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Abstract: In the present research paper, an iterative approach named the iterative Shehu transform
method is implemented to solve time-fractional hyperbolic telegraph equations in one, two, and three
dimensions, respectively. These equations are the prominent ones in the field of physics and in some
other significant problems. The efficacy and authenticity of the proposed method are tested using a
comparison of approximated and exact results in graphical form. Both 2D and 3D plots are provided
to affirm the compatibility of approximated-exact results. The iterative Shehu transform method is a
reliable and efficient tool to provide approximated and exact results to a vast class of ODEs, PDEs,
and fractional PDEs in a simplified way, without any discretization or linearization, and is free of
errors. A convergence analysis is also provided in this research.

Keywords: fractional calculus; Shehu transform; iterative method; 1D; 2D; 3D fractional hyperbolic
telegraph equation; convergence analysis

MSC: 26A33; 42B10; 65B99; 35N30

1. Introduction

Integral transforms are the need for time to solve mathematical problems efficiently.
A suitable selection of integral transforms might be helpful to convert several PDEs as well
as fractional PDEs into an algebraic equation, which is easy to tackle. Integral transforms
are a simple way to deal with the variety of complex-natured PDEs. In the last few decades,
a lot of research work has been done using integral transforms. Several integral transforms
are developed, such as: the Sumudu transform, Elzaki transform, Natural transform,
Pourreza transform, G-transform, Sawi transform, Shehu transform, and others [1-9].
These transforms provided in the literature are applied to solve several integral equations,
ODEs, PDEs, and fractional PDEs [10-17]. Fusion of these transforms with semi-analytical
techniques such as ADM, DTM, HPM, and VIM can also create novel and efficient regimes
to solve such equations [18-27]. A coupled non-linear Schrodinger-KdV and Maccari
system is solved using q-HATM [28,29]. -HATM is implemented to tackle the fractional
telegraph equation using a Laplace transform [30]. Several integral transforms are provided
in Table 1. Chart regarding Shehu transform and Inverse Shehu transform are provided via
Tables 2 and 3 respectively.
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Table 1. Integral transforms.

Integral Transform Expression Given by Related References
Elzaki transform E[V] =v [ f( (Fe~vdt T. M. Elzaki [31-37]
Sumudu transform jo f(ut)etdt Watugala [38—46]
Natural transform ] = [T e7st f(ut)dt - [47-50]
Shehu transform S[f(¢) f 0e” T Shehu Maitama and Weidong Zhao [51-57]
Sawi transform S[f( )] = 72 [0 e’%f( t)dt Abdelrahim [58-61]
Pourreza transform =v j e f(t) S. A. Pourreza Ahmadi [62]
Ara transform T| f (t) ] =v [ eV f(t)dt Rania Saadeh, Ahmad Qazza, Aliaa Burqan [63]
Laplace transform LIf(B)] = J5 e st f(t)dt Laplace [64-66]

Sadik transform

SIF(E)] = & [ e Pttt Sadikali Latif Shaikh [67-70]
V!

Preliminaries.

Definition 1. The Shehu transform of Caputo fractional derivative:

0—1

S[Dfu] = (S)NSM -y (%)airilu’(O)

r=0
Definition 2. The Shehu transform is defined as follows [71]:

sl = [ e

where S is considered as the Shehu transform operator.

o The Shehu transform will be transformed into the Laplace transform by considering v = 1[71]
o The Shehu transform will be transformed into the Yang transform by considering s = 1 [71]

Definition 3.

Let S[Q(1)] = J(5,v) and s1[/(s,v) =7Q(t)
then Q(t) = S~1J(s,v)] = 5= f—;3+oo —J(s,v)ds
where s, v are conszdered as the Shehu transform variables.

Table 2. Chart regarding the Shehu transform [57].

Q) SIQ®]=](s,v)
1. 1 %2
2. t 15/7
3. t",me N Zm(L)"H
4. t,m > —1 T(m+1)(%)"
5. et s_'/ﬂzv
/ mv
6. sin(mt) et
SV
7. c‘os(mt) Tenan
8. sinh(mt) s
2
9. cosh(mt) R
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Table 3. Chart regarding the inverse Shehu transform [19].

