTxβT

0 x + γTx + c, where α, γ, c are constants, α ∈ Rp, γ ∈ Rp, c ∈ R and β0 are
not parallel to each other (Feng and Xue [11]; Xue and Pang [12]).

Model (1) is so flexible that it covers a class of significant statistical models. It becomes
the standard single-index model (SIM) when Z = 1 and q = 1; for related literatures, see
Hardle et al. [13] and Wu et al. [14]. When β0 = 1 and p = 1, it is simplified to the varying
coefficient models (VCM) proposed by Hastie and Tibshirani [15] and Fan and Zhang [16].
Consequently, it is easily interpretable and has broad applications in practice. In particular,
Xia and Li [17] first studied Model (1) using the kernel smoothing method with the LS
method. The empirical likelihood ratio method was proposed by Xue and Wang [18]. Based
on estimating equations, the estimate of the parametric component was built by Xue and
Pang [12]. Using the function approximation, Feng and Xue [11] investigated Model (1).

Variable selection is of great importance to statistical modeling. The reason is that it
will cause seriously biased results if researchers ignore the significant variables, whereas
including spurious variables suffers from substantial loss in estimation efficiency. Hence,
there are many popular choices for penalty functions, such as least absolute shrinkage and
selection operator (LASSO, Tibshirani [19]), bridge penalty, smoothly clipped absolute devi-
ation (SCAD, Fan and Li [20]), and adaptive lasso (Zou [21]). In particular, the non-conave
least-squares penalty method based on SCAD penalization in SIM has been proposed by
Peng and Huang [22] using SCAD penalization; Yang and Yang [23] adopted the SCAD
penalty to achieve efficient estimation and variable selection simultaneously in partially
linear single-index models (PLSIM); Wang and Kulasekera [24] proposed the partial linear
varying-coefficient model (PLVCM) based on adaptive lasso.

SIVCM is a common semiparametric model. The selection of variables in semipara-
metric models includes two parts: the selection of the model in the nonparametric part
and the selection of significant variables in the parametric part. Classical variable selec-
tion procedure involves stepwise regression and optimal subsets selection. However, the
nonparametric parts of each submodel need to be extracted separately, leading to high



Mathematics 2022, 10, 2003 3 of 14

computational cost. It is a great challenge to select variables in SIVCM for the reason that it
has a complex multivariate nonlinear structure that incudes both a nonparametric function
vector g(·) and an unknown parameter vector β. Based on the approximation of the SCAD
function and penalties, Feng and Xue [11] developed a penalty method for SIVCM. The
method they propose allows the selection of significant variables into parametric and
nonparametric components. It should be noted that existing research adopts the LS or
likelihood method and assume that the error follows a normal distribution. Therefore,
when the error is highly tailed, it makes the method sensitive to outliers and it becomes
inefficient. It is not robust to outliers in the dependent variable due to using least squares
criterion. Yang and Yang [25] proposed an efficient iterative procedure for SIVCM based
on quantile regression. The results indicate that the resulting estimator is robust without
accounting for both outliers and errors of variation. However, all existing work on SIVCM
assumes that all variables are fully observed. A robust variable selection approach for
SIVCM with missing covariates has not yet been studied.

The following are the innovations of this paper:

1. For the case of missing covariates, we propose a robust variable selection approach
based on exponential squared loss and adopt the IPW method to eliminate the latent
bias due to the missing values in covariates.

2. We consider parametric and nonparametric methods to estimate the probabilistic
model and propose a objective function with a weighted penalty for variable selection.

3. We also examine how to select the parameters η of the squared exponential loss
function to ensure that the corresponding estimator is robust.

The rest of this article is organized as follows. Section 2 proposes an efficient iterative
SIVCM method using exponential quadratic loss, and the SCAD penalty is applied to
select both important parametric variables and nonparametric components. In addition,
we discusses the implementation, including bandwidth selection and tuning parameters.
Section 3 conducts several Monte Carlo experiments with different error distributions in
order to show the finite sample performance of the proposed method. Section 4 concludes
the paper briefly.

2. Methodology

Using the exponential squared loss functions, the basis function approximation, and
the SCAD penalty function, a robust variable selection procedure for SIVCM with missing
covariates is proposed. First, the unknown coefficient functions are approximated applying
the B-spline function. Next, under the constraint of ‖β‖ = 1, we use the ’delete-one-
component’ approach constructed by Yu and Ruppert [26] in order to establish the objective
function of the penalized exponential squared loss.

2.1. Basis Function Expansion

Consider that {(Xi, Zi, Yi), 1 ≤ i ≤ n} is a sample from model (1), i.e.,

Yi = gT(βTXi)Zi + εi, i = 1, · · · , n, (2)

where Xi = (Xi1, · · · , Xip)
T and Zi = (Zi1, · · · , Ziq)

T are p-dimensional and q-dimensional
independent variables, respectively. The disturbance term εi is unobserved random variable
with zero mean and finite variance σ2. We assume that {εi, 1 ≤ i ≤ n} are independent of
{(Xi, Zi), 1 ≤ i ≤ n}.

