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Abstract: In the paper, the crossing number of the join product G∗ + Dn for the disconnected graph
G∗ consisting of two components isomorphic to K2 and K3 is given, where Dn consists of n isolated
vertices. Presented proofs are completed with the help of the graph of configurations that is a
graphical representation of minimum numbers of crossings between two different subgraphs whose
edges do not cross the edges of G∗. For the first time, multiple symmetry between configurations
are presented as parity properties. We also determine crossing numbers of join products of G∗ with
paths Pn and cycles Cn on n vertices by adding new edges joining vertices of Dn.
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1. Introduction

The issue of reducing the number of crossings on edges of simple graphs is interesting
in a lot of areas. Probably one of the most popular areas is the implementation of the
VLSI layout because it caused a significant revolution in circuit design and thus had a
strong effect on parallel calculations. Crossing numbers have also been studied to improve
the readability of hierarchical structures and automated graphs. The visualized graph
should be easy to read and understand. For the sake of clarity of graphic drawings, some
reduction of an edge crossing is probably the most important. Note that examining number
of crossings of simple graphs is an NP-complete problem by Garey and Johnson [1].

The crossing number cr(G) of a simple graph G with the vertex set V(G) and the edge
set E(G) is the minimum possible number of edge crossings in a drawing of G in the plane
(for the definition of a drawing see Klešč [2]). One can easily verify that a drawing with the
minimum number of crossings (an optimal drawing) is always a good drawing, meaning
that no two edges cross more than once, no edge crosses itself, and also no two edges
incident with the same vertex cross. Let D be a good drawing of the graph G. We denote
the number of crossings in D by crD(G). Let Gi and Gj be edge-disjoint subgraphs of G.
We denote the number of crossings between edges of Gi and edges of Gj by crD(Gi, Gj),
and the number of crossings among edges of Gi in D by crD(Gi). For any three mutually
edge-disjoint subgraphs Gi, Gj, and Gk of G by [2], the following equations hold:

crD(Gi ∪ Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi ∪ Gj, Gk) = crD(Gi, Gk) + crD(Gj, Gk) .

Throughout this paper, some parts of proofs will be based on Kleitman’s result [3]
on crossing numbers for some complete bipartite graphs Km,n on m + n vertices with a
partition V(Km,n) = V1 ∪ V2 and V1 ∩ V2 = ∅ containing an edge between every pair of
vertices from V1 and V2 of sizes m and n, respectively. He showed that

cr(Km,n) =
⌊m

2

⌋⌊m− 1
2

⌋⌊n
2

⌋⌊n− 1
2

⌋
, if min{m, n} ≤ 6. (1)
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For an overview of several exact values of crossing numbers for specific graphs or
some families of graphs, see Clancy [4]. The main goal of this survey is to summarize
all such published results for crossing numbers along with references also in an effort to
give priority to the author who published the first result. Chapter 4 is devoted to the issue
of crossing numbers of join product with all simple graphs of order at most six mainly
due to unknown values of cr(Km,n) for both m, n more than six in (1). The join product
of two graphs Gi and Gj, denoted Gi + Gj, is obtained from vertex-disjoint copies of Gi
and Gj by adding all edges between V(Gi) and V(Gj). For |V(Gi)| = m and |V(Gj)| = n,
the edge set of Gi + Gj is the union of the disjoint edge sets of the graphs Gi, Gj, and the
complete bipartite graph Km,n. Let Dn denote the discrete graph (sometimes called empty
graph) on n vertices, and let Kn be the complete graph on n vertices. The exact values for
crossing numbers of G + Dn for all graphs G of order at most four are given by Klešč and
Schrötter [5], and also for a lot of connected graphs G of order five and six [2,6–24]. Note
that cr(G + Dn) are known only for some disconnected graphs G, and so the purpose of this
paper is to extend known results concerning this topic to new disconnected graphs [25–28].

Let G∗ = (V(G∗), E(G∗)) be the disconnected graph of order five consisting of two
components isomorphic to the complete graphs K2 and K3, respectively, and let also
V(G∗) = {v1, v2, . . . , v5}. We cannot determine the crossing number of the join product
G∗ + Dn by a similar technique like in [2,18] because |E(G∗)| < |V(G∗)|. From the topo-
logical point of view, number of crossings of any drawing D of G∗ + Dn placed on surface
of the sphere does not matter which of regions is unbounded, but on how many times
edges of the graph G∗ could be crossed by a subgraph Ti in D. This representation of Ti

best describes idea of a configuration utilizing some cyclic permutation on pre-numbered
vertices of G∗.

Theorem 1. cr(G∗ + D1) = 0 and cr(G∗ + Dn) = n2 − 2n +
⌊ n

2
⌋

for n ≥ 2, i.e., cr(G∗ +
Dn) = 4

⌊ n
2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

for n even and cr(G∗ + Dn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
− 1 for n odd at

least 3.

All subcases of the proof of Theorem 2 will be clearer if a graph of configurations GD is
used as a graphical representation of minimum numbers of crossings between two different
subgraphs. Moreover, in the case of our symmetric graph G∗, the graph GD can be linked
to parity properties of configurations. Our proof of the main Theorem 2 is therefore an
inevitable combination of topological analysis of existing configurations with their parity
properties. The color resolution of weighted edges in GD will also serve us for a simpler
description of existence of its possible subgraphs in the examined drawing D of G∗ + Dn.
Software COGA [29] should be also very helpful in certain parts of presented proofs mainly
due to possibility of generating all cyclic permutations of five elements and counting of
their subsequent interchanges of adjacent elements.