Jsv) QW=5""'J(s,v)]

1. %2 1

2. Z—z t
m+1 g

> (% m+1 ét"?’n

4. T(m+1)(%) CERY
v

5. @ ' et

6. Ry sin(mt)
2

7. % c'os(mt)

8. et sinh(mt)
2

9. e cosh(mt)

The notion of fractional calculus is a well-known concept, such as the fractional
derivative and fractional integral. A letter was written by L” Hospital to Leibnitz in 1695

regarding “How do we calculate Z%Z,Whenn = %?”, the meaning of which is “What
will happen if we consider n to be fractional?” The reply of Leibnitz to L’ Hospital was

“d3x = x\/dx : x. However, the reply is an apparent paradox; from this apparent paradox,
one day, the useful result might be drawn” [72-74]. Afterward, several researchers found
numerous applications of fractional calculus in natural science and engineering, such as:
signal processing, image processing, viscoelastic materials modeling, random walk, and
anomalous diffusion [75-84]. It is cumbersome to fetch the solution of fractional differential
equations usually. A great effort has been employed by researchers to develop novel
techniques regarding the computation of approximated and exact solutions. In previous
years, numerous techniques have been developed to tackle such PDEs, such as: HPM [85],
HPSTM [86], HAM [87], ADM [88], RDTM [89], FRDTM [90,91], and VIM [92].

In recent years, fractional PDEs have emerged as the most important topic from the
perspective of scientists and researchers due to their applicability in various fields of
engineering and science. The degree of flexibility is very high for the fractional derivative
in the associated models, which produces an excellent tool for describing the variable
history and the hereditary characteristics of the various prototypes. Major scale research is
completed to develop the analytical and numerical solutions of linear and non-linear FPDEs.

e 1D fractional hyperbolic telegraph equation [93].

uy + pu(x, t) +vup = tyy + g(x, )

where p, v — arbitrary constants. u(x, t) is the unknown function.

If p > 0,v = 0, then the damp wave equation model will be obtained.

If p > 0,v > 0, then the telegraph equation model will be obtained.

The model of the telegraph equation is mainly and mostly used in signal processing for
the propagation of transmission of the electric impulses and wave theory process. A series
of implementations is noticed of such models in the biomedical sciences and aerospace.
The attention of researchers is drawn toward the solution of fractional derivative problems.
The linear PDEs of the integer order are a specific model of the fractional-order PDEs. The
fractional-order schemes converge to the results of the integer-order regime.

e 2D fractional hyperbolic telegraph equation [93].

D¥u +2aDf + BAu = iy + tyy + g(x,,1)
I.C.: u(x,y,0) = f1(x,y) and us(x,y,0) = fa(x,y)
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e 3D fractional hyperbolic telegraph equation [93].

Df"‘u +2aDf + ﬁ2u = Uyy + Uyy + Uz +8(%,Y,2,t)
L.C.: u(x,y,2,0) = fi(x,y,2z) and us(x,y,2,0) = f2(x,y,z)

2. Outline of Paper

This research is subdivided into different sections for a better understanding of the
projected work.

e In Section 3.1, the general formula is developed regarding the 1D time-fractional HT
equation, whereas Sections 3.2 and 3.3 are related to the generalization of the formula
of 2D and 3D time-fractional HT equations mentioned in the Appendices A and B.

e In Section 4, seven examples are verified to validate the accuracy and efficacy of
the proposed scheme. In this section, the mentioned examples are solved in detail.
Examples 1-3 are related to the 1D time-fractional HT equation. Example 4 is related
to the notion of the 1D space-fractional HT equation. Example 5 is concerned with the
notion of the 1D time-fractional HT equation. Example 6 is provided regarding the 1D
time-fractional HT equation. Example 6 is provided regarding the 2D time-fractional
HT equation. Example 7 is concerned with the notion of the 3D time-fractional HT
equation. For each and every mentioned example, a series solution is developed using
the projected scheme.

e InSection 5, a graphical and tabular presentation is provided, along with an error and
convergence analysis. Application is also provided.

e In Section 6, the crux of the research is provided as a conclusion.

