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Abstract: This work presents a methodological framework for the design of a resource-aware super-
visory control system for process networks with model uncertainty and communication resource
constraints. The developed framework aims to balance the objective of closed-loop stabilization
of the overall network with that of meeting the local performance requirements of the component
subsystems while keeping the rate of data transfer between the local control systems to a minimum.
First, a quasi-decentralized networked control structure, with a set of local model-based controllers
communicating with one another over a shared communication medium at discrete times, is designed.
A Lyapunov stability analysis of the closed-loop system is then carried out, and the results are used
to derive appropriate bounds on the local model state estimation errors as well as the dissipation
rates of the local control Lyapunov functions. These bounds are used as stability and performance
thresholds to trigger communication between the local control systems and a higher-level supervisor
that coordinates the transfer of state measurements between the distributed control systems. A breach
of the local stability and performance thresholds generates alarm signals which are transmitted to the
supervisor to determine which subsystems should communicate with one another. The supervisor
employs a composite Lyapunov function to assess the impact of the local threshold breaches on the
stability of the overall closed-loop system. The supervisory communication logic takes account of the
evolution of the local and composite Lyapunov functions in order to balance the stability and local
performance requirements. Finally, the developed framework is demonstrated using a representative
chemical process network and compared with other unsupervised event-based control approaches. It
is shown that the supervisory event-based control approach leads to a more judicious utilization of
network resources that helps improve closed-loop process performance in the presence of unexpected
disturbances and input rate constraints.

Keywords: model-based control; supervisory control; networked control; event-triggered control;
chemical processes

MSC: 93A15; 93C15; 93C57; 93D15

1. Introduction

Modern chemical processing plants comprise of geographically distributed processing
units that are typically arranged in a complex network. The networked structure of
these systems is often the result of the physical interconnections between processing
units through material and energy flows and recycling. These interconnections, which
are increasingly relied upon to address safety, economic and environmental concerns in
process operations, can lead to difficulties in the design and operation of plant-wide control
and supervision systems as the resulting large-scale system may have complex dynamics.
The theoretical and practical challenges associated with this problem have motivated
an extensive and growing body of research work and have led to the development of
numerous methodologies for the control and monitoring of chemical process networks.
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Examples of contributions in this area include methods for the design of centralized
and decentralized control systems (e.g., [1–4]), approaches for the design of multi-scale
control systems (e.g., [5,6]), passivity-based control designs (e.g., [7–9]), multi-agent based
control methodologies (e.g., [10,11]), and optimization-based cooperative and distributed
predictive control methods (e.g., [12–14]).

In addition to handling the complex dynamics induced by physical interactions, the
management of information transfer and communication between the constituent sub-
systems is an increasingly important consideration in the design of supervisory control
systems for process networks. The last two decades have witnessed growing calls from
the industrial and academic communities for the adoption of a new paradigm for pro-
cess operations, referred to as the smart plant paradigm [15,16]. This paradigm calls for
tighter coupling between the decision-making processes across the different plant layers
through real-time information exchange. A key enabling element of this paradigm is the
integration of real-time shared communication networks (such as wireless sensor and
actuator networks) in process monitoring and control systems. The realization that the
deployment of advanced communication technologies in plant-wide control systems not
only leads to substantial economic savings but also enhances the operational flexibility of
the process provides a strong incentive for the adoption of smart plant operations. This
realization has been an important factor in driving the shift from hard-wired dedicated
links to networked control architectures in industrial control systems. With the advent and
adoption of networked control technologies, the component subsystems in a plant become
interconnected not only through material and energy flows, which give rise to the process
network, but also through information flow, which gives rise to the control network.

Notwithstanding the appealing operational and economic opportunities created by net-
worked control systems, it is well understood that the integration of shared communication
networks in general (and wireless networks in particular) in control systems poses funda-
mental challenges. These challenges, which often stem from the inherent limitations on
the computational, processing and communication resources of the shared communication
media, have motivated a plethora of research studies in this area. Comprehensive reviews
of recent advances and challenges in the analysis, synthesis and security of networked
control systems can be found in survey papers [17–23]. On the one hand, maximizing
process performance generally requires increased levels of communication between the
individual subsystems. On the other hand, conserving network resources, which may be
necessary to prolong the network service life and minimize data losses, favors limiting
unnecessary information exchange over the network. Meeting this challenge ultimately
requires carefully balancing the stability and performance needs of the overall system
against the required levels of information exchange and network resource utilization.

An early effort to address the network resource utilization problem for large-scale
process networks was pursued in [24]. This effort led to the development of a model-
based quasi-decentralized control strategy that achieves closed-loop stability with minimal
periodic communication between the constituent subsystems. The main idea was to embed
a set of predictive models within each local control system to estimate the plant states when
communication over the plant-wide network was suspended. The state estimates were
used together with the locally available state measurements to generate the local control
action during periods of communication suspension. To provide the necessary corrective
feedback action, communication was restored at discrete times to allow the transmission
of state measurements which were used to update the states of the embedded models.
A key outcome of that effort was a rigorous characterization of the relationship between
the minimum allowable communication rate, the controller design parameters and the
plant–model mismatch.

In a subsequent study [25], an adaptive event-based communication logic was in-
troduced to manage the information exchange between the local control systems in the
quasi-decentralized control structure. The main idea of this strategy was to suspend commu-
nication for as long as the closed-loop system remained stable, and to allow communication
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only when any of the individual subsystems was on the verge of instability. To realize
this strategy, a stability-based state-dependent alarm threshold was developed for each
subsystem with the aid of an appropriate control Lyapunov function, and used to trigger
communication between the local control systems. Each subsystem monitored its local
state evolution and prompted the other subsystems to transmit their state measurements to
update the corresponding models only when the prescribed alarm threshold was breached.
Compared with the time-triggered periodic communication approach, this feedback-based
communication strategy generally leads to greater operational flexibility and improved
closed-loop performance when responding to unexpected disturbances. However, it also
has the potential to increase the network load, which could exacerbate problems such as
data losses and communication delays when a large number of subsystems attempt to
access the network simultaneously.

To alleviate the potential problem of increased network load, a decentralized commu-
nication strategy was developed in [26–28]. In this approach, an additional model of the
local subsystem dynamics is included and used to monitor the evolution of the model state
estimation error shared in the other plant subsystems. A composite Lyapunov function
for the overall plant is used to obtain transmission thresholds that trigger the broadcast of
state information over the network. Specifically, a local model state estimation error of a
certain subsystem exceeding the local threshold would prompt a broadcast of the local state
measurements to the rest of the plant to maintain closed-loop stability. This approach can
be considered proactive in the sense that a given subsystem broadcasts its information to
the rest of the plant based on a breach of the local transmission threshold, regardless of the
actual state or needs of the other subsystems in the plant. This is in contrast to the adaptive
request-based nature of the prior approach in [25] where, upon breach of the local alarm
threshold, a given subsystem requests measurement updates from the other subsystems.

The broadcast-based nature of the decentralized communication strategy has the ad-
vantage of avoiding the necessity for all subsystems to access the network at the same time.
However, as the local transmission thresholds are designed on the basis of a composite Lya-
punov function, the focus of that approach is limited to enforcing the closed-loop stability
of the plant, without accounting for the performance of the individual subsystems. This
can lead to significant performance degradation in some situations. For example, in the
event that a transient local disturbance results in a transient growth of the local Lyapunov
function (thus deteriorating the local performance) without causing the composite Lya-
punov function to grow, no communication (and no model updates) would be triggered by
the decentralized communication strategy since the stability-based transmission thresholds
are not breached. The lack of communication between the local control systems in this
case makes it impossible to rectify the resulting performance deterioration. Therefore, the
potential benefits of reducing network utilization could be lost, or at least limited, by the
resulting degradation in local process performance.