In order to get the unknown g(·), according to He et al. [27], we use its basis function
approximations to replace the original g(·). More specifically, construct a B-spline basis
function of order M+1, B(u) = (B1(u), · · · , BL(u))T , where L = K + M + 1, and K is the
number of interior knots. We can approximate gk(u) as

gk(u) ≈ BT(u)γk, k = 1, · · · , q, (3)
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where γk is the vector of the spline coefficient. The following robust estimation procedure
will be performed if all the data {(Xi, Zi, Yi), 1 ≤ i ≤ n} could be collected.

`(β, g(·)) =
n

∑
i=1

exp{−(Yi − gT(βTXi)Zi)
2/ηn}, (4)

where ηn > 0 is a tuning parameter. To prevent outliers from affecting the estimate, we in-
troduce an exponential squared loss in (4). However, (4) cannot be directly optimized when
g(·) is unknown. After we replace the unknown g(·) by its basis function approximations
in (4), we get

`n(β, γ) =
n

∑
i=1

exp{−(Yi −WT
i (β)γ)2/ηn}, (5)

where γ = (γT
1 , · · · , γT

q )
T , Wi(β) = Ip ⊗ B(βTXi) · Zi.

We first handle the constraints ||β|| = 1 and β1 > 0 on the p-dimensional single index
parameter vector β by reparametrization. Denote φ = (β2, · · · , βp)T and define

β = β(φ) = (
√

1− ||φ||2, φT)T . (6)

The true parameter φ0 must satisfy ||φ0|| < 1, which is an inequality constraint. Therefore,
β(φ) is infinitely differentiable with respect to φ. Therefore, the Jacobian matrix of β with
respect to φ is

Jφ =

(
−(1− ||φ||2)−1/2φT

Ip−1

)
,

where Iq is the q-order identity matrix. As we can see, φ is one dimension lower than β,
and the penalized robust regression with the exponential squared loss is converted to

`n(φ, γ) =
n

∑
i=1

exp{−(Yi −WT
i (φ)γ)2/ηn}, (7)

where Wi(φ) = Wi(β). By maximizing (7),we can get φ̂ and γ̂ = (γ̂1
T , · · · , γ̂q

T)T . Then,
through (3) and (6), the robust regression estimator of β based on the exponential squared
loss is

β̂ = (
√

1− ||φ̂||2, φ̂T)T , (8)

and the estimator of gk(u) can be procured by

ĝk(u) = BT(u)γ̂k. (9)

2.2. Robust Estimation Based on Inverse Probability Weighting

We consider the case where a subset of covariates has missing values when estimating (5).
Let 1i ∈ Rp+q−k be the vector of always obtained covariates and mi ∈ Rk is a vector of
covariates that may contain some missing parts from Xi or Zi. We define the vector of
variables which can be always observed as ti = (Yi, 1T

i )
T ∈ Rs,and s = p + q− k. Based on

each observation, the value of an indicator variable R is related to whether mi is completely
observed ,which can be obtained by the following formula

Ri =

{
1, if mi is observed,
0, otherwise.

The missing mechanism we proposed satisfies:

P(Ri = 1|Yi, Xi, Zi) = P(Ri = 1|Yi, mi, ti) = P(Ri = 1|ti) ≡ π(ti) ≡ πi, (10)
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With this missing mechanism, under the condition of ti, we can ensure the event
that mi is missing has no connection with (Yi, mT

i ). Although the response data are fully
observed, the selection probability π(·) in (10) still only related to the observed covariates
ti instead of the observed response. Therefore, we conclude that the missing mechanism is
different from the missing at random (MAR) mechanism. We need this missing mechanism
in order to continue the theoretical research.

When faced with missing covariates, we estimate (5) with a naive approach; only
observations with complete data are used to fit the model. The naive estimator is

(φ̂N , γ̂N) = argmax
n

∑
i=1

Ri exp{−(Yi −WT
i (φ)γ)2/ηn}, (11)

while all observations with missing data are dropped when we estimate the model. Under
the assumption that it is not the MAR, this estimator will be asymptotically biased.

An objective function based on inverse probability weights (IPW) is proposed in order
to reduce the potential error caused by missing data. The expression Ri/πi0 is used to
weight the ith data point in the IPW method. The difference between IPW and naive
method is that IPW provides different weights for records with fully observed data. The
idea behind weighting is that for every fully observed data point with probability πi0 of
being fully observed, 1/πi0 data points with the same covariates are expected if there were
no missing data.