3. Development of the Formulae
3.1. Implementation of Proposed Regime upon 1D Time-Fractional Hyperbolic Telegraph Equation

1D fractional Hyperbolic telegraph equation is considered as follows [57,93]:
Dfu(x, 1) + Llu(x,8)] + N[u(x, 1)) = q(x, )

where D} is the Caputo derivative. L is the linear operator. N is the non-linear operator.
Apply the Shehu transform upon the 1D time-fractional hyperbolic telegraph equation:

S[Dfu(x, t)]+S[L[u(x, t)] + Nlu(x, )] = Slq(x,1)]

S\ & 0-1 sy\a—r—1

(3) senI= L (5) w(x0) = Slax 0] = S[Liutx, ] = SNIu(x, )

S\ & 01 s\ a—r—1 ,

(2) Slutxt) = rzo(;) ' (x,0) + S[q(x, £)] = S[L[u(x, £)] — S[N[u(x,1)]]
0—1
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) 00 r—1
Nu] = N[Z ur(x,t)] = Nlug(x,t)] + ) N(Z u](x,t)> - N(Z uj(x, t))]
r=0 r=1 j=0 j=0
Hence,
Emn) =57 T (0w w0 +igtn]}
-5 ()" { Ll + M)+ E Ll 0]+ E NG}
r=1 r=1

5! [(Z)“S{ E Ll (x,0)] + N( F t)) N(T ur(x,t)> H

j=0 j=0

i) =5 | 6) T vwo+sun ]

r=0

i (x,8) = =87 [(£) " S{Lluo(x, ] + Nluo(x, )]}

U1 (x,8) = —51 l(g)“s{ri L{uy (x, )] + N(jiour(x,t)> - N(?z; ur(x,t)> H

r=123,...

3.2. Implementation of Proposed Regime upon 2D Time-Fractional Hyperbolic Telegraph Equation

2D fractional Hyperbolic telegraph equation is considered as follows:
Dfu(x,y, t) + Llu(x,y, )] + N[u(x,y,t)] = q(x,y,t)
See Appendix A.

3.3. Implementation of Proposed Regime upon 3D Time-Fractional Hyperbolic Telegraph Equation

3D fractional Hyperbolic telegraph equation is considered as follows:
Diu(x,y,2,8) + Llu(x,y,2, 1)) + Nlu(x, 3,2 0] = 4(x,,2,1
See Appendix B.

4. Examples

Example 1. Consider the one-dimensional hyperbolic telegraph equation as follows [93]:
uf =u—2up — Uy 1)
LC.:u(x,0) =e* and us(x,0) = —=2¢*,0 < <2
up(x,t) = u(x,0) + tu(x,0) = e* — 2te* = e*(1 —2t)
Apply the Shehu transform in Equation (1):
S[uf]= S[u —2up — uxx| = S[Dfu(x,t)] = S[u — 2up — Uuyy]

= u(x,t) =571 [(V>

£ 0-1

L)

(5)" o] e (2) s 2w ]

S




Mathematics 2022, 10, 1961 6 of 26

v x0=1 s\a—r—1 ;
uo(x,t):Sl[(s) ;O(;) u(O)] 2)
s (e, t) = S (£) S {RIw ]} ©

wherer =0,1,2,3,...

R[u(x,f)] =u—2u; — ”xx/R[”O(xrt)] = Ug — 2(”0)1‘ - (uO)xx = 4e’
a—1
R[ul (xrt)] =Uu— 2(”1)t - (ul)xx = —SEXDCW

= 20) — (). — 166" % 28— 10
Rlu2(x, )] = 12 = 2(102), = (12) 5y = 166" =5 T

Consider 0 = 1: From Equation (2):

v S v

wo(x, ) = §71 {(7)0((7)“71“(0)} =y =251 [<7)u(0)} = up(x,t) = u(0) = e*(1 —2¢)

s v S

From Equation (3):

5 [
S
[(% “5[1]} = = 4e"S’1[(%)'XH} = uq(x, t)
—4eX
T(a+1)

From Equation (3):

uy(x,t) = 1 [(%)“S {—Se"txr(tai:l)H = up(x,t) = —8e*aS~! [(%)“S[rfillnﬂ

= (¥, 1) = —8e" ({5 L(%)Z'X}
t

— IV
= up(x,t) = _8exr(lfxf1) I(24)