To address the potential limitations of fully decentralized communication strategies,
a supervisory event-triggered control approach that aims to balance the overall closed-
loop stability and local performance objectives was introduced in [29]. The key idea was
to design a hierarchical control structure in which a family of lower-level model-based
controllers exchange state measurements at discrete times, and a higher-level supervisor
coordinates communication between the local controllers on the basis of an event-triggered
communication logic. The local controllers transmit alarm signals to the supervisor in
the event that certain thresholds on either the local model state estimation error or the
local Lyapuonv function are breached. The supervisor tracks the alarm signals and de-
cides accordingly which subsystems should be allowed to transmit their data over the
plant-wide network.

Building on our prior work, the objectives of the current work are to establish the
theoretical foundation for the supervisory control approach introduced in [29] and to
evaluate its capabilities in reducing network utilization rates in the presence of practical
implementation challenges. On the theoretical front, the current study provides a rigorous
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characterization of the underlying closed-loop stability properties which serve as the
foundation for the development and implementation of the supervisory control logic.
Specifically, a Lyapunov stability analysis of the overall closed-loop system is carried out,
and the results are used to obtain explicit bounds on the local model state estimation errors
and the dissipation rates of the local control Lyapunov functions. These bounds are used as
stability and performance thresholds to trigger communication between the local control
systems on the one hand, and the higher-level supervisor on the other. The supervisory
control logic is designed to address both the stability and performance requirements
as it takes into account the behavior of both the local and composite control Lyapunov
functions. In addition to establishing the theoretical basis for the supervisory control
approach, the current study aims to demonstrate the advantages of this approach over
unsupervised decentralized communication strategies in the presence of unanticipated
external disturbances and input rate constraints. A simulation case study involving a
complex benchmark process example is presented for this purpose.

The remainder of the paper is organized as follows. Following some mathematical
preliminaries in Section 2 on the class of process networks under consideration, a brief
overview of the problem formulation, including the control and communication objectives,
is given. Section 3 then details the design of the lower-level quasi-decentralized networked
control systems and presents an analysis of the closed-loop stability properties. The results
of this analysis are used in Section 4 as the basis for the design and implementation of
the supervisory event-triggered control system. Throughout this paper, mathematical and
physical insights into the meaning and implications of the stability results are provided,
and possible extensions of the results are discussed. Finally, the theoretical results are
illustrated using a simulation case study in Section 5 and conclusions are presented in
Section 6.

2. Mathematical Preliminaries
2.1. Class of Process Networks

In this work, we consider a process network (also referred to as the plant) that consists
of a set of interconnected dynamical subsystems. The dynamics of each subsystem are
governed by a set of continuous-time nonlinear ordinary differential equations of the form:

ẋi = fi(x) + Gi(x)ui, i ∈ I , {1, 2, · · · , q} (1)

where xi = [xi,1 xi,2 · · · xi,nxi
]T ∈ Rnxi is the vector of state variables associated with

the i-th subsystem, nxi is the number of state variables describing the i-th subsystem,
ui = [ui,1 ui,2 · · · ui,nui

]T ∈ Rnui is the vector of manipulated input variables associated
with the i-th subsystem, nui is the number of manipulated inputs for the i-th subsystem,
fi(·) and Gi(·) are nonlinear vector functions which are sufficiently smooth over the domain
of interest which contains the origin in its interior. The notation x is used to refer to the

augmented state vector defined by x = [xT
1 xT

2 · · · xT
q ]

T ∈ R∑
q
i=1 nxi , where q is the number

of interconnected subsystems in the plant.
Defining the augmented vector of manipulated inputs as u = [uT

1 uT
2 · · · uT

q ]
T ∈

R∑
q
i=1 nui and using the notation for the augmented state vector introduced earlier, x, the

dynamics of the overall plant can be represented in the following more compact form:

ẋ = f(x) + G(x)u (2)

where f(·) = [fT
1 (·) · · · fT

q (·)]T and G(·) = diag{Gi(·)}, i ∈ {1, 2, · · · , q}. The dependence
of the functions fi and Gi on the augmented state vector x implies that the dynamics of the
constituent subsystems are coupled through their states. Cases where the dynamics of the
constituent subsystems are coupled through both the states and manipulated inputs can be
considered but are not pursued in this work.
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2.2. Overview of Problem Formulation

We consider a quasi-decentralized networked control structure (similar to the one
proposed in [24]) in which the plant is controlled using a set of local feedback controllers
that are allowed to exchange state measurements over a shared communication network. A
key objective is to keep the rate of information transfer between the local control systems
to a minimum (e.g., to conserve network resources) without compromising closed-loop
stability. To achieve this objective, a model-based control strategy is implemented, whereby
each local controller includes a set of dynamic models that provide estimates of the states
of the plant subsystems. These estimates are used to generate the local control action at
times when cross-communication between the local controllers over the shared network
is suspended. When communication is restored, the model-generated state estimates are
updated using the actual state measurements transmitted over the network. The reliance
on model predictions for some time helps limit the frequency at which corrective feedback
over the network is needed to maintain closed-loop stability.

The main objectives of the quasi-decentralized control system design include (1) the
stabilization of the component subsystems of the plant at (or near) the desired steady state;
and (2) ensuring acceptable closed-loop performance for each subsystem in the presence
of external perturbations and process upsets. These objectives are to be enforced while
simultaneously taking account of the limited resources of the plant-wide communication
network. The problem is addressed through the design and implementation of a hierar-
chical control structure that includes a set of lower-level quasi-decentralized networked
controllers together with a higher-level supervisor that coordinates communication be-
tween the local controllers on the basis of an event-triggered communication logic. To
simplify the development and presentation of the main results, we focus in this work on
the state feedback control problem. Generalizations of the results to address the output
feedback control problem are possible, and the subject of other research work.

3. Networked Model-Based Control Using a Proactive Communication Strategy

In this section, we first describe the design and implementation of the quasi-decentralized
model-based networked control structure referred to in Section 2.2. A closed-loop stability
analysis is then performed, leading to the development of a proactive broadcast-based
communication strategy for managing the information transfer between the local controllers.
This strategy is then augmented and incorporated in the development and implementation
of the supervisory control system in Section 4.

3.1. Design of Local Model-Based Controllers

To facilitate the design of the desired local model-based feedback controllers, we
assume the availability of an uncertain model that captures the dynamics of each subsystem
in the plant. The dynamic model for the i-th subsystem is described by the following system
of nonlinear ordinary differential equations:

˙̂xi = f̂i(x̂) + Ĝi(x̂)ui, i ∈ I (3)

where x̂i = [x̂i,1 x̂i,2 · · · x̂i,nxi
]T ∈ Rnxi is the vector of model states that provide estimates

of the process states associated with the i−th subsystem, and the functions f̂i(·) and Ĝi(·)
are sufficiently smooth nonlinear vector functions that represent the known parts of the
plant dynamics. These functions are related to functions fi(·) and Gi(·) in Equation (1)
through the following relationships:

fi(x) = f̂i(x) + δfi (x) (4a)

Gi(x) = Ĝi(x) + δGi (x) (4b)
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where δfi (·) and δGi (·) are smooth nonlinear vector functions that represent additive
model uncertainties. Without loss of generality, we assume that the origin is an open-loop
equilibrium point of the model of the i-th subsystem (i.e., f̂i(0) = 0).