The weight 1/πi0 is usually unknown and needs to be estimated. We consider esti-
mating the weights using a parametric model. The general parametric relationship of the
parametric model is assumed as

πi0 ≡ πi(ti, η0).

Assuming the logistic relationship as an example

πi(ti, η0) =
exp{(1, ti)

Tη0}
1 + exp

{
(1, ti)

Tη0

} .

In practice πi(ti, η0) is replaced with πi(ti, η̂) ≡ πi(η̂) . The parametric model P(Ri = 1|ti)
is used to estimate η̂.

Throughout the paper πi(η̂) will denote the parametric estimate, π̂i will denote a
general estimate that could be parametric, and πi0 will denote the true probability when
observation i has full data. The definition of our parametric robust regression estimator is

(φ̂L, γ̂L) = argmax
n

∑
i=1

Ri
πi(η̂)

exp{−(Yi −WT
i (φ)γ)2/ηn}. (12)

According to the above, through (3) and (6) and using the exponential squared loss,β can
be robustly estimated by

β̂L = (
√

1− ||φ̂L||2, (φ̂L)T)T . (13)

Then, the estimator of gk(u) can be written as

ĝL
k (u) = BT(u)γ̂k

L. (14)

2.3. The Penalized Robust Regression Estimator

Here we consider the variable selection problem when Model (2) has missing covari-
ates. In order to improve the accuracy and interpretability of model fitting and ensure the
identifiability of the model, the vector of the real regression coefficient β∗ is generally set to
a scattered state with only a small fraction of non-zeroes (Fan and Li [20]; Tibshirani [19]).
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For the purpose of getting the true model and estimating β∗ and g(·), a penalized
robust regression that uses exponential squared loss is as follows

`(β, g(·)) =
n

∑
i=1

Ri
πi(η̂)

exp{−(Yi − gT(βTXi)Zi)
2/ηn}

− nλ1

q

∑
k=1

pλ1k (||gk(·)||)− nλ2

p

∑
l=1

pλ2l (||βl ||),
(15)

where
||gk(·)|| = (

∫
g2

k(u)du)1/2.

The penalty function pλ(·) is defined on the interval [0, ∞) and the regularization parameter
λ is non-negative. It is necessary to emphasize that the tuning parameters λ1 and λ2 have
no need to be the same for all gk(·) and βl . Our purpose of using exponential squared loss
in (5) is to prevent outliers from affecting the estimation process. It is unrealistic to directly
optimize (15) when g(·) is unknown. To solve this problem, the unknown function g(·)
in (15) is replaced by its basis function approximation, which can be written as

`n(β, γ) =
n

∑
i=1

Ri
πi(η)

exp{−(Yi −WT
i (β)γ)2/ηn}

− nλ1

q

∑
k=1

pλ1k (||γk||H)− nλ2

p

∑
l=1

pλ2l (||βl ||),
(16)

where ||γk||H = (γT
k Hγk)

1/2, H =
∫

B(u)BT(u)du.
When πi’s parametric estimate is πi(η̂), the parametric penalized robust regression

with the exponential squared loss transforms to

`n(φ, γ) =
n

∑
i=1

Ri
πi(η̂)

exp{−(Yi −WT
i (φ)γ)2/ηn}

− nλ1

q

∑
k=1

pλ1k (||γk||H)− nλ2

p−1

∑
l=1

pλ2l (||φl ||),
(17)

where Wi(φ) = Wi(β). By maximizing (17), we can get the result φ̂P and γ̂P = (γ̂1
T, · · · , γ̂q

T)T.
Then, through (3) and (6), the penalized robust regression estimator of β based on the expo-
nential squared loss is

β̂P = (
√

1− ||φ̂P||2, (φ̂P)T)T , (18)

and the estimator of gk(u) can be obtained by

ĝP
k (u) = BT(u)γ̂k

P. (19)

2.4. Algorithm

A quadratic approximation is used to replace the loss function for the purpose of
facilitating the computation. Let

`∗(φ, γ) =
n

∑
i=1

Ri
πi(η̂)

exp{−(Yi −WT
i (φ)γ)2/ηn}.

When we get the initial estimator (φ̃, γ̃), then the loss function can be approximated as

`∗(φ, γ) ≈ `∗(φ̃, γ̃) +
1
2
{(φ, γ)− (φ̃, γ̃)}T∇2`∗(φ̃, γ̃){(φ, γ)− (φ̃, γ̃)}.
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What makes implementing the Newton–Raphson algorithm directly difficult is that
the SCAD-penalty function is irregular at the origin. Now, we develop an iterative al-
gorithm based on the local quadratic approximation of the penalty function pλ(·) as in
Fan and Li [20]. More specially, in a neighborhood of a given nonzero ω0, an approximation
of the penalty function at the value ω0 can be given by

pλ(|ω|) ≈ pλ(|ω0|) +
1
2

ṗλ(ω0)

|ω0|
(ω2 −ω2

0).

