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Abstract: Using Banach’s contractive principle and the Laray–Schauder fixed point theorem, we
study the uniqueness and existence of solutions to a nonlinear two-term fractional integro-differential
equation with the boundary condition based on Babenko’s approach and the Mittag–Leffler function.
The current work also corrects major errors in the published paper dealing with a one-term differential
equation. Furthermore, we provide examples to illustrate the application of our main theorems.
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1. Introduction

Let ` ∈ N = {1, 2, 3, · · · }. We consider the uniqueness and existence for the following
nonlinear integro-differential Equation (NI-D equation) with the boundary condition:{

LCDκ
pΨ(ω) + µ Iζ

p Ψ(ω) = Θ(ω, Ψ(ω)), `− 1 < κ ≤ `, ζ ≥ 0, ω ∈ [p, q],
Ψ(p) = Ψ′(p) = · · · = Ψ(`−2)(p) = 0, ψ(`−1)(q) = 0,

(1)

where Ψ is an unknown function, µ is a constant, 0 ≤ p < q < +∞, LCDκ
p is the Liouville–

Caputo fractional derivative of order κ, and Iζ
p is the Riemann–Liouville fractional integral

of order ζ. In particular, for ` = 1, Equation (1) was found to be{
LCDκ

pΨ(ω) + µ Iζ
p Ψ(ω) = Θ(ω, Ψ(ω)), 0 < κ ≤ 1, ζ ≥ 0, ω ∈ [p, q],

Ψ(q) = 0.

Fractional differential and integral equations provide powerful tools in describing
and modeling many phenomenons in various fields of science and engineering, such as
control theory, porous media, memory and electromagnetics [1–4]. There has been a great
deal of research published on the existence and uniqueness of fractional differential and
integral equations involving Riemann–Liouville or Liouville–Caputo operators with initial
conditions or boundary value problems [5–13].

In 2022, Rezapour et al. [14] investigated the existence of solutions for a category of
the multi-point boundary value problem involving a p-Laplacian differential operator with
the generalized fractional derivatives depending on another function. The authors in [15]
considered the existence, uniqueness and stability of a positive solution in relation to a
fractional version of a variable order thermostat model equipped with nonlocal boundary
values in the Caputo sense using Guo–Krasnoselskii’s fixed point theorem on cones.
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In 2021, Turab et al. [16] looked into the existence of solutions for a class of nonlinear
boundary value problems on a hexasilinane graph with applications in chemical formulas.
The authors in [17] dealt with the existence and Ulam–Hyers stability (UHs) of Caputo-type
fuzzy fractional differential equations (FFDEs) with time-delays by applying Schauder’s
fixed point theorem and a hypothetical condition. In 2017, Sun et al. [18] studied the
existence and uniqueness for the following system of FDEs with a boundary value based on
Banach’s contractive principle (BCP) and the Laray–Schauder fixed point theorem (L-SFTP):{

LCDκ
pΨ(ω) = Θ(ω, Ψ(ω)), `− 1 < κ ≤ `, ω ∈ [p, q],

Ψ(ρ)(p) = ωρ, ρ = 0, 1, 2, · · · , `− 2; Ψ(`−1)(q) = ωq,

where ω0, ω1, · · · , ω`−2, ωq are real constants and Θ : [p, q] × R → R is a continuous
function. Their work relies on Lemma 2.4 in the paper, which states the following:

Lemma 1. Let ` − 1 < κ < `, ` = [κ] + 1, where [κ] denotes the integer part of κ and let
Φ : [p, q]→ R be continuous. A function Ψ(ω) is a solution to the FDE with the boundary value{

LCDκ
pΨ(ω) = Φ(ω), ω ∈ [p, q],

Ψ(ρ)(p) = ωρ, ρ = 0, 1, 2, · · · , `− 2; Ψ(`−1)(q) = ωq,
(2)

if and only if

Ψ(ω) =
1

Γ(κ)

∫ ω

p
(ω− ς)κ−1Φ(ς)dς +

[
ωq

(`− 1)!
+

Φ(p)(q− p)κ−`+1

(`− 2)!Γ(κ − `+ 2)

]
(ω− p)`−1

− (ω− p)`−1

(`− 1)!Γ(κ − `+ 1)

∫ q

p
(q− ς)κ−`Φ(ς)dς +

`−2

∑
ρ=0

ωρ

ρ!
(ω− p)ρ.