From Equation (3):

uz(x,t) = S {(Z)as{wexr(zlfl) (iﬂé(z—tx)l)tza—z}]

= uz(x,t) = 166}(1’(211‘1) (zr"‘(z_“)l)sl Kg)”‘s{tzaiz}}

= uz(x,t) = 166xr(z1:f1) (ZFDC(Z—“)US1 [(:)“r(za B 1)(:)2111}

= uz(x,t) = 16" alae (20 —1)T(2a —1) g1 {(1/)30(—1]

I(a+1) I(2«) .
., alw (2a—1)I(2a—1) 32
= uz(x,t) = 16e T(a+1) I'(2a) r(Ba—1)

ol (2o —1DT'2a —1) 3,9
T(a+1) T(2a)I(3a—1)

u(x, t) = ug(x, t) +uqg(x, t) +up(x,t) +uz(x, t) + - - -

X

= ug(x,t) = 16e

. o T t2/x—1
= u(x,t) = e*(1—2t) + 4e* sty — 9 r(ofxfl) T(24)
116" ala  (2a—1)I(2a—1) t3tX72 .

T(a+1) T(2a)I(B3a—1)
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2 3
Consider o« = 2: = u(x,t) =e* —%+%—%+~~ =u=e 2

Example 2. Consider the 1D time-fractional hyperbolic telegraph equation as follows [93]:
Dfu =1 —up — Uyy 4)
LC.: u(x,0) = e* and uy(x,0) = —e*, Where, 0 < a0 <2

ug(x,t) = u(x,0) + tu(x,0) = e* —te* =e*(1—1t)
Rlu(x,t)] = u — ut — tixy, Rlug(x, )] = ug — (ug); — (40) = €*
pa—1
F(a+1)
alae 200 —1 5, »
I'(a+1) I'(2e)

Rlup(x,t)] = ug — (u1); — (1), = —€'a

X

Rluz(x, 1)] = ug — (uz); — (u2), =€
Apply the Shehu transform in Equation (4):
S[Dfu(x,t)] = S[u — up — Uxy]

0—1

= (2 slu(xn] - Z(;}(f/)“”u’(o) — S — 1 — ttya]
st =5 [ R o] s () s
wiwn =5 (9T o) ®
U1 (x,8) = 571 [(g)aS{R[u,]}} ©)
wherer = 0,1,2,3, ... Consider 6 = 1:
From Equation (5):

wts) =57 (5 (2)" 0] = 0= 5[]

= ug(x,t) =u(0) =e*(1—1t)

From Equation (6):

(1) = 57 [(4)"S{Rmo(x O]} = m(x,t) = $71[(4)"S{e"}] = w1 =
s (4)"s{1}]

= uy(x,t) = e*S71 [(E)NG)} = u =e'S7! {(Z)Hl} = up(x,t) = e"r(;il)

From Equation (6):

up(x,t) = S71 [(%)“S{—exarézi:n} =1
= " ST [(%)as{t%l}

R (O RNCESEEE =t O
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= uy(x,t) = —e

From Equation (6):

uz(x,t) = §1 [(:)as{exr(zlfl) (Zrﬂé(z—w)l)tzazﬂ

sl ) = et B[4

= uz(x,t) = exl"(zlrl) (21}(2—“)1)51 [(Z)le(Za B 1)(1;)2“1}

alae (20 —1)T (20 —1) -1 |:<1/)3txl:|
s

= uz(x,t) =e*

I'(a+1) T(2a)
X ala (20( — 1)1—'(20( — 1) 3a—2
W) =R o) TG )

u(x,t) = uog(x, t) +up(x,t) +up(x,t) + uz(x,t) + -
o 20—1
= u(xt) =e (1 —t)+e F(vc+1) —et r(arfl) lt"(th)
Fe¥ ala (2a—1)T(2a—1) pa-2
T'(a+1) T'(2a) T(3a—1)

Consider « = 1: = u(x,t) = e* {1 -h+ 2—22 - 2—33 +-- } = u(x,t) =€
Example 3. Consider a 1D non-linear time-fractional hyperbolic telegraph equation as follows [94]:
Dfu = tyy + 1y — u? + xuuy 7)

where 0 < a0 < 2.
I.C.:

u(x,0) = xanduy(x,0) = x, up(x, t) = u(x,0) + tus(x,0) = x + xt = x(1+¢)
Rlu(x,t)] = txx + up, Nu(x, )] = xuuy — u?
Rlug(x, 1)] = (o) + (st0),; = x, Nlug(x, £)] = xug(t9), — (1t9)* = 0