Introducing the augmented model state vector x̂ = [x̂T
1 x̂T

2 · · · x̂T
q ]

T and the aug-
mented model input vector u = [uT

1 uT
2 · · · uT

q ]
T , an overall model of the plant can be

formulated and cast in the following compact form:

˙̂x = f̂(x̂) + Ĝ(x̂)u (5)

where the augmented vector functions f̂(·) and Ĝ(·) are defined by f̂(·) = [̂fT
1 (·) · · · f̂T

q (·)]T

and Ĝ(·) = diag{Ĝi(·)}, i ∈ I , respectively, and satisfy the following relationships:

f(x) = f̂(x) + δf(x) (6a)

G(x) = Ĝ(x) + δG(x) (6b)

where f̂(0) = 0, δf(·) = [δT
f1
(·) · · · δT

fq
(·)]T and δG(·) = diag{δGi (·)} are the augmented

vectors of model uncertainties which satisfy the following growth bounds:

‖δf(x)− δf(y)‖ ≤ Θf‖x− y‖

‖δG(x)− δG(y)‖ ≤ ΘG‖x− y‖,
(7)

for some positive constants, Θf > 0 and ΘG > 0, for all x, y ∈ Ω, where Ω is a compact set
containing the origin in its interior and defined by:

Ω =
{

x ∈ R∑
q
i=1 nxi : ‖x‖ ≤ M

}
(8)

where M > 0 is a positive constant.
Based on the form of the model considered in Equation (5), several standard methods

for nonlinear controller design can be employed to achieve the closed-loop stabilization
objective (e.g., [30,31]). In the interest of generality, we will not focus on a particular con-
troller synthesis method; instead, we will make the assumption that the desired controllers
are available for implementation. This is formalized in the following assumption.

Assumption 1. Consider the subsystem model in Equation (3). For each i ∈ I , there exists a
nonlinear feedback control law of the form:

ui = ki(x̂), i ∈ I (9)

that (1) satisfies the growth bound:

‖ki(x)− ki(y)‖ ≤ Lki‖x− y‖, (10)

for some positive constant Lki, for all x, y ∈ Ω, where Ω is a compact set defined in Equations (8)
and (2) exponentially stabilizes the closed-loop model of Equations (3) and (9) at the origin.
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Under Assumption 1, standard converse Lyapunov theorems can be applied to estab-
lish, for each subsystem, the existence of a continuously differentiable Lyapunov function
Vi : Rnxi → R+, that satisfies the following inequalities for x̂ ∈ Ω:

ci1‖x̂i‖2 ≤ Vi(x̂i) ≤ ci2‖x̂i‖2 (11a)∥∥∥∥∂Vi
∂x̂i

∥∥∥∥ ≤ ci3‖x̂i‖ (11b)∥∥∥∥∂Vi
∂x̂i

Ĝi(x̂i)

∥∥∥∥ ≤ ci4‖x̂i‖ (11c)

V̇i(x̂i) =
∂Vi
∂x̂i

f̂i(x̂) +
∂Vi
∂x̂i

Ĝi(x̂)ki(x̂) ≤ −αi‖x̂i‖2 (11d)

where cij > 0, j ∈ {1, 2, 3, 4} and αi > 0 are all positive constants. The inequality in
Equation (11d) establishes an upper bound on the time-derivative of the local Lyapunov
function along the trajectories of the local closed-loop model. The parameter αi characterizes
the speed of the exponential decay of the local Lyapunov function and is dependent on the
controller design parameters.

Remark 1. Based on the growth bound assumed in Equation (10), and the fact that
u = [uT

1 uT
2 · · · uT

q ]
T , the following growth bound can be obtained:

‖k(x̂)− k(x)‖ ≤ Lk‖x̂− x‖ = Lk‖e‖, Lk > 0 (12)

for x and x̂ in Ω, where e .
= [eT

1 eT
2 · · · eT

q ]
T , and ei

.
= x̂i − xi is the model state estimation error

which represents the discrepancy between the local state and its model estimate for each subsystem.
The growth bound in Equation (12) will be leveraged in the closed-loop stability analysis presented
in the next section.

Remark 2. It should be noted that the model-based controller of Equation (9), which is designed
to exponentially stabilize the nominal closed-loop model, does not require explicit knowledge of the
model uncertainty bounds. Knowledge of the uncertainty bounds, however, is needed to assess the
robustness of the model-based controller when implemented on the plant, which allows the derivation
of precise conditions that guarantee closed-loop stability in the presence of plant–model mismatch
(see the analysis in Section 3.2). For further results on the analysis and control of uncertain systems,
the reader is referred to the recent works in [32–34].

Remark 3. A key difference between the networked control structure considered here and the one
presented in [24] is the fact that each local control system here includes not only copies of the models
of the other subsystems in the plant, but also an additional model of its own dynamics. As a result,
the control action generated by the local controller in Equation (9) is computed using the state
estimates generated by the models of all the plant subsystems, including those generated by the local
model (i.e., x̂i), which are used in lieu of the locally available state measurements, xi. The choice to
use x̂i, rather than xi directly, is made to ensure that all closed-loop models embedded in a given
subsystem are identical to—and are driven by the same inputs as—the models embedded in all other
subsystems. This ensures that the state of a given closed-loop model evolves in exactly the same way
in all plant subsystems. This in turn allows making inferences about the evolution of the model
state estimation errors in a given subsystem by monitoring these errors directly in other subsystems.
As discussed in the next subsection, this will facilitate the development and implementation of the
decentralized broadcast-based communication strategy.

3.2. Closed-Loop Stability Analysis under Plant–Model Mismatch

The objective of this section is to obtain precise conditions that guarantee closed-loop
stability when the model-based controllers of Equation (9) are implemented on the plant
of Equation (2). The results of this analysis are then used in the following subsection to
devise a proactive event-based communication strategy that ensures closed-loop stability
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with minimal communication. To facilitate the closed-loop stability analysis, we introduce

a composite Lyapunov function V : R∑
q
i=1 nxi → R+ which has the form

V(x) =
q

∑
i=1

Vi(xi), (13)

where Vi is the local Lyapunov function associated with the i-th subsystem. We also
assume that the origin is an equilibrium point for both the plant and the model, i.e.,
fi(0) = f̂i(0) = 0 for all i, which is true when the model uncertainties vanish at the origin,
i.e., δf(0) = δG(0) = 0 (see Remark 6 for a discussion of the case when the uncertainties
are non-vanishing). Under this assumption, and from Equation (7), it can be shown that
the functions δf(x) and δG(x) satisfy the following bounds over the compact set Ω:

‖δf(x)‖ ≤ Θf‖x‖, ‖δG(x)‖ ≤ ΘG‖x‖ (14)

Theorem 1 below provides a precise characterization of the closed-loop stability properties.

Theorem 1. Consider the closed-loop system described by Equations (2), (5) and (9), for which
Assumption 1 holds, and assume that the model uncertainties satisfy Equation (14) over the
compact set Ω defined in Equation (8). If the local model state estimation error defined by ei(t) =
x̂i(t)− xi(t) satisfies the following bound for all t ≥ 0:

‖ei(t)‖ ≤ ε‖xi(t)‖, ε =
α− 2(c′3Θf + c3ΘGLk)

2(c4 + c3ΘG)Lk
(15)

where α = min
i∈I
{αi} > 0, c′3 = ∑

q
i=1 ci3 > 0, c3 = Mc′3 > 0, and c4 = ∑

q
i=1 ci4 > 0, then the

origin of the closed-loop system is exponentially stable.