The obtained crossing number of the join product G∗ + Dn is in very special form
which is caused by a completely different behavior for n even and odd number. The
paper concludes by giving crossing numbers of G∗ + Pn and G∗ + Cn with same values in
Corollaries 3 and 4, respectively, that is something unique in the crossing number theory.

2. Cyclic Permutations and Corresponding Configurations

The join product G∗ + Dn (sometimes used notation G∗ + nK1) consists of one copy of
the graph G∗ and n vertices t1, . . . , tn, and any vertex ti is adjacent to every vertex of the
graph G∗. We denote the subgraph induced by five edges incident with the fixed vertex ti
by Ti, which yields that

G∗ + Dn = G∗ ∪ K5,n = G∗ ∪
( n⋃

i=1

Ti
)

. (2)
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We consider a good drawing D of G∗ + Dn. By the rotation rotD(ti) of a vertex ti in D
we understand the cyclic permutation that records the (cyclic) counterclockwise order in
which edges leave ti, as defined by Hernández-Vélez et al. [30] or Woodall [31]. We use the
notation (12345) if the counter-clockwise order of edges incident with the fixed vertex ti
is tiv1, tiv2, tiv3, tiv4, and tiv5. We recall that rotation is a cyclic permutation. By rotD(ti),
we understand the inverse permutation of rotD(ti). In the given drawing D, it is highly
desirable to separate n subgraphs Ti into three mutually disjoint subsets depending on
how many times edges of G∗ could be crossed by Ti in D. Let us denote by RD and SD the
set of subgraphs for which crD(G∗, Ti) = 0 and crD(G∗, Ti) = 1, respectively. Edges of G∗

are crossed by each remaining subgraph Ti at least twice in D.
First, note that if D is a drawing of the join product G∗ + Dn with the empty set RD,

then ∑n
i=1 crD(G∗, Ti) ≥ n enforces at least n2 − 2n +

⌊ n
2
⌋

crossings in D provided by

crD(G∗ + Dn) ≥ crD(K5,n) + crD(G∗, K5,n) ≥ 4
⌊n

2

⌋⌊n− 1
2

⌋
+ n ≥ n2 − 2n +

⌊n
2

⌋
.

Based on this argument, we will only consider drawings of the graph G∗ for which
there is a possibility to obtain a subgraph Ti ∈ RD. Moreover, let Fi denote the subgraph
G∗ ∪ Ti for any Ti ∈ RD, which yields that each such subgraph Fi is represented by its
rotD(ti).

Let us discuss all possible subdrawings of G∗ induced by D. As edges of its subgraph
isomorphic to K3 do not cross each other, it is obvious there are only two such possible
drawings of G∗ presented in Figure 1.

(a) (b)

v5v4

v3

v2v1 v1 v2

v3

v4

v5

Figure 1. Two possible non isomorphic drawings of the graph G∗. (a): the planar drawing of G∗;
(b): the drawing of G∗ with two crossings among edges.

Assume there is a good drawing D of G∗ + Dn with planar subdrawing of the graph
G∗ induced by D and also the vertex notation of G∗ in such a way as shown in Figure 1a.
Our aim is to list all possible rotations rotD(ti) which can appear in D if edges of G∗ are not
crossed by Ti. Since there is only one subdrawing of Fi \ {v4, v5} represented by the rotation
(132), there are three possibilities to obtain the subdrawing of Fi without the edge v4v5
depending on in which region both edges tiv4 and tiv5 are placed. Of course, there are two
next ways how to place the corresponding two edges together with the edge v4v5 for each
mentioned case. These 3× 2 = 6 possibilities under our consideration can be denoted by
Ak, for k = 1, . . . , 6. We will call them by the configurations of corresponding subdrawings
of the subgraph G∗ ∪ Ti in D and suppose their drawings as shown in Figure 2.

In the rest of the paper, we present a cyclic permutation by the permutation with 1
in the first position. Thus, the configurations A1, A2, A3, A4, A5, and A6 are represented
by the cyclic permutations (13245), (13254), (14532), (15432), (13452), and (13542), re-
spectively. Clearly, in a fixed drawing of the graph G∗ + Dn, some configurations from
M = {A1,A2,A3,A4,A5,A6} need not appear. We denote byMD the set of all configura-
tions that exist in the drawing D belonging to the setM.
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Figure 2. Drawings of six possible configurations Ak of subgraph Fi = G∗ ∪ Ti for Ti ∈ RD.