However, the authors consider this lemma is to be incorrect, and the term

Φ(p)(q− p)κ−`+1

(`− 2)!Γ(κ − `+ 2)
(ω− p)`−1

should not appear in the lemma. Indeed,

Ψ(ω) = µ0 + µ1(ω− p) + · · ·+ µ`−1(ω− p)`−1 +
1

Γ(κ)

∫ ω

p
(ω− ς)κ−1Φ(ς)dς,

plus the boundary condition

Ψ(ρ)(p) = ωρ, ρ = 0, 1, 2, · · · , `− 2; Ψ(`−1)(q) = ωq,

only implies that

µρ =
ωρ

ρ!
, ρ = 0, 1, 2, · · · , `− 2,

µ`−1 =
ωq

(`− 1)!
− 1

(`− 1)!Γ(κ − `+ 1)

∫ q

p
(q− ς)κ−`Φ(ς)dς.

To move forward, we begin by introducing several differential and integral operators,
a Banach space C`[p, q], the Mittag–Leffler function (the M-L function) as well as Babenko’s
approach (BA) in Section 2. Then, we present sufficient conditions for the existence and
uniqueness of the solutions using the BCP and the L-SFPT, with illustrative examples to
show the applications of the main theorems in Section 3. Finally, we summarize the entire
paper in Section 4.
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2. Preliminaries

We define the Banach space C`[p, q] for ` ∈ N as

C`[p, q] =
{

Ψ(ω) : [p, q]→ R such that Ψ(`)(ω) is continuous on [p, q]
}

with the norm
‖Ψ‖ = max

ω∈[p,q]
|Ψ(ω)| < +∞.

Clearly, C`[p, q] ⊂ C[p, q].
The Riemann–Liouville fractional integral Iκ

p of order κ ∈ R+ is defined for function
Ψ(ω) as (see [1,2])

(Iκ
p Ψ)(ω) =

1
Γ(κ)

∫ ω

p
(ω− υ)κ−1Ψ(υ)dυ,

if the integral exists. In particular,

(I0
p Ψ)(ω) = Ψ(ω),

from [19]. In fact,
(I0

p Ψ)(ω) = δ(ω) ∗Ψ(ω) = Ψ(ω),

where δ(ω) is the Dirac delta function, which is an identity in terms of convolution.
Let `− 1 < κ ≤ `. The Liouville–Caputo derivative of fractional order κ ∈ R+ of

function Ψ(ω) is defined as

(LCDκ
pΨ)(ω) = I`−κ

p
d`

dω`
Ψ(ω) =

1
Γ(`− κ)

∫ ω

p
(ω− υ)`−κ−1Ψ(`)(υ)dυ,

if the integral exists.
The two-parameter Mittag–Leffler function [3] is defined by

Eκ,ζ(g) =
∞

∑
ρ=0

gρ

Γ(κρ + ζ)
, g ∈ C, κ, ζ > 0.

BA [20] is a useful instrument in solving differential and integral equations with
initial conditions by treating bounded integral operators as normal variables. The method
itself is close to the Laplace transform while dealing with differential equations with
constant coefficients, but it can be applied to differential and integral equations with
variable coefficients [21,22]. Evidently, it is always necessary to prove the convergence of
solution series, otherwise the solution is not well-defined. To demonstrate this technique
in detail, we present the following example to solve Abel’s integral equation, as well
as Lemma 2, which will play an important role in the subsequent section to define the
nonlinear mappings.

Consider Abel’s integral equation for α > 0 and a constant c

Ψ(ω)− c
Γ(α)

∫ x

0
(x− τ)α−1Ψ(τ)dτ = Φ(ω),

where Φ is a continuous function. Clearly,

Ψ(ω)− c
Γ(α)

∫ x

0
(x− τ)α−1Ψ(τ)dτ = (1− cIα

0 )Ψ(ω) = Φ(ω).
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Treating the factor (1− cIα
0 ) as a normal variable, we come to

Ψ(ω) = (1− cIα
0 )
−1Φ(ω) =

∞

∑
k=0

ck Iαk
0 Φ(ω) = Φ(ω) +

∞

∑
k=1

ck Iαk
0 Φ(ω)

= Φ(ω) +
∞

∑
k=0

ck+1 Iαk+α
0 Φ(ω)

= Φ(ω) + c
∞

∑
k=0

ck

Γ(αk + α)

∫ ω

0
(ω− τ)αk+α−1Φ(τ)dτ

= Φ(ω) + c
∫ ω

0
(ω− τ)α−1

∞

∑
k=0

ck

Γ(αk + α)
(ω− τ)αkΦ(τ)dτ

= Φ(ω) + c
∫ ω

0
(ω− τ)α−1Eα,α(c(ω− τ)α)Φ(τ)dτ,

which is well-defined.
The following lemma is another application of BA.