Proof. Substituting the controller of Equation (9) into the subsystem of Equation (1) and
evaluating the time-derivative of the composite Lyapunov function V(x) along the trajecto-
ries of the closed-loop system yields:

V̇(x) =
q

∑
i=1

V̇i(xi)

=
q

∑
i=1

∂Vi
∂xi

fi(x) +
q

∑
i=1

∂Vi
∂xi

Gi(x)ki(x̂)

(16)

Using the relationships in Equation (6), the right-hand side in Equation (16) can be
expressed in terms of the uncertainties as follows:

V̇(x) =
q

∑
i=1

∂Vi
∂xi

f̂i(x) +
q

∑
i=1

∂Vi
∂xi

Ĝi(x)ki(x)

+
q

∑
i=1

∂Vi
∂xi

δfi (x) +
q

∑
i=1

∂Vi
∂xi

δGi (x)ki(x̂)

+
q

∑
i=1

∂Vi
∂xi

Ĝi(x)[ki(x̂)− ki(x)]

(17)

In view of Equation (11d), the first two terms on the right-hand side in
Equation (17) satisfy:
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q

∑
i=1

∂Vi
∂xi

f̂i(x) +
q

∑
i=1

∂Vi
∂xi

Ĝi(x)ki(x) ≤
q

∑
i=1
− αi‖xi‖2

≤ −α
q

∑
i=1
‖xi‖2 = −α‖x‖2

(18)

where α = min
i∈I
{αi} > 0 and we used the fact that ∑

q
i=1 ‖xi‖2 = ‖x‖2.

Using the bounds in Equation (11b,c) together with Equation (12), the third and fourth
terms on the right-hand side in Equation (17) can be bounded as follows:

q

∑
i=1

∂Vi
∂xi

δfi (x) +
q

∑
i=1

∂Vi
∂xi

δGi (x)ki(x̂) ≤
q

∑
i=1

∥∥∥∥ ∂Vi
∂xi

∥∥∥∥∥∥δfi (x)
∥∥+ q

∑
i=1

∥∥∥∥ ∂Vi
∂xi

∥∥∥∥∥∥δGi (x)
∥∥‖ki(x̂)‖

≤
q

∑
i=1

ci3‖xi‖‖δf(x)‖+
q

∑
i=1

ci3‖xi‖‖δG(x)‖‖k(x̂)‖

≤ c′3Θf‖x‖2 + c3ΘGLk‖x‖‖x̂‖

≤ (c′3Θf + c3ΘGLk)‖x‖2 + c3ΘGLk‖x‖‖e‖

(19)

where c′3 = ∑
q
i=1 ci3 > 0, c3 = Mc′3 > 0, and we have used the fact that ‖xi‖ ≤ ‖x‖,

‖δfi (x)‖ ≤ ‖δf(x)‖, ‖δGi (x)‖ ≤ ‖δG(x)‖, ‖ki(x̂)‖ ≤ ‖k(x̂)‖, and ‖x̂‖ ≤ ‖x‖+ ‖e‖, along
with the growth bounds in Equations (12) and (14).

To upper bound the last term on the right-hand side of Equation (17), we make use of
Equations (11c) and (12) to obtain:

q

∑
i=1

∂Vi
∂xi

Ĝi(x)[ki(x̂)− ki(x)] ≤
q

∑
i=1

∥∥∥∥∂Vi
∂xi

Ĝi(x)
∥∥∥∥‖ki(x̂)− ki(x)‖

≤
q

∑
i=1

ci4‖x‖‖k(x̂)− k(x)‖

≤ c4Lk‖x‖‖e‖

(20)

where c4 = ∑
q
i=1 ci4 > 0.

Combining Equations (18)–(20), and after some additional manipulations, we obtain
the following bound on the time-derivative of the composite Lyapunov function:

V̇(x) ≤ −α

2
‖x‖2 − (c4 + c3ΘG)Lk‖x‖(ε‖x‖ − ‖e‖) (21)

where ε is defined in Equation (15). If Equation (15) holds for all ‖ei‖, i ∈ I , then from the
definition of the norm, we conclude that

‖ei‖ ≤ ε‖xi‖ ∀ i =⇒ ‖e‖2 =
q

∑
i=1
‖ei‖2 ≤

q

∑
i=1

ε2‖xi‖2 = ε2‖x‖2

=⇒ ‖e‖ ≤ ε‖x‖
(22)

When the above bound is substituted into Equation (21), we finally obtain V̇(x) ≤
− α

2‖x‖2, which implies that the closed-loop system is exponentially stable at the origin.
This completes the proof.

3.3. Proactive Broadcast-Based Communication Strategy

The result of Theorem 1 establishes the fact that closed-loop stability is guaranteed
if the local model state estimation error stays below a certain threshold. This threshold is
time-varying and is dependent on the evolution of the local state, the choice of the controller,
and the size of the plant–model mismatch. This implies that, if this threshold were to be
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breached at some time (due, for example, to an external perturbation), closed-loop stability
can be maintained if the error is reset to zero, which can be achieved by updating the model
state at that time. Based on this result, an event-based communication strategy can be
devised to determine when a given subsystem should communicate (broadcast) its state
measurement to update its model which is embedded in all other subsystems. The idea is
to continuously monitor the state, xi, and the model state estimation error, ei, locally within
each subsystem, and only broadcast the local state measurement when the local model
state estimation error breaches the threshold. This event-based strategy can be represented
by the following logic:

If ‖ei(tk)‖ > ε‖xi(tk)‖, then x̂i(t+k ) = xi(tk) (23)

where t+k refers to the time instance immediately following the threshold breach. Broadcast-
ing the local state measurement at this time to the rest of the plant resets the estimation error
associated with the model of the broadcasting subsystem everywhere in the plant. This
ensures that Equation (22) is satisfied, which, in turn, ensures that the time-derivative of
the composite Lyapunov function along the closed-loop plant trajectories remains negative-
definite, i.e., V̇(x(t+k )) < 0.

This communication strategy is considered proactive in the sense that a given subsys-
tem does not wait to be prompted by other subsystems to transmit its state measurement
over the network; instead, it initiates communication by broadcasting the necessary data
when triggered locally. The local trigger is the breach of the model state estimation error
threshold. Recall that, by design of the quasi-decentralized networked control structure,
all subsystems have the same copies of the closed-loop models describing the plant sub-
systems, and the states of those models evolve in exactly the same way. Therefore, the
estimation error associated with the model of the i-th subsystem is the same everywhere,
which implies that if this error breaches its threshold at some time within the i-th subsystem,
it can be inferred that it also breaches the same threshold in all other subsystems at the
same time. The ability to make this inference is important because the i-th model state
estimation error can only be tracked and evaluated locally within the i-th subsystem (since
xi is only available to the i-th control system during periods of communication suspension);
however, closed-loop stability requires that this error be reset to zero in all subsystems.
Therefore, by locally monitoring ei and broadcasting xi at the times that the threshold is
exceeded, we can ensure that ei is globally reset to zero in all subsystems.

A key parameter that influences the implementation of the communication strategy
suggested by Equation (23) is the threshold coefficient, ε. For this strategy to be feasible
and useful in achieving the objective of limiting the rate of communication between the
plant subsystems, ε must be positive; otherwise, the threshold will be breached all the time,
leading to sustained (and possibly unnecessary) communication. An examination of the
expression defining ε in Equation (15) shows that this coefficient is positive if and only if
the following condition is satisfied:

α > 2(c′3Θf + c3ΘGLk)

Recall that parameter α quantifies the nominal closed-loop stability margin enforced
by the model-based controllers, while the parameters Θf and ΘG represent the size of the
plant–model mismatch. The above condition implies that closed-loop stability requires
that the size of the plant–model mismatch be small enough relative to the stability margin
enforced by the controllers. This reflects a fundamental limitation that model uncertainty
imposes on the ability of the model-based controllers to stabilize the uncertain closed-loop
system. As the plant–model mismatch increases in magnitude (in the sense that Θf and ΘG
are larger), the threshold coefficient becomes smaller. In the limit, as Θf and ΘG approach
zero, the threshold coefficient is guaranteed to be positive.