Let X , Y be two configurations from MD (not necessary distinct). We denote the
number of edge crossings between two different subgraphs Ti and T j with conf(Fi) = X
and conf(Fj) = Y in D by crD(X ,Y). Finally, let cr(X ,Y) = min{crD(X ,Y)} among
all good drawings of G∗ + Dn with the planar subdrawing of G∗ induced by D given
in Figure 1a and with X ,Y ∈ MD. Our aim shall be to establish cr(X ,Y) for all pairs
X ,Y ∈ M. In particular, the configurations A1 and A4 are represented by the cyclic
permutations (13245) and (15432), respectively. Each subgraph T j with conf(Fj) = A4
crosses edges of each Ti with conf(Fi) = A1 at least once provided by the minimum number
of interchanges of adjacent elements of (13245) required to produce (15432) = (12345)
is one, i.e., cr(A1,A4) ≥ 1. For more details see also Woodall [31]. The same reason
gives cr(A1,A2) ≥ 3, cr(A1,A3) ≥ 2, cr(A1,A5) ≥ 2, cr(A1,A6) ≥ 1, cr(A2,A3) ≥
1, cr(A2,A4) ≥ 2, cr(A2,A5) ≥ 1, cr(A2,A6) ≥ 2, cr(A3,A4) ≥ 3, cr(A3,A5) ≥ 2,
cr(A3,A6) ≥ 1, cr(A4,A5) ≥ 1, cr(A4,A6) ≥ 2, and cr(A5,A6) ≥ 3. Clearly, also
cr(Ak,Ak) ≥ 4 for any k = 1, . . . , 6. The lower bounds obtained for number of crossings
between two configurations from M are summarized in the symmetric Table 1 (here,
conf(Fi) = Ak and conf(Fj) = Al with k, l ∈ {1, . . . , 6}). Note that these values cannot be
increased, i.e., the lower bounds can be achieved in some subdrawings of G∗ ∪ Ti ∪ T j for
Ti, T j ∈ RD with desired configurations.

Table 1. The minimum number of crossings between two different subgraphs Ti and T j such that
conf(Fi) = Ak and conf(Fj) = Al , where the achieved values are color-coded. Namely, the values 1,
2, 3, and 4 will correspond to green, blue, brown, and black, respectively.

- A1 A2 A3 A4 A5 A6

A1 4 3 2 1 2 1
A2 3 4 1 2 1 2
A3 2 1 4 3 2 1
A4 1 2 3 4 1 2
A5 2 1 2 1 4 3
A6 1 2 1 2 3 4

Further, due to symmetry of mentioned configurations, let us define two functions

π1 : {1, 2, 3} → {1, 2, 3}, with π1(1) = 3, π1(2) = 1, and π1(3) = 2,
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π2 : {4, 5} → {4, 5}, with π2(4) = 5, and π2(5) = 4.

Let Π1, Π2 : M → M be the functions obtained by applying π1 and π2 on corre-
sponding cyclic permutations of configurations inM, respectively. Thus, we have

Π1(A1) = A3, Π1(A3) = A5, Π1(A5) = A1, Π1(A2) = A4,

Π1(A4) = A6, Π1(A6) = A2, Π2(A1) = A2, Π2(A2) = A1,

Π2(A3) = A4, Π2(A4) = A3, Π2(A5) = A6, Π2(A6) = A5.

Therefore it is not difficult to show that values in rows of Table 1 can be obtained by
successive application of the mentioned transformations Π1 and Π2.

3. The Graph of Configurations and Parity Properties

Low possible number of crossings between two different subgraphs from the nonempty
set RD is one of main problems in determining cr(G∗ + Dn), and graph of configurations
as a graphical representation of Table 1 is going by useful tool in our research. This idea of
representation was first introduced in [26].

Let D be a good drawing of G∗ + Dn with the planar subdrawing of G∗ induced by
D given in Figure 1a, and letMD be nonempty set of all configurations that exist in D
belonging toM = {A1,A2,A3,A4,A5,A6}. A graph of configurations GD is an ordered
triple (VD, ED, wD), where VD is the set of vertices, ED is the set of edges formed by all
unordered pairs of two vertices (not necessary distinct), and a weight function w : ED → N
that associates with each edge of ED an unordered pair of two vertices of VD. The vertex
ak ∈ VD if the corresponding configuration Ak ∈ MD for some k ∈ {1, . . . , 6}. The edge
e = akal ∈ ED if ak and al are two vertices of GD. Finally, wD(e) = m ∈ N for the edge
e = akal , if m is associated lower bound between two configurations Ak and Al in Table 1.
Based on that GD is an undirected edge-weighted graph without multiple edges uniquely
determined by D and is also subgraph of G induced by VD if we define G = (V, E, w) in the
same way overM. The graph G = (V, E, w) corresponds to the edge-weighted complete
graph K6 in Figure 3, and thus will follow all subcases in the proof of the main Theorem 2
more clearly. In the rest of Figure 3, let any loop of the mentioned graph G be presented by
circle around vertex with respect to weight 4.

a2

a1

a4

a5

a3

a6

edge weight 1

edge weight 2

edge weight 3

edge weight 4

Figure 3. Representation of lower bounds of Table 1 by the graph G = (V, E, w).

Let αi denote the number of all subgraphs T j ∈ RD with the configuration Ai ∈ MD
of Fj = G∗ ∪ T j for each i = 1, . . . , 6. So, if we denote by Io = {1, 3, 5} and Ie = {2, 4, 6},
then ∑i∈Io∪Ie αi = |RD|. Moreover, for a better understanding, we get for all i ∈ Io ∪ Ie:
αi > 0 if and only if there is a subgraph T j ∈ RD with the configuration Ai ∈ MD of
Fj = G∗ ∪ T j if and only if ai ∈ VD in the graph GD.