]
Rlu1(x,8)] = (1) g + (1) = 2yt [ (6, 1)) = 2 (1), — (11)* = 0

Rlua (0, 8)] = (u2)xy + (2), = r&rﬁg e

Nluy(x,t)] = xup(uz), — (u2)" =0

Apply the Shehu transform upon Equation (7):
S[D%u(x, t)] = S [uxx Fup—u?+ xuux}

-1

= (3) slute 0l = L (3) w0 = 8[uae =1 4 xue]
= (S)QS[u(x, Bl = §(j>“r1u,(o) +S [uxx +up—u* + xuux}
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= u(x1) =51 [(S)“fgl(s)“— _1ur(0)}
50t otk + ¥t £ { R+ £ 900 "5 ) ]
r= j= j=
v wf-1 s\a—r—1
uo(x, ) = S (g) y (;) ” (0)] ®)
r=0
(2, ) = S [(g)“s Rlutg] + N[ug]] )
vy & n n—1
U1 (x,t) =871 [(s) S{R[ur] + Y N(uj) — Y N(u)) H (10)
=0 =0
wherer = 0,1,2,3,... Consider 6 = 1:
From Equation (8):
uo(x,t) = 571 {(Z)“(j)“‘lu(o)] = 1t = 57 [(£)u(0)] = wo(x, 1) = u(0) = x(1 +1)

From Equation (9):

v\ & v

= uy(x,t) =571 [(g) S[x]} =u; =5t [(g)NS[l]]

e =xs (5 ()] =25 [ (9] 5 men =1

From Equation (10):

up(x, 1) = §1 [(g)“sm[ul(x,t)} + N[ul(x,t)]]] - uy
-5 et

= up(x,t) = xﬁsq Kg)as[ta_ﬂ

= up(x,t) = xar(a))sl [(K)“(K)a} = up(x,t) = xral"(oc) st [(V)zq

Ta+1 s s

al(a) #2271
I'(e+1)T(2a)

= uy(x,t) =x

From Equation (10):

ua(x,t) = $7[(£) "SR ua(x, ] + iz, ]

=)y ]

= uz(x,t) = xl"(zlfl) (21““(2;)1)5_1 {(15/)“1,(20{ ) (1;)20(1]

e e oy

ala (e —1DT(2a—1) 31
F(a+1) I'(2a) I'(Ba—1)

u(x,t) = uog(x, t) +up(x,t) +up(x,t) + ug(x,£) + - -

= uz(x,t) = x

= uz(x,t) = x
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o I 201
= u(x,t) = x(1+1) + x5 of+1) + xl"oza(fl)) f(za)
Ta  (20=Dr2a—1) el
X Ty TEen
Consider w = 2: = u(x,t) = x{l—i— ﬁ + %_9_% _|_} = u(x,t) = xet
Example 4. Space-fractional telegraph equation is as follows [95]:
Dﬁu =Up+Ur+u (11)
where 0 < o < 2,
u(0,t) = e !, ux(0,t) = e u(x,0) =e*= ug(x,t) =e ' +xe!
Taking the Shehu transform upon Equation (11):
[D%u(x, )] = Slug + ue +u] = (£)*S[u(x, )]
61 o
- nzo(i)a "M (0) = Slus + ug +u]
9-1
o1 v\ & s\a—r—1 , —1[(V «
S = () =S [(S) T ) o (2) St sl
where ]
-1
o1 AN E a—r—1 ’
wo(x, ) = § [(s) e (0)] 1)
_g-1[(¥\* _
uri(xt) = S (T) SIR@]|,r=0,1,23,... (13)

where R[uy(x,t)] = up + up +u, Rlug(x, )] = (ug), + (o), +up = e~ +xe™*

P o+l
Rluy(x,t)] = (u1)y + (1), +wy = e {I’(zx ) T +2)}

20

Rluz(x,1)] = (u2) g + (u2); +up = ¢ {1‘( x 2+l }

26+ 1) T(2at2)
From Equation (12): Considering 0 = 1:

up(x,t) = 571 {(Z)“(j)“lu(m] = up(x,t) = 71 (£ )u(0)]
= ug(x,t) = u(0) = e ' +xe!
From Equation (13):