The threshold coefficient, ε, is an important design parameter that requires careful
consideration since it impacts the communication frequency. Specifically, a larger ε indicates
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that it is less likely that the threshold will be breached (for a given ‖xi‖) and that model
state updates would have to be less frequently performed. On the other hand, the smaller ε
is, the more likely it is that the threshold will be breached and the more frequently model
state updates may be needed. Therefore, from a communications savings standpoint, it
is desirable to maximize ε. Based on the expression in Equation (15), ε can possibly be
increased by increasing α which may require the design of a more aggressive controller.
However, the maximization of ε is ultimately limited by the size of the uncertainty.

Remark 4. The proactive broadcast-based communication strategy described in this section resem-
bles the decentralized communication strategy proposed in [27] in that the broadcast trigger for
each subsystem is based on monitoring the local conditions (i.e., the local state and local model state
estimation error). An important difference, however, is that the threshold coefficient in Equation (15)
is designed to take account of the model uncertainty bounds in all subsystems, whereas in [27], the
threshold coefficient is based on the local model uncertainty bounds.

It should be emphasized that the requirement to have the local model state estimation
error for each subsystem to satisfy the condition of Equation (15) is only sufficient—but not
necessary—to ensure the stability of the overall closed-loop system. It is possible, for exam-
ple, to have one or more of the local model state estimation errors exceed their respective
thresholds at some time without jeopardizing the evolution of the composite Lyapunov
function, in the sense that V̇(x) remains negative-definite at that time. Model state updates
in such situations would be deemed unnecessary from a stabilization standpoint, and the
broadcast-based communication strategy described in this section could possibly lead to
an over-utilization of network resources. An alternative approach could be to trigger com-
munication based on the behavior of the composite Lyapunov function instead. However,
this behavior does not necessarily predict the behavior of the local Lyapunov functions,
which can be used as indicators of local performance. For example, it is possible for a
given local Lyapunov function, Vi(xi), to experience some limited transient growth during
a certain period of time due to a local disturbance without causing an increase in V(x) if
the dissipation rates of the other local Lyapunov functions are large enough to compensate
for the increase in Vi(xi). In such cases, updating the model states may be necessary to
ensure acceptable performance.

The above considerations suggest that the broadcast-based communication strategy
alone may be insufficient to balance the objectives of minimal network resource utilization
on the one hand, and maintaining acceptable local performance, on the other. The next
section describes how this balance can be achieved by means of a supervisory control
approach that incorporates the broadcast-based communication strategy and supervises its
implementation.

4. Development and Implementation of Supervisory Control Logic

Figure 1 is a schematic representation of the proposed hierarchical supervisory event-
triggered control structure for a process network comprised of three subsystems. Unlike
the decentralized broadcast-based communication strategy where the decision to transmit
state measurements over the network is made locally, the supervisor is introduced here to
coordinate the transfer of state measurements between the various subsystems. The local
controllers send alarms to the supervisor, which uses logical operations to determine which
models—if any—should be updated at any given time, taking into account the overall
stability and performance objectives.
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Figure 1. A schematic representation of the supervisory event-triggered control structure for a process
network comprised of three subsystems.

Three types of event alarms are considered in the implementation of the supervisory
control logic. These are: a local instability alarm, a model state estimation error alarm,
and an emergency alarm. First, the evolution of the local Lyapunov function, Vi(xi(t)),
is monitored by each local control system, and an instability alarm is reported to the
supervisor any time that Vi(xi(t)) is on the verge of increasing, which is taken as an
indicator of potentially unstable behavior. This logic is represented as follows:

If V̇i(xi(tk)) ≥ 0, then IA(tk) = 1 (24)

where IA ∈ {0, 1} is a binary variable that represents the status of the local instability
alarm. It takes a value of zero when no alarm is reported to the supervisor and a value
of 1 when an alarm is reported. Note that a local instability alarm reported by a given
subsystem implies that the state of that subsystem has the potential to exhibit unstable
behavior, not that the closed-loop system is necessarily unstable.

Second, the local model state estimation error, ei(t), is monitored by each control
system, and a model state estimation error alarm is reported to the supervisor at any time
that ei breaches the threshold given in Equation (15). This logic is described as follows:

If ‖ei(tk)‖ > ε‖xi(tk)‖, then MEA(tk) = 1 (25)

where MEA ∈ {0, 1} is a binary variable that represents the status of the model state
estimation error alarm. It takes a value of zero when no alarm is reported, and a value of 1
when an alarm is reported to the supervisor. Note that, in the proactive communication
strategy described in the previous section, this event would trigger an immediate broadcast
of the local state measurement over the network. In the supervisory control approach,
however, only an alarm is transmitted to the supervisor, which must weigh the appropriate
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stability and performance considerations before making a decision as to whether the
alarm-reporting subsystem should be allowed to access the network and broadcast its data.

The third type of event alarms considered is an emergency alarm, which is com-
municated to the supervisor once any of the process states (e.g., temperature, pressure,
composition) breach certain bounds. Such bounds are typically imposed to enforce certain
safety requirements or product quality specifications. One way to describe this event is
as follows:

If ‖xi(tk)‖ > δi, then EA(tk) = 1 (26)

where δi is the desired bound on the local state and EA is a binary variable that represents
the status of the emergency alarm. It takes a value of zero when no alarm is reported and a
value of 1 when an alarm is reported to the supervisor.

In the remainder of this section, we consider several possible combinations of event
alarms that can be received by the supervisor, and describe the appropriate logical decision
that the supervisor makes in each case. It is assumed that the communication links between
the supervisor and the local control systems are ideal in the sense that network-induced
transmission delays and data losses are negligible.

4.1. Case I: No Alarm Signals Reported to the Supervisor (IA = 0, MEA = 0, EA = 0)

This case represents an ideal scenario where (1) all local Lyapunov functions are
decreasing under the respective model-based controllers (consistent with the expected
local performance and stability requirements); (2) all model state estimation errors stay
below the respective thresholds (consistent with the overall stable behavior of the plant
as captured by the composite Lyapunov function); and (3) no safety or product quality
specifications are violated. In this case, model state updates are not needed and, as a result,
the supervisor’s decision is to suspend communication over the network.

4.2. Case II: Only Local Instability Alarms Reported to the Supervisor (IA = 1, MEA = 0, EA = 0)

This case represents a scenario where the stability of at least one subsystem is poten-
tially in jeopardy, but none of the model state estimation error thresholds are breached.
This scenario is possible in the event that a local disturbance causes the Lyapunov function
for a given subsystem to grow for some time, but this growth is more than offset by the
dissipation of the other Lyapunov functions, resulting in a net decay of the composite
Lyapunov function. Given that no model state estimation error alarms are reported in
this case, the overall closed-loop stability of the plant is not jeopardized as guaranteed
by the result of Theorem 1. Consequently, no model state updates are needed, and the
supervisor’s decision is to suspend communication over the network. Note that while it
may not be possible for the supervisor to identify the cause of the local instability alarms
(for example, which subsystems experienced large enough model state estimation errors to
cause growth in the Lyapunov functions of the alarm-reporting subsystems), this knowl-
edge is not required for the supervisor’s decision-making process. Furthermore, if this
combination of alarm signals persists and model updates continue to be suspended, it is
possible that the subsystems reporting the alarms may recover over time.