Now, let us assume the configurations A1 of Fi, A4 of Fj, and A6 of Fk. The reader
can easily find a subdrawing of G∗ ∪ Ti ∪ T j ∪ Tk in which crD(Ti, T j) = 1, crD(Ti, Tk) = 1,
and crD(T j, Tk) = 2, i.e., crD(Ti ∪ T j ∪ Tk) = 4 = cr(K5,3). Further, there is a possibility to
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add another subgraph Tl that crosses edges of the graph Ti ∪ T j ∪ Tk four times. We have
to emphasize that the vertex tl must be placed in the triangular region with three vertices
of G∗ on its boundary (in the subdrawing of G∗ ∪ Ti ∪ T j ∪ Tk), i.e., Tl 6∈ RD ∪ SD and the
subgraph Fl = G∗ ∪ Tl is represented by rotD(tl) = (12435). Clearly, the number of adding
crossings cannot be smaller than 4 according to the well-known fact that cr(K5,4) = 8. This
situation suggests one natural problem which requires the following definition of a new
number β1. If α1 > 0, α4 > 0, and α6 > 0, then let us denote by β1 the number of subgraphs
Tl 6∈ RD ∪ SD with rotD(tl) = (12435). It is obvious that any subgraph Tl 6∈ RD ∪ SD
satisfies the condition crD(G∗ ∪ Ti ∪ T j ∪ Tk, Tl) ≥ 2 + 4 = 6 with the configurations
A1 of Fi, A4 of Fj, and A6 of Fk, and the number of Tl 6∈ RD ∪ SD that cross the graph
G∗ ∪ Ti ∪ T j ∪ Tk exactly six times is at most β1. Due to symmetry of some configurations,
it is appropriate to use the transform functions Π1, Π2 defined above and by the similar
way, we can also define the numbers βi for any i = 2, . . . , 6. Thus, if α2 > 0, α3 > 0, and
α5 > 0 or α3 > 0, α2 > 0, and α6 > 0 or α4 > 0, α1 > 0, and α5 > 0 or α5 > 0, α2 > 0,
and α4 > 0 or α6 > 0, α1 > 0, and α3 > 0, then let us denote by β2 or β3 or β4 or β5 or
β6 the number of subgraphs Tl 6∈ RD ∪ SD represented by the rotation (12534) or (14253)
or (15243) or (15234) or (14235), respectively. The importance of the values βi will be
presented in the proof of the main Theorem 2 as parity properties (6) and (7).

4. The Crossing Number of G∗+ Dn

A drawing D of G∗ + Dn is said to be antipode-free if crD(Ti, T j) ≥ 1 for any two
different vertices ti and tj. In the proof of Theorem 2, the following statements related to
some restricted subdrawings of the graph G∗ + Dn are required.

Lemma 1. Let D be a good and antipode-free drawing of G∗ + Dn, n > 1, with the vertex notation
of the graph G∗ in such a way as shown in Figure 1a. For Ti ∈ RD, letAk ∈ MD be a configuration
of the corresponding subgraph Fi = G∗ ∪ Ti for some k ∈ {1, . . . , 6}. If there is a T j ∈ SD such
that crD(Ti, T j) = 1, then all possible rotD(tj) are given in Table 2.

Table 2. The corresponding rotations of tj, for Ti ∈ RD, Fi = G∗ ∪ Ti and T j ∈ SD satisfying the
restriction crD(Ti, T j) = 1.

conf(Fi) rotD(tj) conf(Fi) rotD(tj) conf(Fi) rotD(tj)

A1 (14523) A3 (12345) A5 (12453)

A2 (15423) A4 (12354) A6 (12543)

Proof. Assume the configuration A1 of the subgraph Fi = G∗ ∪ Ti for some Ti ∈ RD, i.e.,
rotD(ti) = (13245). The subdrawing of Fi induced by D contains just five regions with
ti on their boundaries, see Figure 2. If there is a T j ∈ SD such that crD(Ti, T j) = 1, then
the vertex tj must be placed in the region with the four vertices v1, v2, v4, and v5 of G∗ on its
boundary. Besides that only the edge v1v2 of G∗ can be crossed by tjv3, and crD(Ti, T j) = 1
is fulfilling for T j with rotD(tj) = (14523) if tjv4 crosses tiv5. The same idea also force that
the rotations of the vertex tj are (15423), (12345), (12354), (12453), and (12543) for the
remaining configurations A2, A3, A4, A5, and A6 of Fi, respectively.

Corollary 1. Let D be a good and antipode-free drawing of G∗ + Dn, for n > 3, with the vertex
notation of the graph G∗ in such a way as shown in Figure 1a. If Ti, T j, and Tk ∈ RD are three
different subgraphs with crD(Ti, T j) = 1, crD(Ti, Tk) = 1 and such that Fi, Fj, and Fk have three
mutually different configurations from any of the sets {A1,A4,A6}, {A2,A3,A5}, {A3,A2,A6},
{A1,A4,A5}, {A2,A4,A5}, and {A1,A3,A6}, then

crD(Ti ∪ T j ∪ Tk, Tl) ≥ 6 for any Tl ∈ SD,
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i.e.,
crD(G∗ ∪ Ti ∪ T j ∪ Tk, Tl) ≥ 7 for any Tl ∈ SD.