Hence, for the given initial value φ0
l with |φ0

l | > 0, l = 1, · · · , p− 1, and γ0
k with ||γ0

k||H > 0,
k = 1, · · · , q, we have

pλ1k (||γk||H) ≈ pλ1k (||γ
0
k||H) +

1
2

ṗλ1k (||γ
0
k||H)

||γ0
k||H

(||γk||2H − ||γ0
k||

2
H),

pλ2l (|φl |) ≈ pλ2l (|φ
0
l |) +

1
2

ṗλ2l (|φ
0
l |)

|φ0
l |

(|φl |2 − |φ0
l |

2).

Let

Σ(φ, γ) = diag{
ṗλ21(|φ1|)
|φ1|

, · · · ,
ṗλ2,p−1(|φp−1|)
|φp−1|

,
ṗλ11(||γ1||H)
||γ1||H

H, · · · ,
ṗλ1q(||γq||H)
||γq||H

H}.

Then, in addition to the constant term, we maximize

`(φ, γ) =
1
2
{(φ, γ)− (φ̃, γ̃)}T∇2`∗(φ̃, γ̃){(φ, γ)− (φ̃, γ̃)}

− n
2
(φT , γT)Σ(φ, γ)(φT , γT)T

(20)

with respect to φ and γ, which brings about an approximated solution of (17). We can get
estimates β̂ and ĝk(u) of β and gk(u) by solving for (3) and (6) respectively.

In order to implement the above method, we should correctly choose the number of
interior knots K and make appropriate adjustments to the tuning parameters a, λ1, λ2 and
ηn in the penalty function. Fan and Li [20] showed that the choice of a = 3.7 performs well
in variety of situations. Hence, we also follow their setup in this article.

2.5. The Choice of the Regularization Parameter λ1 and λ2

We can choose the tuning parameters using a method that is similar to cross-validation.
However, our penalty function contains too many tuning parameters, and higher-dimensional
space makes it difficult to solve the minimization problem for the cross-validation score. To
overcome this difficulty, similar to Zhao and Xue [28], we take the tuning parameters as

λ1 =
λ

||γ̂k
u||H

, λ2 =
λ

||φ̂l
u||

, (21)

where γ̂k
u and φ̂l

u are the unpenalized estimators of γu
k and φu

l , respectively. Then, we can
estimate λ and K by minimizing the following cross-validation score:

CV(K, λ) =
n

∑
i=1
{Yi −WT

i (φ̂[i]) ˆγ[i]}2, (22)

where φ̂[i] and ˆγ[i] are the solutions ground on (17) after deleting the ith subject.

2.6. The Choice of the Regularization Parameter ηn

The tuning parameter ηn plays a decisive role in the degree of robustness and efficiency
of the proposed robust regression estimators. A data-driven procedure is proposed to
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choose the appropriate ηn, the new method yields both high efficiency and high robustness
simultaneously. We first choose a series of the tuning parameters that makes the proposed
penalized robust estimators have an asymptotic breakdown point at 1/2 and then use the
maximum efficiency as a measure to select the tuning parameter.

The specific procedure steps are as follows:
Step 1 In this step, we will find the pseudo outlier set of the sample as in Wang et al. [10].

Let Di = (Xi, Zi, Yi) and D = (D1, · · · , Dn). Calculate ri(φ̂n, γ̂n) = Yi −WT
i (φ̂n)γ̂n,

i = 1, · · · , n and Sn = 1.486×mediani|ri(φ̂n, γ̂n)−medianj(rj(φ̂n, γ̂n)|. Then, take the
pseudo outlier set Dm = {(Xi, Zi, Yi) : |ri(φ̂n, γ̂n)| > 2.5Sn}, set m = ]{1 ≤ i ≤ n :
|ri(φ̂n, γ̂n)| > 2.5Sn}, and Dn−m = Dn/Dm.

Step 2 In this step, we are going to update the tuning parameter ηn. Suppose there are
m bad points and n−m good points in Dn. Define the bad points by Dm = (D1, · · · , Dm)
and the good points by Dn−m = (Dm+1, · · · , Dn).