Lemma 2. Let Φ : [p, q]→ R be continuous. A function Ψ(ω) is a solution of the FDE with the
boundary value{

LCDκ
pΨ(ω) + µIζ

p Ψ(ω) = Φ(ω), ω ∈ [p, q],
Ψ(ρ)(p) = 0, ρ = 0, 1, 2, · · · , `− 2; Ψ(`−1)(q) = 0,

if and only if Ψ(ω) is a solution of the fractional integral equation

Ψ(ω) =
∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ+κ
p Φ(ω)

+
µ

(`− 1)! Γ(κ − `+ 1 + ζ)

∫ q

p
(q− υ)κ−`+ζ Ψ(υ)dυ ·

∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ
p (ω− p)`−1

− 1
(`− 1)! Γ(κ − `+ 1)

∫ q

p
(q− υ)κ−`Φ(υ)dυ ·

∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ
p (ω− p)`−1, (3)

where `− 1 < κ < `, ` = [κ] + 1.

Proof. Applying the operator Iκ
p to both sides of the equation

LCDκ
pΨ(ω) + µIζ

p Ψ(ω) = Φ(ω)

and using the condition Ψ(ρ)(p) = 0, for ρ = 0, 1, 2, · · · , `− 2, we find

Ψ(ω) + µIκ+ζ
p Ψ(ω) = µ`−1(ω− p)`−1 + Iκ

p Φ(ω).

Dedifferentiating the above equation `− 1 times and setting ω = q, we derive that

Ψ(`−1)(q) +
µ

Γ(κ − `+ 1 + ζ)

∫ q

p
(q− υ)κ+ζ−`Ψ(υ)dυ

= µ`−1(`− 1)! +
1

Γ(κ − `+ 1)

∫ q

p
(q− υ)κ−`Φ(υ)dυ.
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Therefore,

µ`−1 =
µ

(`− 1)!Γ(κ − `+ 1 + ζ)

∫ q

p
(q− υ)κ+ζ−`Ψ(υ)dυ

− 1
(`− 1)!Γ(κ − `+ 1)

∫ q

p
(q− υ)κ−`Φ(υ)dυ,

by noting that Ψ(`−1)(q) = 0. In summary, we have(
1 + µIκ+ζ

p

)
Ψ(ω) =

µ (ω− p)`−1

(`− 1)!Γ(κ − `+ 1 + ζ)

∫ q

p
(q− υ)κ+ζ−`Ψ(υ)dυ

− (ω− p)`−1

(`− 1)!Γ(κ − `+ 1)

∫ q

p
(q− υ)κ−`Φ(υ)dυ

+ Iκ
p Φ(ω).

Using BA (treating the factor
(

1 + µIκ+ζ
p

)
as a variable), we come to

Ψ(ω) =
∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ+κ
p Φ(ω)

+
µ

(`− 1)! Γ(κ − `+ 1 + ζ)

∫ q

p
(q− υ)κ−`+ζ Ψ(υ)dυ ·

∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ
p (ω− p)`−1

− 1
(`− 1)! Γ(κ − `+ 1)

∫ q

p
(q− υ)κ−`Φ(υ)dυ ·

∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ
p (ω− p)`−1,

utilizing (
1 + µIκ+ζ

p

)−1
=

∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ
p .

We note that all the above steps are reversible since BA is.
It remains to be shown that all series on the right-hand side of Equation (3) are

convergent in terms of the norm in C[p, q]. Clearly,∥∥∥∥∥ ∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ+κ
p Φ(ω)

∥∥∥∥∥ ≤ ∞

∑
ρ=0
|µ|ρ ‖Φ‖

Γ((κ + ζ)ρ + κ)

∫ ω

p
(ω− υ)(κ+ζ)ρ+κ−1dυ

≤ ‖Φ‖(q− p)κ
∞

∑
ρ=0
|µ|ρ (q− p)(κ+ζ)ρ

Γ((κ + ζ)ρ + κ + 1)

= ‖Φ‖(q− p)κ Eκ+ζ, κ+1(|µ|(q− p)κ+ζ) < +∞,

by the fact that Φ ∈ C[p, q]. Similarly, we have∥∥∥∥∥ ∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ
p (ω− p)`−1

∥∥∥∥∥ ≤ (q− p)`−1
∞

∑
ρ=0

(
|µ|(q− p)κ+ζ

)ρ

Γ((κ + ζ)ρ + 1)

= (q− p)`−1Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
< +∞.

This completes the proof of Lemma 2.
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Remark 1. (i) In particular, for µ = 0, the FDE with boundary value{
LCDκ

pΨ(ω) = Φ(ω), ω ∈ [p, q],
Ψ(ρ)(p) = 0, ρ = 0, 1, 2, · · · , `− 2; Ψ(`−1)(q) = 0,

has the solution

Ψ(ω) = Iκ
p Φ(ω)− (ω− p)`−1

(`− 1)! Γ(κ − `+ 1)

∫ q

p
(q− υ)κ−`Φ(υ)dυ.