Proof. Let us assume the configurationsA1 of Fi,A4 of Fj, andA6 of Fk with respect to the
restrictions crD(Ti, T j) = crD(Ti, Tk) = 1 and recall that they are represented by the cyclic
permutations rotD(ti) = (13245), rotD(tj) = (15432), and rotD(tk) = (13542). If there is
a subgraph Tl ∈ SD with crD(Ti, Tl) = 1, then the subgraph Fl can be represented only by
rotD(tl) = (14523), where the edge tlv3 crosses v1v2 of G∗ and either tlv4 or tlv5 crosses
corresponding edge of Ti. Any such subgraph Tl must cross edges of both subgraphs T j

and Tk at least twice because the minimum number of interchanges of adjacent elements
of (14523) required to produce (15432) = (12345) and (13542) = (12453) is two. Clearly,
if crD(T j, Tl) > 2 or crD(Tk, Tl) > 2, we obtain the desired result crD(Ti ∪ T j ∪ Tk, Tl) ≥
1 + 3 + 2 = 6. Further, if crD(T j, Tl) = 2 and crD(Tk, Tl) = 2, then the edge tiv5 is crossed
by tlv4 in D(Ti ∪ T j ∪ Tl) and also tiv4 by tlv5 in D(Ti ∪ Tk ∪ Tl), respectively. However,
then crD(Ti, Tl) ≥ 2, which contradicts the fact that crD(Ti, Tl) = 1 in D(Ti ∪ T j ∪ Tk ∪ Tl).

If there is a Tl ∈ SD with crD(T j, Tl) = 1, then the subgraph Fl is represented only
by the cyclic permutation (12354). Using same properties as in the previous subcase, we
have crD(Ti, Tl) ≥ 2 and crD(Tk, Tl) ≥ 3. This in turn implies that crD(Ti ∪ T j ∪ Tk, Tl) ≥
2 + 1 + 3 = 6. Of course, we can apply the same idea for the case of crD(Tk, Tl) = 1.

To finish the proof, let us consider a subgraph Tl ∈ SD with crD(Ti, Tl) = 2, crD(T j, Tl) =
2, and crD(Tk, Tl) = 2. This enforces that the minimum number of interchanges of adjacent
elements of rotD(tl) required to produce (13245) = (15423), (15432) = (12345), and
(13542) = (12453) must be exactly two. However, it is not difficult to show that such cyclic
permutation does not exist. Similar arguments can be applied for remaining five cases (or
using the transformations Π1 and Π2), and the proof is complete.

Corollary 2. Let D be a good and antipode-free drawing of G∗ + Dn, for n > 3, with the vertex
notation of the graph G∗ in such a way as shown in Figure 1a. If Ti, T j, and Tk ∈ RD are three
different subgraphs such that Fi, Fj, and Fk have three mutually different configurations from any
of the sets {A1,A3,A5} and {A2,A4,A6}, then

crD(Ti ∪ T j ∪ Tk, Tl) ≥ 5 for any Tl ∈ SD,

i.e.,
crD(G∗ ∪ Ti ∪ T j ∪ Tk, Tl) ≥ 6 for any Tl ∈ SD.

Proof. Let us assume the configurations A1 of Fi, A3 of Fj, and A5 of Fk. If there is
a subgraph Tl ∈ SD with crD(Ti, Tl) = 1, then the subgraph Fl can be represented only
by the cyclic permutations (14523). Uniqueness of all rotations in Table 2 confirms that
crD(T j, Tl) ≥ 2 and crD(Tk, Tl) ≥ 2. Hence, crD(Ti ∪ T j ∪ Tk, Tl) ≥ 1 + 2 + 2 = 5, and the
similar way can be applied for the case if crD(T j, Tl) = 1 or crD(Tk, Tl) = 1 with Tl ∈ SD.
It remains to consider the case where crD(Ti, Tl) ≥ 2, crD(T j, Tl) ≥ 2, and crD(Tk, Tl) ≥ 2,
which yields that crD(Ti ∪ T j ∪ Tk, Tl) ≥ 2 + 2 + 2 = 6 clearly holds for any such Tl , as
claimed. The proof proceeds in the similar way for the second triple of configurations
{A2,A4,A6}, and this completes the proof.

Lemma 2. cr(G∗ + D2) = 1.

Proof. If we consider the configurations A2 of Fi and A3 of Fj, then one can easily find a
subdrawing of Ti ∪ T j in which crD(Ti, T j) = 1, i.e., cr(G∗ + D2) ≤ 1. The graph G∗ + D2
contains a subgraph that is a subdivision of the complete graph K5 and it is well-known
by Guy [32] that cr(K5) = 1. As cr(G∗ + D2) ≥ cr(K5) = 1, the proof of Lemma 2 is
complete.
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Theorem 2. cr(G∗ + D1) = 0 and cr(G∗ + Dn) = n2 − 2n +
⌊ n

2
⌋

for n ≥ 2, i.e., cr(G∗ +
Dn) = 4

⌊ n
2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

for n even and cr(G∗ + Dn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
− 1 for n odd at

least 3.

Proof. The graph G∗ + D1 is planar, hence cr(G∗ + D1) = 0. For n ≥ 2, both special
drawings in Figures 4 and 5 produce n2 − 2n +

⌊ n
2
⌋

crossings, and so cr(G∗ + Dn) ≤
n2 − 2n +

⌊ n
2
⌋
. The opposite inequality can be proved by induction on n, and the result

holds for n = 2 by Lemma 2. For some n ≥ 3, suppose a drawing D of G∗ + Dn with

crD(G∗ + Dn) < n2 − 2n +
⌊n

2

⌋
(3)

and that
cr(G∗ + Dm) = m2 − 2m +

⌊m
2

⌋
for any integer 2 ≤ m < n. (4)

v1

v2

v3

v4

v5

_t n
2

_t n
2

t1tn+2

Figure 4. The good drawing of G∗ + Dn with 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

crossings for n even, n ≥ 2.

v1

v2

v3

v4

v5

tn
t1t2

_t n
2

+3

_n
2

-3 times

Figure 5. The good drawing of G∗ + Dn with 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
− 1 crossings for n odd, n ≥ 3, where

three subgraphs T1, T2, and Tn are fixed.