The proportion of bad points in Dn is m/n. The computation of the initial estimators
φ̃n and γ̃n is the first thing to do . For a contaminated sample Dn, let

ξ(η) =
2m
n

+
2
n

n

∑
m+1

ψη{ri(φ̃n, γ̃n)}, (23)

where ri(φ, γ) = Yi −WT
i (φ)γ. Let ηn be the minimizer of det (V̂(η)) in the set G = {η :

ξ(η) ∈ (0, 1]}, where det(·) indicate the determinant operator,

V̂(η) = { Î1(φ̂n, γ̂n)}−1Σ̃2{ Î1(φ̂n, γ̂n)}−1,

and

Î1(φ̂n, γ̂n) =
2
η

{
1
n

n

∑
i=1

exp(−r2
i (φ̂n, γ̂n)/η)

(
2r2

i (φ̂n, γ̂n)

η
− 1

)}
×
(

1
n

n

∑
i=1

WiWT
i

)
,

Σ̃2 = cov
{

exp(−r2
1(φ̂n, γ̂n)/η)

2r1(φ̂n, γ̂n)

η
W1, · · · , exp(−r2

n(φ̂n, γ̂n)/η)
2rn(φ̂n, γ̂n)

η
Wn

}
.

Step 3 The value of λ can be calculated from (22). Then, we can get the value of λ1 and
λ2 by (21). Through fixed λ1 and λ2, and selected ηn in Step 2, φ̂n and γ̂n can be updated
by maximizing (17).

Step 4 We learn from Xue and Pang [12] to set the estimator φ̃ and γ̃ as the initial
estimate, which means φ̂ = φ̃ and γ̂ = γ̃. We then repeat Steps 1-3 until φ̂, γ̂, and
ηn converge.

Step 5 Using (3) and (6), we get the penalized robust regression estimator β̂ of β, and
the estimator ĝk(u) of gk(u).

3. Simulation

Here we compare the performance of the estimation and variable selection methods we
propose for the finite samples with that of Yang and Yang [25] (QR), Xue and Wang [18] (EL),
Xue and Pang [12] (EE) via some Monte Carlo simulations. In contrast, Xue and Wang [18]
(EL) and Xue and Pang [12] (EE) fail to take into account the problem of selection of signifi-
cant variables, so we introduced an adaptive penalty term into their objective function to
ensure that significant variables are selected.

According to Yang and Yang [25], we choose the Gaussian kernel function in the
simulations of the quantile regression method with τ = 0.5. Evaluation of the performance
of the estimators noted above is based on the following three criteria: (1) the average
absolute deviations (AAD) of the estimated coefficients and the standard deviations (SD) for
each; (2) mean absolute deviations (MAD) of β̂, which can be calculated by the expression
MAD(β̂) = E(||β̂− β0||1), where || · ||p represents the p-norm; and (3) the square root
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of the average square error (RASE) as a measure of the performance of estimator ĝk(·),
calculated as follows:

RASEk = {
1

ngrid

ngrid

∑
i=1

(ĝk(ui)− gk(ui))
2}1/2

for k = 1, · · · , q, where {ui, i = 1, 2, · · · , ngrid} denote the grid points used to assess the
function gk(·).

Additionally, in order to demonstrate the effectiveness of the variable selection proce-
dure, the average number of real zero coefficients accurately identified as zero (NC), the
average number of real non-zero coefficients mistakenly identified as zero (NIC), as well as
the probability of correctly selecting the real model (PC) are presented in our simulation.
The tuning parameter η is chosen for each simulation sample.

Example 1. In this example, we focus attention on the estimation of the proposed
estimation procedure, and the following SIVCM is considered:

Y = g1(XT β0) + g2(XT β0)Z1 + g3(XT β0)Z2 + ε, (24)

where β0 = ( 1
3 , 2

3 , 2
3 )

T , X = (X1, X2, X3)T , and Z = (Z1, Z2)T are jointly normally dis-
tributed with mean 0, variance 1 and correlation 0.5|i−j|, g1(u) = 2 cos(πu), g2(u) = 1 + u2/2
and g3(u) = exp(−u). The error ε and X1, X2, X3, Z1, Z2 are independent; X1 may have
missing values. The selection probability functions are given by:

π1(X2, X3, Z1, Z2) = {1 + exp(−(γ0 + γ1X2 + γ2X3 + γ3Z1 + γ4Z2))}−1.

We consider π1 with (γ0, γ1, γ2, γ3, γ4) = (1, 0.2, 0.2, 0.4, 0.5). The corresponding average
missing rates are 25%. In our simulation, three different distributions of model error ε
are considered:

case1: The standard normal distribution N(0, 1).
case2: The centralized t-distribution with three degrees of freedom t(3) that is used to

generate heavy-tailed distribution.
case3: The mixture of normals 0.9N(0, 1) + 0.1N(0, 100)(MN(1, 100)) which is used

to produce the outliers.
Table 1 displays the average absolute deviations (AAD) and the standard deviations

(SD), as well as the mean absolute deviations (MAD), for each case with sample sizes
n = 50, 200, 400. It can be seen that when the errors are normally distributed, our proposed
estimator, based on the exponential loss squared (ESL), has smaller AAD, SD, and MAD
than the QR0.5, the estimating equations (EE) and the empirical likelihood ratio (EL)
methods for all sample sizes, which means that the proposed estimator performs better
than the other three estimators. The proposed estimator also gives good results for the
other two error distributions, t(3) and MN(1, 100). The significant improvement in the
performance of our proposed estimator over the EE, EL, and QR0.5 estimators indicates
that our proposed estimation method ESL is robust to datasets with outliers or error
distributions of response variables with high tails. More importantly, as the sample size n
increases, the performance of the estimator β̂ tends to improve significantly.