(ii) Clearly, the FDE with boundary value{
LCDκ

pΨ(ω) + µIζ
p Ψ(ω) = Φ(ω), ω ∈ [p, q],

Ψ(ρ)(p) = ωρ, ρ = 0, 1, 2, · · · , `− 2; Ψ(`−1)(q) = ωq,

can be solved along the same lines. This is clearly a generalization of Equation (2).
(iii) Lemma 2 still holds for κ = ` using the same computation.

The following theorems will be used in Section 3 to study the existence and uniqueness.

Theorem 1. (Banach’s contractive principle). If T : X → X is a contraction mapping on a
complete metric space (X, d), then there is exactly one solution of T(x) = x for x ∈ X.

Theorem 2. (Leray–Schauder’s alternative). Consider the continuous and compact function T
of a Banach space S into itself. The boundedness of

{x ∈ S : x = λTx for some 0 ≤ λ ≤ 1}

implies that T has a fixed point.

3. Existence and Uniqueness of Solutions

Theorem 3. Assume that Θ : [p, q]×R → R is a continuous function satisfying the Lipschitz
condition for a constant Q ≥ 0:

|Θ(ω,κ1)−Θ(ω,κ2)| ≤ Q|κ1 −κ2|,

where κ1,κ2 ∈ R. Furthermore, we suppose

σ = Q(q− p)κ Eκ+ζ, κ+1

(
|µ|(q− p)κ+ζ

)
+

[
|µ|(q− p)κ+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)
+

Q(q− p)κ

(`− 1)! Γ(κ − `+ 2)

]
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
< 1.

Then, the FD system (1) has a unique solution in the space C`−1[p, q].

Proof. From Lemma 2, we define a nonlinear mapping Υ over the space C`−1[p, q] as

(ΥΨ)(ω) =
∞

∑
ρ=0

(−1)ρµk I(κ+ζ)ρ+κ
p Θ(ω, Ψ(ω))

+
µ

(`− 1)! Γ(κ − `+ 1 + ζ)

∫ q

p
(q− υ)κ−`+ζ Ψ(υ)dυ ·

∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ
p (ω− p)`−1

− 1
(n`− 1)! Γ(κ − `+ 1)

∫ q

p
(q− υ)κ−`Θ(υ, Ψ(υ))dυ ·

∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ
p (ω− p)`−1.
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Clearly,
d`−1

dω`−1 (ΥΨ)(ω) is continuous on [p, q] since `− 1 < κ and Θ is continuous.

Moreover,

‖ΥΨ‖ ≤ ‖Θ(ω, Ψ(ω))‖(q− p)κ Eκ+ζ, κ+1

(
|µ|(q− p)κ+ζ

)
+

|µ| ‖Ψ‖(q− p)κ+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
+
‖Θ(ω, Ψ(ω))‖ (q− p)κ

(`− 1)! Γ(κ − `+ 2)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
,

from the proof of Lemma 2. Clearly,

|Θ(ω, Ψ(ω))| = |Θ(ω, Ψ(ω))−Θ(ω, 0) + Θ(ω, 0)| ≤ |Θ(ω, Ψ(ω))−Θ(ω, 0)|+ |Θ(ω, 0)|
≤ Q|Ψ(ω)− 0|+ |Θ(ω, 0)|,

which infers that

‖Θ(ω, Ψ(ω))‖ ≤ Q‖Ψ‖+ max
ω∈[p,q]

|Θ(ω, 0)| < +∞.

Thus Υ is a mapping from C`−1[p, q] to itself. To prove that Υ is contractive, we notice
that, for Ψ, Ω ∈ C`−1[p, q]

|(ΥΨ)(ω)− (ΥΩ)(ω)| ≤
∣∣∣∣∣ ∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ+κ
p [Θ(ω, Ψ(ω))−Θ(ω, Ω(ω))]

∣∣∣∣∣
+

∣∣∣∣ µ

(`− 1)! Γ(κ − `+ 1 + ζ)

∫ q

p
(q− υ)κ−`+ζ [Ψ(υ)−Ω(υ)]dυ

·
∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ
p (ω− p)`−1

∣∣∣∣∣
+

∣∣∣∣ 1
(`− 1)! Γ(κ − `+ 1)

∫ q

p
(q− υ)κ−`[Θ(υ, Ψ(υ))−Θ(υ, Ω(υ))]dυ

·
∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ
p (ω− p)`−1

∣∣∣∣∣ , I1 + I2 + I3.

Clearly, for I1, we derive that

|I1| ≤ Q‖Ψ−Ω‖
∞

∑
ρ=0
|µ|ρ 1

Γ((κ + ζ)ρ + κ)

∫ ω

p
(ω− υ)(κ+ζ)ρ+κ−1dυ

≤ Q(q− p)κ‖Ψ−Ω‖
∞

∑
ρ=0
|µ|ρ (q− p)(κ+ζ)ρ

Γ((κ + ζ)ρ + κ + 1)

= Q(q− p)κ Eκ+ζ, κ+1

(
|µ|(q− p)κ+ζ

)
‖Ψ−Ω‖.