4.3. Case III: Supervisor Receives Model State Estimation Error Alarms Only (IA = 0, MEA = 1,
EA = 0)

In this case, at least one of the plant subsystems reports an alarm to the supervisor
indicating a breach of the local model state estimation error threshold; however, no local
instability alarms are reported by any of the plant subsystems. While a breach of the speci-
fied threshold could signal a potential problem, the fact that the local Lyapunov functions
are all decreasing (as indicated by the absence of any local instability alarms) implies that
the overall closed-loop system is stable since the composite Lyapunov function is also
decreasing at this time. Therefore, no model state updates are necessary and the supervi-
sor suspends information transfer over the network. In such situations and by avoiding
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these unnecessary updates, the supervisory control approach offers an advantage over
unsupervised broadcast-based approaches (e.g., [27]) in which the subsystem breaching the
estimation error threshold automatically transmits its state to update its model everywhere
in the plant.

4.4. Case IV: Supervisor Receives Both Local Instability and Model State Estimation Error Alarms
(IA = 1, MEA = 1, EA = 0)

In this scenario, the fact that the supervisor receives a model state estimation error
alarm indicates that the estimation error in at least one subsystem is becoming excessively
large. Furthermore, the fact that a local instability alarm is reported to the supervisor
indicates that the stability of one or more subsystems is potentially threatened in the sense
that the local Lyapunov functions of those subsystems are on the verge of increasing. To
address this scenario, the supervisor only prompts the subsystems reporting the model
state estimation error alarms to broadcast their state measurements over the network to
update their models everywhere and ensure closed-loop stability. Note that restoring
communication at this time ensures the continued decay of the composite Lyapunov
function, but is not designed to necessarily help (at least not immediately) reverse the
detected growth in the local Lyapunov functions since the reported model state estimation
error threshold breaches may not be the direct cause for the reported local instability alarms.
A causal connection between the two events, however, is not needed for the supervisor to
take action. The supervisor’s main objective is to determine whether a given subsystem
needs to transmit its data over the network at the time the alarms are reported and to
act accordingly.

4.5. Case V: Supervisor Receives Emergency Alarms (EA = 1)

This case includes situations where the local state breaches a certain closed-loop perfor-
mance bound causing an unacceptable level of performance degradation. The supervisor’s
decision in this case is to prompt all subsystems to transmit their data over the network
so that all models are updated everywhere in the plant. An example of this is when a
given local Lyapunov function begins to increase at some time (e.g., due to an external
disturbance), but then, as the supervisor decides not to update any of the models (see
Section 4.2), the growth in the local Lyapunov function persists afterwards, causing some
desired performance criterion to be violated. An alarm is triggered in this case and sent
to the supervisor to report an emergency situation. To maintain the desired closed-loop
performance, the supervisor allows all subsystems to communicate with each other to
ensure that all models are updated.

An examination of Case V shows that it generally encompasses four possible alarm
combinations depending on whether the local instability or model state estimation error
alarms are reported along with the emergency alarms. However, among these four, the
two combinations with “IA = 0, MEA = 0, EA = 1” and “IA = 0, MEA = 1, EA = 1” are not
meaningful. The reason is the fact that, by definition, a local instability alarm is issued
whenever the local state is on the verge of escaping a certain neighborhood of the operating
steady state. Therefore, an emergency alarm cannot be triggered before a local instability
alarm is issued since a breach of the performance bound cannot take place until after the
state has escaped the desired neighborhood of the steady state.

The other remaining alarm combinations include “IA = 1, MEA = 0, EA = 1” and
“IA = 1, MEA = 1, EA = 1.” In both cases, the supervisor prompts plant-wide communi-
cation between all subsystems to avert instabilities and maintain the desired closed-loop
performance. The first combination (where IA = 1, MEA = 0, EA = 1), however, is of partic-
ular significance since it showcases some of the advantages that the supervisory control
strategy has over unsupervised decentralized communication strategies. This combination
represents an event where the local state trajectory escapes some desired region around the
operating steady state without the supervisor receiving any model state estimation error
alarms. By prompting all subsystems to exchange their state measurements to update all
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models, the supervisor is able to prevent possible performance deterioration. However,
in the unsupervised communication approach, no model updates would be triggered
in this case (since no model state estimation error alarms are reported), thus leading to
performance deterioration.

Remark 5. In the proposed supervisory control approach, the local control systems are required to
communicate with the supervisor each time any of the alarm thresholds are breached. However, what
is communicated at those times are the alarm signals only—not the full-state measurements of the
constituent subsystems. Whether the state measurements need to be exchanged over the network
is dependent on what the appropriate supervisory logic for the given combination of alarms is. In
the unsupervised decentralized broadcast-based communication approach, on the other hand, the
full-state measurements are always transmitted over the network whenever the local model state
estimation error threshold is breached.

Remark 6. As indicated earlier, the supervisory control approach described in this section was
developed under the assumption that the model uncertainties are vanishing. The results can be
extended to address the problem of non-vanishing uncertainties. Specifically, one can employ similar
Lyapunov calculations to establish new bounds on the dissipation rates of the local Lyapuonv
functions and the model state estimation errors that take account of the non-vanishing nature of
the uncertainties. These bounds can then serve as new alarm thresholds and be used to adapt the
supervisory logic for the various alarm combinations considered previously. In addition to alarm
threshold modifications, a key difference between the two cases lies in the type of closed-loop stability
that can be enforced. Whereas exponential stability can be achieved under vanishing uncertainties,
only ultimate boundedness of the closed-loop state can be enforced under non-vanishing uncertainties.
In the latter case, the closed-loop state can be made to converge in finite time to a small terminal
neighborhood of the origin. The existence of a terminal set needs to be taken into account in
the implementation of the supervisory control approach. Specifically, the fact that no guarantees
can be made about the dissipation of the Lyapunov function within the terminal set (even when
continuous communication is allowed) suggests that the alarm thresholds developed on the basis of
those guarantees are not an appropriate basis for the implementation of the supervisory logic inside
the terminal set. One way to address this problem is to locate where the state is at any given time
and apply the newly adapted supervisory logic only at the times that the closed-loop state lies outside
the terminal set. Once the closed-loop state is within the terminal set, however, communication is
suspended until (and unless) the closed-loop state attempts to escape the terminal set.

5. Case Study: Application to a Reactor-Separator Network

The objective of this section is to demonstrate an application of the supervisory event-
triggered control strategy described in the previous section to a representative chemical
process network that consists of a cascade of two continuous stirred tank reactors (CSTRs)
connected in series with a flash separator, as shown in Figure 2. The following process
dynamic model can be obtained by applying standard material and energy balances [12]:
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where Tj, CAj, Qj, and Vj are, respectively, the temperature, the reactant concentration, the
rate of heat input, and the volume of the j-th vessel, for j ∈ {1, 2, 3}; CBj and CCj denote the

product concentrations; Ri(Tj, CAj) = −4Hi
ρCp

kie
−Ei/RTj CAj and Gi(Tj, CAj) = e−Ei/RTj CAj,

are the reaction rate expressions for the first and second reactions, respectively; Fj0 denotes
the flow rate of a fresh feed stream associated with the j-th vessel, with temperature Tj0
and reactant concentration CAj0; Fj denotes the flow rate of the outlet stream of the j-th
vessel; Fr is the recycle flow rate; 4H, ki, Ei, i ∈ {1, 2}, are, respectively, the enthalpies,
pre-exponential constants and activation energies of the two reactions; Cp and ρ denote the
heat capacity and density, respectively; and Hvap is the heat of vaporization.