The square root of average square error (RASE) of the estimator ĝk(·)for the nonpara-
metric function gk(·) with sample sizes of n = 50, 200. and 400 is reported in Table 2. Table 2
gives results similar to those in Table 1. We note that no matter which of the above three
distributions the error follows, our proposed estimator, compared with the other three
estimators, has smaller RASE and performs better. That is, for the non-normal distributions,
our proposed estimate method ESL is consistently superior to QR, EE, and EL. When
the probability of selection π(·) is correctly specified and estimated using the parametric
model, a clear pattern emerges: as the sample size n increases, the performance of the two
estimators β̂ and ĝ(·) becomes greater and greater.
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Table 1. Simulation results of AAD (×102), SD (×102), and MAD (×102) for the estimators of
βi(i = 1, 2, 3).

Dist n Method
β̂1 β̂2 β̂3

MAD
AD SD AD SD AD SD

N(0, 1) 50 ESL 0.0862 0.0842 0.0934 0.0940 0.0916 0.0928 0.0923
QR0.5 0.0924 0.0908 0.0945 0.0966 0.0928 0.0936 0.09379

EE 0.6386 0.6812 0.6806 0.7013 0.7047 0.7014 0.6734
EL 0.6418 0.6826 0.6814 0.702 0.7069 0.7022 0.6742

200 ESL 0.0521 0.0517 0.0568 0.0655 0.0656 0.0637 0.0623
QR0.5 0.0643 0.0635 0.0696 0.0743 0.0704 0.0725 0.0739

EE 0.4993 0.5014 0.4884 0.5113 0.5025 0.5204 0.4997
EL 0.4998 0.5022 0.4892 0.5121 0.5033 0.5212 0.4999

400 ESL 0.0467 0.0475 0.0482 0.0499 0.0491 0.0493 0.0478
QR0.5 0.0473 0.0489 0.0495 0.0504 0.0493 0.0497 0.0484

EE 0.4306 0.4682 0.4673 0.4809 0.4835 0.4824 0.4531
EL 0.4312 0.4694 0.4682 0.4816 0.4847 0.4830 0.4538

t(3) 50 ESL 1.8642 1.9342 1.9575 2.0416 1.9464 1.9488 1.9240
QR0.5 2.0468 2.1726 2.1934 2.2682 2.2610 2.3208 2.2627

EE 4.2203 4.8418 5.7262 5.9258 5.4436 6.0240 5.1639
EL 4.2217 4.8446 5.7280 5.9264 5.4475 6.0264 5.1653

200 ESL 0.4734 0.4892 0.4957 0.5044 0.4936 0.4978 0.4846
QR0.5 0.4902 0.5013 0.5075 0.5184 0.5118 0.5250 0.5129

EE 2.3115 2.7526 3.2385 3.5381 3.1327 3.5504 2.9215
EL 2.3121 2.7532 3.2390 3.5388 3.1331 3.5508 2.9217

400 ESL 0.0643 0.0635 0.0696 0.0743 0.0704 0.0725 0.0739
QR0.5 0.0713 0.0762 0.0728 0.0801 0.0697 0.0755 0.0784

EE 1.4832 1.8364 2.3734 2.4119 2.3658 2.5706 2.1897
EL 1.4838 1.8370 2.3742 2.4126 2.3664 2.5712 2.1903

MN(1, 100) 50 ESL 2.2328 2.3444 2.3727 2.4228 2.4053 2.4264 2.4306
QR0.5 2.7892 2.8526 2.8913 2.9726 2.9436 3.1175 2.8328

EE 4.6206 5.2304 5.8304 7.4631 5.6529 6.4336 5.9205
EL 4.6224 5.2120 5.8316 7.4655 5.6542 6.4368 5.9217

200 ESL 0.5036 0.5158 0.5525 0.5844 0.5534 0.5812 0.5406
QR0.5 0.5142 0.5276 0.5697 0.5982 0.5680 0.5903 0.5534

EE 2.5612 3.0546 3.5274 4.9437 3.4935 4.1178 3.6893
EL 2.5616 3.0550 3.5278 4.9443 3.4940 4.1182 3.6899

400 ESL 0.0565 0.0547 0.0585 0.0657 0.0646 0.0621 0.0633
QR0.5 0.0720 0.0755 0.0718 0.0762 0.0722 0.0719 0.0743

EE 1.5764 1.8035 2.4832 2.7761 2.5167 2.6839 2.3106
EL 1.5772 1.8043 2.4838 2.7767 2.5171 2.6842 2.3110

Table 2. Simulation results of RASE for the estimators of gi(·)(i = 1, 2, 3).