Let us first show that D must be antipode-free. Suppose that, without loss of generality,
crD(Tn−1, Tn) = 0. If at least one of Tn−1 and Tn, say Tn, does not cross G∗, it is not difficult
to verify in Figure 1 that {Tn−1, Tn} 6⊆ RD, i.e., crD(G∗, Tn−1 ∪ Tn) ≥ 1. By (1), we already
know that crD(K5,3) ≥ 4, which yields that edges of the subgraph Tn−1 ∪ Tn must be
crossed at least four times by each other Tk. So, by fixing the subgraph Tn−1 ∪ Tn in D,
we have

crD(G∗ + Dn−2) + crD(Tn−1 ∪ Tn) + crD(K5,n−2, Tn−1 ∪ Tn) + crD(G∗, Tn−1 ∪ Tn)

≥ (n− 2)2 − 2(n− 2) +
⌊n− 2

2

⌋
+ 0 + 4(n− 2) + 1 = n2 − 2n +

⌊n
2

⌋
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The obtained crossing number contradicts the assumption (3) and confirms that the
considered drawing D is antipode-free. For easier reading, if r = |RD| and s = |SD|, then
again (3) together with crD(K5,n) ≥ 4

⌊ n
2
⌋⌊ n−1

2
⌋

using (1) imply the following inequality
with respect to possible edge crossings of G∗ in D:

crD(G∗) + s + 2(n− r− s) <
⌊n

2

⌋
. (5)

The inequality (5) forces more than
⌈ n

2
⌉

subgraphs Ti by which edges of G∗ are not
crossed, that is, r ≥

⌈ n
2
⌉
+ 1 ≥ 3 and s <

⌊ n
2
⌋
. Of course, if n is odd then previous

inequalities could be strengthened, but this is not necessary in the following process of
obtaining a contradiction with number of crossings in D. Moreover, if n = 3 then r = 3,
and crD(G∗ + D3) ≥ cr(K5,3) = 4 with the assumption (3) enforce n at least four.

Case 1: crD(G∗) = 0 and choose the vertex notation of the graph G∗ in such a way as
shown in Figure 1a. In this case, we deal with configurations from the nonempty setMD.
As the set RD is nonempty, recall that

∑
i∈Io

αi + ∑
i∈Ie

αi = r ≥ 3.

Let us first suppose that either α1 + α3 + α5 = 0 or α2 + α4 + α6 = 0. For the rest of
the proof we may therefore assume that α2 + α4 + α6 = 0, that is, α1 + α3 + α5 > 0. Since
GD is the subgraph of G induced by VD with respect to weights 2 of all its edges (without
possible loops), three possible subcases presented in Figure 6 may occur:

(a) (b) (c)

a1 a3

a5

ai

aj

ai

Figure 6. Three possible components of the graph GD if α2 = α4 = α6 = 0. (a): αi > 0 for each i ∈ Io;
(b): αi > 0 and αj > 0 for exactly two different i, j ∈ Io; (c): αi > 0 for only one i ∈ Io.

(a) αi > 0 for each i ∈ Io. Let us assume three subgraphs Tn−2, Tn−1, Tn ∈ RD such
that Fn−2, Fn−1 and Fn have three mutually different configurations from the set
MD = {A1,A3,A5}. Then, crD(Tn−2 ∪ Tn−1 ∪ Tn, Ti) ≥ 4 + 2 + 2 = 8 holds for
any other Ti ∈ RD by summing values in corresponding three rows of Table 1, and
crD(G∗ ∪ Tn−2 ∪ Tn−1 ∪ Tn, Ti) ≥ 6 is true by Corollary 2 for any Ti ∈ SD. Then, by
fixing the graph G∗ ∪ Tn−2 ∪ Tn−1 ∪ Tn

crD(G∗ + Dn) ≥ 4
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 8(r− 3) + 6s + 7(n− r− s) + 6

= 4
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 7n + r− s− 18 ≥ 4

⌊n− 3
2

⌋⌊n− 4
2

⌋
+7n +

(⌈n
2

⌉
+ 1
)
+
(

1−
⌊n

2

⌋)
− 18 ≥ n2 − 2n +

⌊n
2

⌋
.

(b) Assuming that αi > 0 for exactly two i ∈ Io, without lost of generality, let us consider
two different subgraphs Tn−1, Tn ∈ RD such that Fn−1 and Fn have configurationsA1
and A3, respectively. AsMD = {A1,A3}, we have crD(Tn−1 ∪ Tn, Ti) ≥ 4 + 2 = 6
for any Ti ∈ RD, i 6= n− 1, n. Therewith, the antipode-free property of D forces that,
crD(Tn−1 ∪ Tn, Ti) ≥ 2 trivially holds for any subgraph Ti with i 6= n− 1, n. Hence,
by fixing the graph G∗ ∪ Tn−1 ∪ Tn
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crD(G∗ + Dn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 6(r− 2) + 3s + 4(n− r− s) + 2

= 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 4n + 2r− s− 10 ≥ 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+4n + 2

(⌈n
2

⌉
+ 1
)
+
(

1−
⌊n

2

⌋)
− 10 ≥ n2 − 2n +

⌊n
2

⌋
.