Regarding I2,

|I2| ≤
|µ|(q− p)κ+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
‖Ψ−Ω‖,

by using ∥∥∥∥∥ ∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ
p (ω− p)`−1

∥∥∥∥∥ ≤ (q− p)`−1Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
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from Lemma 2. Finally,

|I3| ≤
Q(q− p)κ

(`− 1)! Γ(κ − `+ 2)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
‖Ψ−Ω‖.

It follows from the above that

‖ΥΨ− ΥΩ‖ ≤ Q(q− p)κ Eκ+ζ, κ+1

(
|µ|(q− p)κ+ζ

)
‖Ψ−Ω‖

+

[
|µ|(q− p)κ+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)
+

Q(q− p)κ

(`− 1)! Γ(κ − `+ 2)

]
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
·‖Ψ−Ω‖ = σ‖Ψ−Ω‖.

Since σ < 1, Υ is contractive. By BCP, the FD system (1) has a unique solution in the
space C`−1[p, q]. This completes the proof of Theorem 3.

Example 1. The following FDE with boundary value{
CD4.6

0.6Ψ(ω) + 1
20.59 I1.1

0.6 Ψ(ω) = 1.3 sin Ψ(ω) + eω + ω2, ω ∈ [0.6, 2.3],
Ψ(0.6) = Ψ′(0.6) = Ψ′′(0.6) = Ψ′′′(0.6) = 0, Ψ(4)(2.3) = 0,

has a unique solution in the space C4[0.6, 2.3].

Proof. Clearly, the function

Θ(ω,κ) = 1.3 sinκ + eω + ω2

satisfies
|Θ(ω,κ1)−Θ(ω,κ2)| ≤ 1.3|κ1 −κ2|.

Hence, we compute the σ value in Theorem 3 as

σ = 1.3 ∗ 1.74.6
∞

∑
ρ=0

(
1.75.7

20.59

)ρ

Γ(5.7ρ + 5.6)
+

[
1.75.7

20.59
4! Γ(2.7)

+
1.3 ∗ 1.74.6

4! Γ(1.6)

]
∞

∑
ρ=0

(
1.75.7

20.59

)ρ

Γ(5.7ρ + 1)
.

Using online calculators from the site https://www.wolframalpha.com/ (accessed on
25 March 2022), we obtain

1.74.6
∞

∑
ρ=0

(
1.75.7

20.59

)ρ

Γ(5.7ρ + 5.6)
≈ 0.186558,

1.75.7

20.59
4! Γ(2.7)

≈ 0.0269681,
1.74.6

4! Γ(1.6)
≈ 0.535491, and

∞

∑
ρ=0

(
1.75.7

20.59

)ρ

Γ(5.7ρ + 1)
≈ 1.00242.

Therefore σ ≤ 0.9673916 < 1. By Theorem 3, the FD system has a unique solution in
C4[0.6, 2.3]. This completes the proof of Example 1.

We are now ready to present the following theorem regarding existence of solutions to
the FDE (1).

https://www.wolframalpha.com/
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Theorem 4. Assume Θ : [p, q]×R→ R is a continuous and bounded function and

|µ|(q− p)κ+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
< 1.

Then, the FDE (1) with a boundary value has at least one solution in the space C`−1[p, q].

Proof. Again, we consider the nonlinear mapping Υ from C`−1[p, q] to itself by

(ΥΨ)(ω) =
∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ+κ
p Θ(ω, Ψ(ω))

+
µ

(`− 1)! Γ(κ − `+ 1 + ζ)

∫ q

p
(q− υ)κ−`+ζ Ψ(υ)dυ ·

∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ
p (ω− p)`−1

− 1
(`− 1)! Γ(κ − `+ 1)

∫ q

p
(q− υ)κ−`Θ(υ, Ψ(υ))dυ ·

∞

∑
ρ=0

(−1)ρµρ I(κ+ζ)ρ
p (ω− p)`−1.

We first claim (i) that Υ is continuous. Indeed, we find from the proof of Theorem 3

|(ΥΨ)(ω)− (ΥΩ)(ω)| ≤ (q− p)κ Eκ+ζ, κ+1

(
|µ|(q− p)κ+ζ

)
· sup

ω∈[p,q]
|Θ(ω, Ψ(ω))−Θ(ω, Ω(ω))|

+
|µ|(q− p)κ+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
‖Ψ−Ω‖

+
(q− p)κ

(`− 1)! Γ(κ − `+ 2)
Eκ+ζ, 1

(
|c|(b− a)α+β

)
· sup

ω∈[p,q]
|Θ(ω, Ψ(ω))−Θ(ω, Ω(ω))|,

and we deduce that Υ is continuous since Θ is continuous.
(ii) Υ maps bounded sets to bounded sets in C`−1[p, q].
Since Θ is bounded, there exists a constant Z > 0 such that

|Θ(ω, Ψ(ω))| ≤ Z

for all ω ∈ [p, q] and Ψ ∈ C`−1[p, q]. LetH be a bounded set in C`−1[p, q]. Then, there exists
Z1 > 0 such that