Dist n Method
ĝ1 ĝ2 ĝ3

RASE RASE RASE

N(0, 1) 50 ESL 0.3647 0.2281 0.3872
QR0.5 0.3893 0.2463 0.3969

EE 0.3854 0.2358 0.3905
EL 0.3872 0.2364 0.3916

200 ESL 0.0941 0.0915 0.1030
QR0.5 0.1083 0.1041 0.1152

EE 0.1034 0.0967 0.1096
EL 0.1038 0.0969 0.1098

400 ESL 0.0323 0.0304 0.0357
QR0.5 0.0447 0.0428 0.0483

EE 0.0333 0.0314 0.0446
EL 0.0339 0.0320 0.0448
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Table 2. Cont.

Dist n Method
ĝ1 ĝ2 ĝ3

RASE RASE RASE

t(3) 50 ESL 0.4028 0.3884 0.3916
QR0.5 0.4264 0.4152 0.4237

EE 1.6802 1.4716 1.7231
EL 1.6826 1.4738 1.7242

200 ESL 0.1052 0.1056 0.1104
QR0.5 0.1188 0.1170 0.1219

EE 0.7308 0.6131 0.7463
EL 0.7314 0.6138 0.7469

400 ESL 0.0366 0.0340 0.0485
QR0.5 0.0492 0.0476 0.0513

EE 0.4120 0.3493 0.5042
EL 0.4124 0.3495 0.5048

MN(1, 100) 50 ESL 0.4356 0.3751 0.3938
QR0.5 0.4682 0.4065 0.4175

EE 1.5145 1.4127 1.6127
EL 1.5163 1.4203 1.6343

200 ESL 0.1102 0.1045 0.1146
QR0.5 0.1228 0.1137 0.1201

EE 0.7089 0.6715 0.7141
EL 0.7093 0.6719 0.7147

400 ESL 0.0379 0.0384 0.0361
QR0.5 0.0483 0.0496 0.0489

EE 0.3747 0.3572 0.5387
EL 0.3751 0.3577 0.5393

Example 2. This example aims to study the variable selection performance of the index
parameters in model (1). The model setup is similar to (24) except that X = (X1, X2, · · · , X8)T

independently generated from [−1, 1]8 and β0 = ( 1
3 , 2

3 , 0, 0, 2
3 , 0, 0, 0)T. As considered in

Example 1, three different error distributions N(0, 1), t(3), and MN(1, 25) are considered to
show the robustness of the proposed estimator method based on the exponential squared
loss (ESL). The error ε and X1, · · · , X8, Z1, Z2 are independent; X1 may have missing
values. The selection probability functions are given by:

π2(X2, X5, Z1, Z2) = {1 + exp(−(γ0 + γ1X2 + γ2X5 + γ3Z1 + γ4Z2))}−1.

We consider π1 with (γ0, γ1, γ2, γ3, γ4, ) = (1, 0.2, 0.2, 0.4, 0.5). The corresponding average
missing rates are 25%.

For each mechanism mentioned above, we compare the performance of four methods:
our proposed method [ESL-SCAD], LSE-SCAD proposed by Feng and Xue [11], LAD-SCAD
proposed by Yang and Yang [25], and EE-SCAD method based on Xue and Pang [12]. The
results are reported in Table 3 and are similar to the conclusions of Example 1. Whether the
error term follows the normal distribution, the centralized t-distribution, or the mixture
of normals, our proposed method performs more efficiently in variable selection, which
has larger NC and smaller NIC. When there exist outliers in the response variables or
heavy-tailed error distributions, ESL-SCAD has an obviously better performance than
LAD-SCAD, EE-SCAD, or LSE-SCAD estimators. For normal error, ESL-SCAD hardly loses
any efficiency.

The proposed procedure is also competitive in terms of computational cost. The
calculation was performed on a computer with AMD Ryzen processors, a 16 GB RAM,
running a Windows 10 system, and only one CPU was used for fair comparisons. Results
on computational efficiency of the our proposed method are presented in Tables 4 and 5,
which show CPU times (in seconds) for different combinations of the full data size n and
the number of covariates p. It is seen that the proposed algorithm is faster.
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Table 3. Variable selection results and RASE of ĝk(·), k = 1, 2, 3 in Example 2.