(c) αi > 0 for only one i ∈ Io. AsMD = {Ai}, in the rest of the paper, we may consider
Tn ∈ RD with the configurationA1 of Fn. Then edges of each other subgraph T j ∈ RD
cross at least four times edges of Tn provided by rotD(tn) = rotD(tj). Thus, by fixing
the graph G∗ ∪ Tn

crD(G∗ + Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4(r− 1) + 2s + 3(n− r− s) + 0

= 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3n + r− s− 4 ≥ 4

⌊n− 1
2

⌋⌊n− 2
2

⌋
+3n +

(⌈n
2

⌉
+ 1
)
+
(

1−
⌊n

2

⌋)
− 4 ≥ n2 − 2n +

⌊n
2

⌋
.

All three subcases contradict the assumption (3). In addition, let us suppose that α1 +
α3 + α5 > 0 and α2 + α4 + α6 > 0. Remark that the subgraph GD can be either connected
(consisting of a single component) or also disconnected with several components. Now, we
are able to discuss over remaining possible components of GD in the following subcases:

1. There are no two adjacent edges with weights 1 in the subgraph GD, that is, there are
four possibilities presented in Figure 7.

(a) (b) (c) (d)

Figure 7. Four possible components of the subgraph GD in which there are no two adjacent edges
with weights 1. Green, blue, brown, and black correspond to the values 1, 2, 3, and 4, respectively. (a):
the complete graph K3 with edge weights 1, 2, and 3; (b): the complete graph K4 with edge weights 1,
1, 2, 2, 3, and 3; (c): the complete graph K2 with edge weight 1; (d): the complete graph K2 with edge
weight 3.

• wD(aiaj) = 1 for some i ∈ Io, j ∈ Ie, i.e., there are three cases mentioned in
Figure 7a–c. Let us consider two subgraphs Tn−1, Tn ∈ RD such that Fn−1, Fn

have different configurations from {Ai,Aj}, where i, j are associated indexes.
Using weights of edges in the considered component of GD, one can easily verify
that edges of the graph Tn−1 ∪ Tn are crossed at least five times by edges of
any another subgraph Tk ∈ RD. Moreover, since the minimum number of
interchanges of adjacent elements of rotD(tn) required to produce rotD(tn−1) is
three, any subgraph Tk with k 6= n − 1, n crosses edges of Tn−1 ∪ Tn at least
thrice. Thus, by fixing the graph G∗ ∪ Tn−1 ∪ Tn
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crD(G∗ + Dn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 5(r− 2) + 4s + 5(n− r− s) + 1

= 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 5n− s− 9 ≥ 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+5n +

(
1−

⌊n
2

⌋)
− 9 ≥ n2 − 2n +

⌊n
2

⌋
.

• wD(aiaj) > 1 for all i ∈ Io, j ∈ Ie, i.e., there is only one case mentioned in
Figure 7d. Let us again consider two subgraphs Tn−1, Tn ∈ RD such that
Fn−1, Fn have different configurations from {Ai,Aj}, where i, j are associated
indexes. Then, crD(Tn−1 ∪ Tn, Tk) ≥ 7 holds by summing edge-weights 4 and 3
for any other Tk ∈ RD. Hence, by fixing the graph G∗ ∪ Tn−1 ∪ Tn

crD(G∗ + Dn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 7(r− 2) + 3s + 4(n− r− s) + 3

= 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 4n + 3r− s− 11 ≥ 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+4n + 3

(⌈n
2

⌉
+ 1
)
+ 1−

⌊n
2

⌋
− 11 ≥ n2 − 2n +

⌊n
2

⌋
.

Both discussed cases again confirm a contradiction with (3) in D, and so, suppose that
there are two adjacent edges with weights 1 in the subgraph GD. Further, only in the
case if the number β j is defined, we claim that the following two properties (6) and (7)
must be also fulfilled in D:

β j + ∑
i∈Io

αi >
⌊n

2

⌋
for some j ∈ Io, (6)

β j + ∑
i∈Ie

αi >
⌊n

2

⌋
for some j ∈ Ie. (7)

For a contradiction, suppose, without loss of generality, that β1 + α1 + α3 + α5 ≤
⌊ n

2
⌋
,

that is, −α1 − α3 − α5 − β1 ≥ −
⌊ n

2
⌋
. In this case, from the definition of β1, we have

α1 > 0, α4 > 0, and α6 > 0. Thus, in the rest of the paper, let us consider three
subgraphs Tn−2, Tn−1, Tn ∈ RD such that Fn−2, Fn−1, and Fn have configurations
A1, A4, and A6, respectively. Using values in Table 1, one can easily verify that edges
of the graph Tn−2 ∪ Tn−1 ∪ Tn are crossed at least six times and seven times by edges
of any another subgraph Ti ∈ RD with the configuration A1,A3,A5 and A2,A4,A6
of Fi (of course, if Ak ∈ MD for some k ∈ Io ∪ Ie in D), respectively. However, from
Corollary 1 we get that crD(G∗ ∪ Tn−2 ∪ Tn−1 ∪ Tn, Ti) ≥ 7 holds for any Ti ∈ SD
provided by we can also assume that crD(Tn−2, Tn−1) = 1 and crD(Tn−2, Tn) = 1 due
to the congruence property (If rotD(tx) and rotD(ty) are two cyclic permutations of
odd length, and Q(rotD(tx), rotD(ty)) denotes the minimum number of interchanges
of adjacent elements of rotD(tx) required to produce the inverse cyclic permutation of
rotD(ty), then crD(Tx, Ty) = Q(rotD(tx), rotD(ty)) + 2z for some nonnegative integer
z, for more see Woodall [31]). Hence, by fixing the graph G∗ ∪ Tn−2 ∪ Tn−1 ∪ Tn

crD(G∗ + Dn) ≥ 4
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 6(α1 + α3 + α5 − 1) + 7(α2 + α4 + α6 − 2) + 7s

+6β1 + 7(n− r− s− β1) + 4 = 4
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 7n− α1 − α3 − α5 − β1 − 16

≥ 4
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 7n−

⌊n
2

⌋
− 16 ≥ n2 − 2n +

⌊n
2

⌋
.