‖u‖ ≤ Z1,

for all u ∈ H. Clearly, from the above,

‖Υψ‖ ≤ Z(q− p)κ Eκ+ζ, κ+1

(
|µ|(q− p)κ+ζ

)
+

|µ| Z1(q− p)κ+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
+

Z (q− p)κ

(`− 1)! Γ(κ − `+ 2)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
,

which is uniformly bounded.
(iii) Υ is completely continuous from C[p, q] to itself.
By the Arzela–Ascoli theorem, it remains to be shown that Υ is equicontinuous over

the bounded setH ⊂ C`−1[p, q]. For υ1, υ2 ∈ [p, q] and Ψ ∈ H, suppose that υ1 < υ2. Then,
we have
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|(ΥΨ)(υ2)− (ΥΨ)(υ1)| ≤
∞

∑
ρ=0
|µ|ρ 1

Γ((κ + ζ)ρ + κ)

·
∣∣∣∣∫ υ2

p
(υ2 − υ)(κ+ζ)ρ+κ−1Θ(υ, Ψ(υ))dυ−

∫ υ1

p
(υ1 − υ)(κ+ζ)ρ+κ−1Θ(υ, Ψ(υ))dυ

∣∣∣∣
+

|µ| Z1

(`− 1)! Γ(κ − `+ 1 + ζ)

∫ q

p
(q− υ)κ−`+ζ dυ

∞

∑
ρ=0
|µ|ρ 1

Γ((κ + ζ)ρ)

·
∣∣∣∣∫ υ2

p
(υ2 − υ)(κ+ζ)ρ−1(υ− p)`−1dυ−

∫ υ1

p
(υ1 − υ)(κ+ζ)ρ−1(υ− p)`−1dυ

∣∣∣∣
+

Z
(`− 1)! Γ(κ − `+ 1)

∫ q

p
(q− υ)κ−`dυ

∞

∑
ρ=0
|µ|ρ 1

Γ((κ + ζ)ρ)

·
∣∣∣∣∫ υ2

p
(υ2 − υ)(κ+ζ)ρ−1(υ− p)`−1dυ−

∫ υ1

p
(υ1 − υ)(κ+κ)ρ−1(υ− p)`−1dυ

∣∣∣∣
, I11 + I22 + I33.

Let us estimate I11 first. Clearly,∫ υ2

p
(υ2 − υ)(κ+ζ)ρ+κ−1Θ(υ, Ψ(υ))dυ

=
∫ υ1

p
(υ2 − υ)(κ+ζ)ρ+κ−1Θ(υ, Ψ(υ))dυ +

∫ υ2

υ1

(υ2 − υ)(κ+ζ)ρ+κ−1Θ(υ, Ψ(υ))dυ.

Thus,∫ υ2

p
(υ2 − υ)(κ+ζ)ρ+κ−1Θ(υ, Ψ(υ))dυ−

∫ υ1

p
(υ1 − υ)(κ+ζ)ρ+κ−1Θ(υ, Ψ(υ))dυ

=
∫ υ1

p
[(υ2 − υ)(κ+ζ)ρ+κ−1 − (υ1 − υ)(α+β)k+α−1]Θ(υ, Ψ(υ))dυ

+
∫ υ2

υ1

(υ2 − υ)(κ+ζ)ρ+κ−1Θ(υ, Ψ(υ))dυ.

It follows that, for all ρ ≥ 0,∣∣∣∣∫ υ1

p
[(υ2 − υ)(κ+ζ)ρ+κ−1 − (υ1 − υ)(κ+ζ)ρ+κ−1]Θ(υ, Ψ(υ))dυ

∣∣∣∣
≤ Z

[
(υ2 − p)(κ+ζ)ρ+κ

(κ + ζ)ρ + κ
− (υ1 − p)(κ+ζ)ρ+κ

(κ + ζ)ρ + κ

]
.

By the mean value theorem,

(υ2 − p)(κ+ζ)ρ+κ − (υ1 − p)(κ+ζ)ρ+κ

(υ2 − p)− (υ1 − p)
= [(κ + ζ)ρ + κ]τ(κ+ζ)ρ+κ−1,

where τ ∈ (υ1 − p, υ2 − p). This derives that∣∣∣∣∫ υ1

p
[(υ2 − υ)(κ+ζ)ρ+κ−1 − (υ1 − υ)(α+ζ)ρ+κ−1]Θ(υ, Ψ(υ))dυ

∣∣∣∣ ≤ Z(υ2− υ1)(q− p)(κ+ζ)ρ+κ−1.