The control problem under consideration is to stabilize the process near the open-loop
unstable steady state (T1 = 369.6 K, T2 = 435.3 K, T3 = 435.3 K) using the heat transfer
rates, Qj, j ∈ {1, 2, 3}, as the manipulated inputs. This objective is to be achieved while
keeping the rate of measurement transfer between the three subsystems to a minimum. To
address the problem, we initially synthesized, and properly tuned, for each subsystem, a
nonlinear Lyapunov-based feedback controller to achieve the stabilization objective under
continuous communication between the plant subsystems. Extensive simulations of the
closed-loop system were performed, for various initial conditions, to verify that the three
controllers robustly stabilize the closed-loop system around the operating steady state.

To address the problem when state measurements are transmitted only at discrete
times over plant-wide communication network, uncertain models of all three subsystems
were included in each local control system. The heats of reactions were considered to be
the uncertain parameters in each model. As noted in Remark 3, having each unit include a
copy of its own model enables the unit to track its own model state estimation error in all
subsystems. Taking subsystem 1 as an example, in the control system of CSTR 1, models of
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units 1, 2, and 3 (i.e., CSTR 1, CSTR 2, and the flash vessel) are all embedded. An estimate
of x1 is provided by a model of the form:

˙̂x1 = f̂1(x̂1, x̂2, x̂3) + Ĝ1u1(x̂1, x̂2, x̂3)

Note that even though it is assumed that local measurements are transmitted to the
local controller via dedicated links, meaning x1 is continuously accessible to controller 1, x̂1
is used for controller implementation instead of x1 for the purpose of having the closed-loop
model of CSTR 1 to be identical in all three units. Controller 1 computes its model state
estimation error by comparing x̂1 and x1. When the model of CSTR 1 is updated at some
time ts, we have x̂1(ts) = x1(ts), and therefore e1(ts) = 0 in all subsystems.

In the remainder of this section, we present an assessment of the performance of the
proposed supervisory control approach under different scenarios. We start in Section 5.1,
where the implementation of the supervisory control logic is illustrated for a case when an
unexpected disturbance in the feed composition takes place. Section 5.2 then presents a
comparison between the performances of the supervisory control approach and the unsu-
pervised broadcast-based approach for a case when an unexpected disturbance in the feed
temperature occurs. Finally, Section 5.3 evaluates the performance of both the supervised
and unsupervised communication strategies when input rate constraints are considered.

10
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20
F
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3
Q

rF

1
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Figure 2. An example process network comprised of two continuous stirred tank reactors and a
flash separator.

5.1. Implementation of Supervisory Control Approach under Disturbances

In this part, we assess the effectiveness of the supervisory controller in meeting
the control and communication objectives when unanticipated external disturbances are
introduced. To this end, it was first verified that, in the absence of external disturbances, the
local controllers stabilize the closed-loop system near the desired steady state. To simulate
external disturbances, a pulse disturbance in the inlet concentration of the reactant species,
where CA10 drops from 4.0 Kmol/m3 to 3.8 Kmol/m3, was introduced for all times in the
interval t ∈ [1, 2] h.

Figure 3 depicts the evolution of the closed-loop reactor temperature and reactant
concentration profiles for CSTR 1. The disturbance’s impact on the closed-loop system can
be seen in Figure 3b, where following the onset of the disturbance, the reactant concentration
deviates from the desired operating steady state for some time until the disturbance is
over, at which time the reactant concentration is gradually restored to the desired operating
point. It can be seen from Figure 3a that the reactor temperature, which exhibits faster
closed-loop dynamics, is not significantly impacted by the disturbance.
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Figure 3. Evolution of the closed-loop temperature (a) and the reactant concentration (b) in CSTR 1 un-
der the supervisory control approach in the presence of a pulse disturbance in the feed concentration.

Figure 4 shows the frequency and types of alarms that the supervisor receives—as
well as the corresponding network load—during a representative time interval following
the onset of the disturbance, [1.094, 1.1] h. Here, the network load at each time is defined as
the number of subsystems that transmit their measurements over the network at that time
(i.e., the units that are actively utilizing the network). For example, at time t = 1.0946 h, the
supervisor receives both model state estimation error and local instability alarms, but no
emergency alarms, as shown by the top three plots in Figure 4. Based on the supervisory
control logic presented in Section 4.4, the supervisor prompts the subsystem reporting the
model state estimation error alarm to send its measurements over the network to update
its model in all three subsystems. The network load plot shows that one model is updated.

Figure 4. Status of the alarm signals showing the times when the various event alarms are reported to
the supervisor and the resulting network load when the supervisory event-triggered communication
strategy is implemented under a disturbance in the feed concentration. The model state estimation
error alarms are shown in green, the local instability alarms are shown in blue, and the emergency
alarms are shown in purple. The network load is shown in red.
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Following this event, the supervisor receives no alarms, and communication remains
suspended until t = 1.0959 h. Over the next time interval [1.0959, 1.0964] h, the supervi-
sor continuously receives model state estimation error alarms; however, no instability or
emergency alarms are reported. Based on the supervisory logic presented in Section 4.3,
the supervisor decides to keep the communication suspended (note that the model up-
dates would have been triggered during this interval had the unsupervised proactive
communication approach been used). The next time a model update is triggered by the
supervisor occurs at t = 1.0989 h when both local instability and model state estimation
error alarms are received. During the subsequent interval [1.0991, 1.0996] h, only local
instability alarms are received by the supervisor, with neither model state estimation error
alarms nor emergency alarms being reported. As a result, the supervisor decides not to
trigger any model updates over this interval. Immediately after this interval, however,
both local instability and model state estimation error alarms are reported at t = 1.0997 h.
The supervisor restores communication at this time to allow a model update for the third
and last time during this interval. Figures 3 and 4 show that the supervisory control logic
successfully achieves the control objective while keeping the network load to a minimum.

5.2. Comparison between Supervised and Unsupervised Broadcast-Based Communication Strategies

The objective of this section is to compare the supervisory control approach with
the unsupervised broadcast-based communication approach in terms of the achievable
closed-loop performance and network utilization rates. To this end, we simulate a situation
in which an emergency alarm is reported to the supervisor, and introduce a significant
pulse disturbance in the feed temperature of CSTR 1, T10, at t = 1.0 h after the process has
settled at the desired steady state. The pulse disturbance is simulated by increasing the
feed temperature from its nominal value of 300 K to 350 K during the interval [1, 2] h.

Figure 5 depicts the closed-loop reactor temperature and reactant concentration pro-
files for CSTR1. The performance obtained under the supervisory control approach is
depicted by the solid (blue) profiles, whereas the performance obtained under the unsu-
pervised broadcast-based communication strategy is shown by the dashed (red) profiles.
Due to the strong impact of the disturbance, the process states in both cases deviate from
the desired steady state for some time before converging back after the disturbance is
over. However, the observed deviation is less severe when the supervisory controller is
implemented.
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Figure 5. Evolution of the closed-loop reactor temperature (a) and reactant concentration (b) in CSTR
1 under the supervisory control approach (solid line) and the unsupervised broadcast-based approach
(dashed line) in the presence of a large pulse disturbance in the feed temperature.