The obtained crossing number also contradicts the assumption (3) of D and confirms
that both parity properties (6) and (7) must be fulfilled in D.
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2. There are two adjacent edges with weights 1 in the subgraph GD, that is, there are five
possibilities presented in Figure 8.

(a) Let the graph GD consist of one component in such a way as shown in Figure 8a.
Without lost of generality, let us assume that a2, a3, a6 are vertices of the consid-
ered path on three vertices with weight 1 of both edges. In this case, it is obvious
that α2 + α3 + α6 = r. Since the number β3 can be defined, the property (6) forces
β3 + α3 >

⌊ n
2
⌋
. Further, let us also assume that Tn ∈ RD with the configuration

A3 of Fn. Then, by fixing the graph G∗ ∪ Tn

crD(G∗ + Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4(α3 − 1) + 1(α2 + α6) + 4β3 + 2s

+3(n− r− s− β3) = 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3n + (α3 + β3 − α2 − α6)

−(s + α2 + α6)− 4 ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3n + 0−

⌊n
2

⌋
− 4 ≥ n2 − 2n +

⌊n
2

⌋
.

(b) Let the graph GD consist of one component in such a way as shown in Figure 8b.
Without lost of generality, let us assume that a2, a3, a6 are vertices of the con-
sidered path on three vertices with weight 1 of both edges and let a2, a4, a6 be
vertices of the 3-cycle with respect to weight 2 of all its edges. In this case, it is ob-
vious that α2 + α3 + α4 + α6 = r. The property (6) enforces again β3 + α3 >

⌊ n
2
⌋

because the number β3 can be defined. Further, if Tn ∈ RD is assumed with the
configuration A4 of Fn, then by fixing the graph G∗ ∪ Tn

crD(G∗ + Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3(α3 + β3) + 2(n− α3 − β3 − 1)

≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 2n +

(⌊n
2

⌋
+ 1
)
− 2 ≥ n2 − 2n +

⌊n
2

⌋
.

(c) Let the graph GD consist of one component in such a way as shown in Figure 8c–e.
Let us take a maximal path Pk on k vertices as the subgraph of GD with weights 1
on all its edges. If ai and aj are two inner vertices of Pk with i + 1 ≡ j (mod 2)
for which the numbers βi and β j satisfy the parity properties (6) and (7), then
addition of both inequalities thus obtained enforces a contradiction

n ≥ βi + β j + r ≥ 2
(⌊n

2

⌋
+ 1
)

.

The obtained contradictions in all three cases complete the proof for the planar sub-
drawing of G∗ induced by D given in Figure 1a.

Case 2. crD(G∗) = 2 and choose the vertex notation of the graph G∗ presented as in
Figure 1b. Since the set RD is nonempty and there is only one subdrawing of a subgraph
Fi = G∗ ∪ Ti for all Ti ∈ RD represented by the rotation (13524), the subgraph Ti is crossed
at least four times by edges of each subgraph T j ∈ RD with j 6= i. Hence, by fixing the graph
G∗ ∪ Ti

crD(G∗ + Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4(r− 1) + 2(n− r) + 2 = 4

⌊n− 1
2

⌋⌊n− 2
2

⌋
+2n + 2r− 2 ≥ 4

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 2n + 2

(⌈n
2

⌉
+ 1
)
− 2 ≥ n2 − 2n +

⌊n
2

⌋
.

For all these mentioned cases, it turned out that there is no drawing of the graph G∗ +
Dn with fewer than n2 − 2n +

⌊ n
2
⌋

crossings, and the proof of Theorem 2 is complete.
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(a) (b) (c)

(d) (e)

Figure 8. Five possible components of the subgraph GD in which there are two adjacent edges with
weights 1. Green, blue, brown, and black correspond to the values 1, 2, 3, and 4, respectively. (a): the
complete graph K3 with edge weights 1, 1, and 2; (b): the complete graph K4 with edge weights 1, 1,
2, 2, 2, and 3; (c): the complete graph K4 with edge weights 1, 1, 1, 2, 2, and 3; (d): the complete graph
K5; (e): the complete graph K6.

5. Conclusions

Into both drawings in Figures 4 and 5, we could add n− 1 or n edges forming paths
Pn, n ≥ 2 or cycles Cn, n ≥ 3 on vertices of Dn with no crossing, respectively. Thus, the
following surprising results are obvious.

Corollary 3. cr(G∗ + Pn) = n2 − 2n +
⌊ n

2
⌋

for n ≥ 2, i.e., cr(G∗ + Pn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

for n even and cr(G∗ + Pn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
− 1 for n odd.

Corollary 4. cr(G∗ + Cn) = n2 − 2n +
⌊ n

2
⌋

for n ≥ 3, i.e., cr(G∗ + Cn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

for n even and cr(G∗ + Cn) = 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
− 1 for n odd.

These results extend already known results of join products of graphs on at most six
vertices with paths and cycles, see [2,5,18,20,26,33–41].
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