In addition, ∣∣∣∣∫ υ2

υ1

(υ2 − υ)(κ+ζ)ρ+κ−1Θ(υ, Ψ(υ))dυ

∣∣∣∣ ≤ Z (υ2 − υ1)
(κ+ζ)ρ+κ

(κ + ζ)ρ + κ

≤ Z(υ2 − υ1)
κ (q− p)(κ+ζ)ρ

(κ + ζ)ρ + κ
.
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Thus,

|I11| =
∞

∑
ρ=0
|µ|ρ 1

Γ((κ + ζ)ρ + κ)

·
∣∣∣∣∫ υ2

p
(υ2 − υ)(κ+ζ)ρ+κ−1Θ(υ, Ψ(υ))dυ−

∫ υ1

p
(υ1 − υ)(κ+ζ)ρ+κ−1Θ(υ, Ψ(υ))dυ

∣∣∣∣
≤ Z(υ2 − υ1)(q− p)κ−1Eκ+ζ, κ

(
|µ|(q− p)κ+ζ

)
+Z(υ2 − υ1)

κEκ+ζ, κ+1

(
|µ|(q− p)κ+ζ

)
.

Let us consider the term I22. Evidently,

|µ| Z1

(`− 1)! Γ(κ − `+ 1 + ζ)

∫ q

p
(q− υ)κ−`+ζdυ =

|µ| Z1(q− p)κ−`+1+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)
,

and

∞

∑
ρ=0
|µ|ρ 1

Γ((κ + ζ)ρ)

·
∣∣∣∣∫ υ2

p
(υ2 − υ)(κ+ζ)ρ−1(υ− p)`−1dυ−

∫ υ1

p
(υ1 − υ)(κ+ζ)ρ−1(υ− p)`−1dυ

∣∣∣∣
= (υ2 − p)`−1 − (υ1 − p)`−1 +

∞

∑
ρ=1
|µ|ρ 1

Γ((κ + ζ)ρ)

·
∣∣∣∣∫ υ2

p
(υ2 − υ)(κ+ζ)ρ−1(υ− p)`−1dυ−

∫ υ1

p
(υ1 − υ)(κ+ζ)ρ−1(υ− p)`−1dυ

∣∣∣∣
= (υ2 − p)`−1 − (υ1 − p)`−1 + |µ|

∞

∑
ρ=0
|µ|ρ 1

Γ((κ + ζ)ρ + κ + ζ)

·
∣∣∣∣∫ υ2

p
(υ2 − υ)(κ+ζ)ρ+κ+ζ−1(υ− p)`−1dυ−

∫ υ1

p
(υ1 − υ)(κ+ζ)ρ+κ+ζ−1(υ− p)`−1dυ

∣∣∣∣.
Like the term I11, we have∫ υ2

p
(υ2 − υ)(κ+ζ)ρ+κ+ζ−1(υ− p)`−1dυ−

∫ υ1

p
(υ1 − υ)(κ+ζ)ρ+κ+ζ−1(υ− p)`−1dυ

=
∫ υ1

p
[(υ2 − υ)(κ+ζ)ρ+κ+ζ−1 − (υ1 − υ)(κ+ζ)ρ+κ+ζ−1](υ− p)`−1dυ

+
∫ υ2

υ1

(υ2 − υ)(κ+ζ)ρ+κ+ζ−1(υ− p)`−1dυ,

and ∣∣∣∣∫ υ1

p
[(υ2 − υ)(κ+ζ)ρ+κ+ζ−1 − (υ1 − υ)(κ+ζ)ρ+κ+ζ−1](υ− p)`−1dυ

∣∣∣∣
≤ (q− p)`−1(υ2 − υ1)(q− p)(κ+ζ)ρ+κ+ζ−1,

as well as ∣∣∣∣∫ υ2

υ1

(υ2 − υ)(κ+ζ)ρ+κ+ζ−1(υ− p)`−1dυ

∣∣∣∣ ≤ (q− p)`−1 (υ2 − υ1)
(κ+ζ)ρ+κ+ζ

(κ + ζ)ρ + κ + ζ

≤ (q− p)`−1(υ2 − υ1)
κ+ζ (q− p)(κ+ζ)ρ

(κ + ζ)ρ + κ + ζ
.
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In summary,

|I22| ≤
|µ| Z1(q− p)κ−`+1+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)

·
[
(υ2 − p)`−1 − (υ1 − p)`−1 + (q− p)`−2+κ+ζ |µ|(υ2 − υ1)Eκ+ζ, κ+ζ

(
|µ|(q− p)κ+ζ

)
+(q− p)`−1|µ|(υ2 − υ1)

κ+ζ Eκ+ζ, κ+ζ+1

(
|µ|(q− p)κ+ζ

)]
.