Dist n Method NC NIC PC RASE1 RASE2 RASE3

N(0, 1) 50 ESL-SCAD 4.850 0 0.948 0.2351 0.2306 0.2412
LAD-SCAD 4.820 0 0.942 0.2364 0.2318 0.2430
LSE-SCAD 4.865 0 0.950 0.2336 0.2140 0.2384
EE-SCAD 4.855 0 0.944 0.2340 0.2153 0.2396

200 ESL-SCAD 4.945 0 0.962 0.1143 0.1132 0.1228
LAD-SCAD 4.940 0 0.960 0.1187 0.1145 0.1256
LSE-SCAD 4.955 0 0.970 0.1132 0.1065 0.1182
EE-SCAD 4.950 0 0.965 0.1138 0.1071 0.1194

400 ESL-SCAD 5.000 0 1.000 0.0467 0.0432 0.0556
LAD-SCAD 5.000 0 1.000 0.0545 0.0526 0.0581
LSE-SCAD 5.000 0 1.000 0.0423 0.0404 0.0536
EE-SCAD 5.000 0 1.000 0.0429 0.0408 0.0540

t(3) 50 ESL-SCAD 4.924 0.006 0.948 0.2262 0.2250 0.2333
LAD-SCAD 4.916 0.009 0.922 0.2350 0.2344 0.2475
LSE-SCAD 3.503 0.178 0.594 0.9616 0.9826 0.9688
EE-SCAD 3.524 0.190 0.589 0.9624 0.9856 0.9723

200 ESL-SCAD 4.946 0.003 0.962 0.1128 0.1117 0.1253
LAD-SCAD 4.930 0.005 0.950 0.1290 0.1274 0.1321
LSE-SCAD 3.765 0.160 0.690 0.7398 0.7015 0.7547
EE-SCAD 3.775 0.175 0.675 0.7412 0.7035 0.7569

400 ESL-SCAD 4.998 0 0.998 0.0466 0.0432 0.0585
LAD-SCAD 4.990 0 0.995 0.0598 0.0584 0.0619
LSE-SCAD 4.215 0.105 0.750 0.4206 0.3573 0.5134
EE-SCAD 4.190 0.110 0.735 0.4224 0.3597 0.5148

MN(1, 25) 50 ESL-SCAD 4.895 0 0.930 0.2268 0.2150 0.2269
LAD-SCAD 4.880 0 0.922 0.2440 0.2312 0.2453
LSE-SCAD 3.425 0.175 0.546 0.9367 0.9536 0.9516
EE-SCAD 3.440 0.190 0.536 0.9435 0.9557 0.9535

200 ESL-SCAD 4.940 0 0.955 0.1129 0.1063 0.1147
LAD-SCAD 4.935 0 0.950 0.1335 0.1241 0.1305
LSE-SCAD 3.805 0.155 0.685 0.7151 0.6803 0.7233
EE-SCAD 3.815 0.165 0.660 0.7193 0.6819 0.7245

400 ESL-SCAD 4.997 0 1.000 0.0414 0.0563 0.0467
LAD-SCAD 4.995 0 1.000 0.0587 0.0601 0.0595
LSE-SCAD 4.355 0.090 0.840 0.3823 0.3634 0.5467
EE-SCAD 4.275 0.105 0.755 0.3851 0.3676 0.5493

Table 4. CPU times for different n in Example 1.

n N(0, 1) t(3) MN(1, 100)

50 0.5609 0.6491 0.7832
200 0.7326 0.8169 0.8664
400 0.9528 0.9868 1.0610

Table 5. CPU times for different n in Example 2.

n N(0, 1) t(3) MN(1, 100)

50 0.8702 0.9564 1.1062
200 1.1470 1.2235 1.3598
400 1.3682 1.4373 1.6476

4. Discussion

In this paper, we use penalized regression with exponential squared loss to propose
a robust variable selection procedure for a single-index model along with missing data.
The B-spline is a method that can estimate the relationship with the response. IPW is a
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frequently used method dealing with the bias resulting from missing covariates, and the
non-convex penalty method is used to estimate and select the variable at the same time.
We examine the properties of sampling and robustness of our estimator. From theoretical
and simulation study in this paper, the merits of our method are obvious. We also illustrate
that the outcomes are good when using our method for actual data. In particular, we reveal
that this estimator has the highest sample breakdown point, and the influence function
for outliers are limited either in the response domain or in the covariate domain. In this
paper, simulation studies and applications indicate the advantage of our method. When
outliers are presented (regardless of the mechanism), EE-SCAD and LSE-SCAD are inferior
in terms of non-caused selection rate.

Moreover, we can make further studies based on our proposed method. First, it is
worth considering the goodness-of-fit test; in this paper we only study the sparse estimation
and variable selection, however. Second, censoring can be examined based on this model.
An investigation of the difficulties above is a portion of further study but is out of this
paper’s scope. In the proposed theory, internal knots are considered as fixed values. Finally,
how to optimally select internal knots when data are missing is an interesting problem
worthy of future research.
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