The contrasting behaviors can be understood in reference to the alarm signals and
network load shown in Figure 6. It can be seen that a persistent emergency alarm is
triggered and reported to the supervisor starting at t = 1.3877 h, and as a result, the
supervisor prompts all three subsystems to transmit their measurements to update all
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three models according to the appropriate supervisory logic for this case (see Section 4.5).
This decision results in a sustained increase in the model update frequency (and hence
the network load) which helps reduce the deviation of the process states from the desired
operating point during the disturbance event. Note that no model state estimation error
alarms are reported during this interval, and therefore, the unsupervised broadcast-based
communication strategy does not trigger any communication or model updates in response
to the disturbance, leading to more performance degradation.
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Figure 6. Status of the alarm signals showing the times when various event alarms are reported to
the supervisor and the resulting network load when the supervisory event-triggered communication
strategy is implemented under a large disturbance in the feed temperature. The model state estimation
error alarms are shown in green, the local instability alarms are shown in blue, and the emergency
alarms are shown in purple. The network load is shown in red.

5.3. Supervisory Event-Based Controller Implementation under Input Rate Constraints

As discussed earlier, the supervisory event-triggered control approach is capable of
reducing the unnecessary transmission of state information between plant subsystems and
therefore generally helps reduce the rate at which the models need to be updated. Notice
that whenever a model state is updated or reset, the inconsistency in the computed control
action results in a sudden change in the actuator output. To protect actuators from wear
and tear and prolong their service life, a lower model update rate is generally desired, as
long as the control objectives can be fulfilled. The simulation scenarios considered thus far
did not consider the issue of input rate constraints. In practice, the rate of change in the
manipulated input cannot be arbitrarily large due to the physical limitations associated
with the actuators. In this subsection, we evaluate the performance of the supervisory
control system when constraints on the input rate are considered.

For simulation purposes, a rate constraint of |dQi| ≤ 1000 KJ/h, i ∈ {1, 2, 3}, over one
time step is considered. To suppress the influence of transient states, all subsystems are
initialized at the operating steady state. A pulse disturbance in the feed concentration is
introduced for t ∈ [1, 2] h. Table 1 compares the resulting update rates of the individual
units, as well as the overall update rate, for the case when the input rate constraints are
enforced (this case is marked by the check mark) and the case when they are not enforced
(this case is marked by the x mark). The update rate for an individual subsystem is defined
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as the ratio of the number of time instances that a subsystem transmits its data to the total
number of time instances in a given time interval. The overall update rate is simply the
sum of the three update rates.

Table 1. A comparison between the supervisory control approach and the unsupervised broadcast-
based communication approach in terms of the resulting model update and hit-bound frequencies in
the presence and absence of input rate constraints.

Constraint
Update Frequency (%)

Hit Bound Frequency (%)
CSTR 1 CSTR 2 Flash Unit Overall

Supervisory control X 2.0× 10−2 2.0× 10−2 2.9× 10−3 4.3× 10−2 -
approach X 2.0× 10−2 2.0× 10−2 2.9× 10−3 4.3× 10−2 2.97

Broadcast- X 7.7× 10−2 0.23 7.7× 10−2 0.38 -
based approach X 8.0× 10−2 0.24 0.13 0.45 3.38

It can be observed that the update rates under the supervisory event-triggered control
approach do not change much with or without the input rate constraints in place. However,
when the unsupervised broadcast-based approach is implemented, enforcing input rate
constraints causes the update rates to increase appreciably as a result of the increased
communication rate. Another point of comparison between the two approaches is the
hit-bound-frequency, which refers to the number of instances that the change in input
exceeds the imposed constraint over the given interval. This frequency is lower under the
supervisory control approach. The reason is the fact that the unsupervised broadcast-based
approach leads to more unnecessary model updates and thus causes the control action to
more frequently hit the rate constraints, which leads to further errors in the control action
implemented and an increased update rate to try to compensate for these errors. On the
other hand, by requiring fewer updates, the supervisory control approach avoids having
frequent jumps in the control signal, and thus avoids violating the input rate constraints as
much as possible, and is able to keep the communication rate at a lower level.

The difference between the two approaches with respect to their network resource
utilization levels has important implications not only for the network load, but also for the
ability of the control system to enforce the desired closed-loop stability and performance
properties. To illustrate this point, we consider a case where the input rate constraints are
much tighter than considered in the previous scenario. Specifically, we consider a rate
constraint of |dQi| ≤ 48 KJ/h over a single time step. A pulse disturbance in the feed
concentration (similar to that considered in Section 5.1) is introduced for one hour starting
at t = 1.0 h.

Figure 7 shows the resulting closed-loop profiles of the reactant concentration and
the rate of heat transfer for CSTR 1 under the supervisory control approach (solid blue)
and under the unsupervised broadcast-based approach (dashed red). It can be seen that
the latter approach is unable to maintain stability and leads to significant performance
deterioration, whereas the supervisory control approach manages to stabilize the closed-
loop system near the desired steady state once the disturbance is terminated. This behavior
is explained by the fact that, under the unsupervised broadcast-based communication
strategy, the change in the rate of heat transfer more frequently breaches the constraints
(due to the increased model update rate) and eventually becomes saturated near the
end of the disturbance period and remains saturated thereafter. This limits the cooling
rate, as shown by the red straight line in Figure 7b. The actuator fails to cool down the
reactor sufficiently quickly, leading to a prolonged period of high temperature and reactant
depletion even after the disturbance is removed. By contrast, the supervisory control
approach is able to avoid this problem by limiting the number of unnecessary model
updates which helps avoid frequent breaches of the input rate constraints.
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Figure 7. A comparison between the evolution of the reactant concentration (a) and the rate of
heat transfer (b) for CSTR 1 under the supervisory control approach (solid profiles) and under the
unsupervised broadcast-based communication approach (dashed profiles).

6. Conclusions

This work considered the problem of resource-aware control of a class of large-scale
systems controlled over communication networks, subject to model uncertainty and com-
munication rate constraints. A supervisory control system that employs event-triggered
communication logic was designed to achieve closed-loop stability while also optimizing
the network load. The design methodology was realized by initially synthesizing a fam-
ily of local model-based controllers that communicate with each other at discrete times
over the network. Lyapunov techniques were then used to derive appropriate stability
and performance thresholds for each subsystem which were used as alarm triggers for
communication between the local control systems and the supervisor. The supervisor was
tasked with managing the alarm signals transmitted by the constituent subsystems and
employed logical operations to decide which subsystems can access the network at any
given time. Various alarm combinations were considered and analyzed, and a discussion of
the appropriate supervisory control action in each case was presented. The implementation
of the supervisory control approach was illustrated using a benchmark chemical process
example, and compared with unsupervised event-based communication approaches.

The main advantage of the developed supervisory control approach is its ability to bal-
ance the overall closed-loop stability objective with the need to maintain acceptable levels
of performance locally, while optimizing the rate of data transfer between the local control
systems. As demonstrated in the simulation study, this leads to a more judicious utilization
of network resources that results in improved closed-loop performance (compared with
decentralized communication schemes) when the process is subject to unexpected external
disturbances and input rate constraints. As is the case with any model-based control ap-
proach, the design and implementation of the proposed supervisory control system requires
the availability of appropriate models that capture the dynamics of component subsystems,
as well as an explicit characterization of the model uncertainty bounds. In this study, it was
also assumed that full-state measurements are available and that the communication links
between the supervisor and the plant subsystems are ideal in the sense that communication
disruptions due to time delays and data losses are negligible. Future research directions
include extending the proposed supervisory control structure to address these practical
implementation issues, including the availability of only partial state measurements and
the presence of communication delays and data losses in the communication links.
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