I33 follows similarly. Therefore, Υ is completely continuous.
(iv) Finally, we prove that the set

Y = {Ψ ∈ C`−1[p, q] : Ψ = βΥΨ for some 0 < β < 1}

is bounded. For any Ψ ∈ Y , Ψ = βΥΨ. This infers that

‖Ψ‖ ≤ ‖ΥΨ‖ ≤ Z(q− p)κ Eκ+ζ, κ+1

(
|µ|(q− p)κ+ζ

)
+

|µ| ‖Ψ‖(q− p)κ+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
+

Z (q− p)κ

(`− 1)! Γ(κ − `+ 2)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
.

Let

σ1 = 1− |µ| (q− p)κ+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
> 0,

which claims that

‖Ψ‖ ≤ 1
σ1
Z(q− p)κ Eκ+ζ, κ+1

(
|µ|(q− p)κ+ζ

)
+

Z (q− p)κ

σ1 (`− 1)! Γ(κ − `+ 2)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
.

Hence, Y is bounded. By L-SFPT, the FDE (1) with boundary value has at least one
solution in the space C`−1[p, q] ⊂ C[p, q]. This completes the proof of Theorem 4.

Example 2. The following FDE with boundary valueCD3.1
1 Ψ(ω)− I1.2

1 Ψ(ω) = 3 cos(ωΨ2(ω)) +
1

1 + ω2 , ω ∈ [1, 2],

Ψ(1) = Ψ′(1) = Ψ′′(1) = 0, Ψ(3)(2) = 0,

has at least one solution in the space C3[1, 2].

Proof. Clearly,

Θ(ω,κ) = 3 cos(ωκ2) +
1

1 + ω2 ,

is a bounded function over [1, 2]×R. By Theorem 4, we need to evaluate the value of

|µ|(q− p)κ+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
=

1
3!Γ(2.3)

∞

∑
ρ=0

1
Γ(4.3ρ + 1)

≈ 0.146604 < 1,

by the online calculator. Therefore, by Theorem 4, the fractional value problem has a
solution in the space C3[1, 2].
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Remark 2. Clearly, from

σ = Q(q− p)κ Eκ+ζ, κ+1

(
|µ|(q− p)κ+ζ

)
+

[
|µ|(q− p)κ+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)
+

Q(q− p)κ

(`− 1)! Γ(κ − `+ 2)

]
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
< 1,

in Theorem 3, we imply that

|µ|(q− p)κ+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
< 1,

in Theorem 4. However, a Lipschitz function over [p, q] × R may not be a bounded function.
Conversely, a bounded function over [p, q]×R may not be a Lipschitz function. Furthermore, it
seems difficult to study the uniqueness of Example 2, since we cannot claim that

Θ(ω,κ) = 3 cos(ωκ2) +
1

1 + ω2 ,

is a Lipschitz function due to the factor κ2.

As a final example, in the following, we discuss both the existence and uniqueness of
a solution simultaneously.

Example 3. The following FDE with boundary value{
CD4.6

0.6Ψ(ω) + 1
20.59 I1.1

0.6 Ψ(ω) = 0.5 sin(ωΨ(ω)) + cos(ω2), ω ∈ [0.6, 2.3],
Ψ(0.6) = Ψ′(0.6) = Ψ′′(0.6) = Ψ′′′(0.6) = 0, Ψ(4)(2.3) = 0,

has a unique solution in the space C4[0.6, 2.3].

Proof. Clearly, the function Θ(ω,κ) = 0.5 sin(ωκ) + cos(ω2) is bounded and satisfies the
condition

|Θ(ω,κ1)−Θ(ω,κ2)| ≤ 1.3|κ1 −κ2|.

It follows from Example 1 that σ < 1. Then,

|µ|(q− p)κ+ζ

(`− 1)! Γ(κ − `+ 2 + ζ)
Eκ+ζ, 1

(
|µ|(q− p)κ+ζ

)
< 1,

in Theorem 4 by Remark 2 . Hence, the system has a solution in the space C4[0.6, 2.3] by
Theorem 4. In addition, the solution is unique by Theorem 3.

4. Conclusions

We studied the uniqueness and existence of solutions to the nonlinear two-term
fractional integro-differential equation with a boundary condition by using Babenko’s ap-
proach, the Mittag–Leffler function, Banach’s contractive principle and the Laray–Schauder
fixed point theorem. The current work also indicated key errors in the paper (Applied
Mathematics, 2017, 8, 312–323) in handling a one-term differential equation. Furthermore,
we provided three examples to demonstrate the application of our main theorems using the
online Mittag–Leffler calculator. Clearly, it would be interesting and challenging to study
the same system with a variable coefficient µ(x).
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