)DCS[R(uO)ﬂ = uy(x,t) =51 [(Z)WS[e_t + xe_t]}
(5) sl +x1] = w0y = s (%) 8] + sl)]

1)+ @) i =5 [+ (]

S

Y K a+1 1 K a+2 Ly x& xa+1
= u(x,t)=e [S (s +S (s) = ui(x,t)=e F(a+1)+F(a+2)
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From Equation (13):
o =5 (2 s e =5 [ S ry + r]

= () = e t5 ] [(Z) {S(r(;lﬂ * S(r()zirz))”
= e =7 (5[5 + ()]

2041 v 2042 20 (2a+1
f=etlg1(Y -1(V P — et
= ua(xf) =e [S (s) 5 (s) =) = r 1) T ra g

From Equation (13):

uz(x,t) =571 [(%)aS[R(Uz)ﬂ = us(x,t) =57 [(Z)as {‘3_! {r(zfi o r(itlZ)m

= () =e7's™ {(DS {mf: 1" Féj:rz)H

= uz(x,t) =e 157! [(:>0¢ [S (1"(;;2:1)) +5 (1"(;?:-12))”

= uz(x,t) = e 's7! [(Z)a {(Z)ZNH + (Z)ZHZH = uz(x,t) = e 57! {(1;)3“1 + (Z)BHZ]

; x34x x3¢x+1
H=e
= us(x 1) = ¢ {F(?)zx—l—l) * r(3a+2)]

u(x, t) = ug(x, t) +ug(x, t) +up(x,t) +uz(x, t) + - - -

Considering o = 1: u(x,t) = e~ {1 +5+ %22 + 2—33 + - } = u(x,t) = 1.

Example 5. Consider the fractional telegraph equation as follows [23]:
D21 4+ 2D%u 4 1t = tixy (14)

where
u(x,0) = e*,us(x,0) = —2¢*

up(x,t) = u(x,0) + tu(x,0) = e* + t(—2¢*) = e*(1 — 2t)
Applying the Shehu transform upon Equation (14):

S [th”‘u +2Dfu + u} = Slux] = S {th"‘u(x, t)} = —S[2Dfu + u — uyy]

S\ 2« 61 s\ 20—r—1 , _ N B
= (2) S[u<x,t>1f§0(;) W' (0) = —S[2Dfu + 1t — 1y,
= u(x,t) =571 l(zf"‘:)(z)h—r_lur(o)] — 51 [(Z)ZQS[ZDW + U — Uxy]
where o1
e K 20 Y — i 20—r—1 .
wlxt) =5 1[(5) I " (0)] 15)

Considering 0 =1 : up(x,t) = STL[(L)u(0)] = ugp(x,t) = u(0) = (1 —2t)e*
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un(x,t) = =571 (1) **S[2Dfuo + o — (o) ] | = w1 (x,8) = —571[ (£)*S[2Dfuo]

= uy(x,t) = —2571 {(%)MS[D;"LL()]} (16)
where
SIDfuo(x,1)] = (5)"Sluol — (5)"wo(x,0)
= S[Dfuo(x, )] = (3)"Sluo] — (5)*e*
= S[Djuo(x, 1)) = (3)"e* [¥ —2()*] = (5)"e¥ 17)
= S[Dfuo(x,1)] = & [ ()" —2(3)" %] = (3)"e¥
= S[Dfug(x, )] = —2¢%(£)"
Using Equation (17) in Equation (16): u(x, t) = —2571 {(%)2“( 2e%(£)" 2)}
= () =4e75 ()™ ((5)"77)] = mlx ) = 4e¥s 71 (9]
= up(x,t) = 4exr(tz7f2) (18)
= (¥, ) = =251 () *'S[Dfun]|
where
S[Dfw (v, 0] = (3)"Sl] = ()" T (x0)
= S[Dfun(x,4)] = (3)"S[m] = S[Dfm (x,1)] = ()" [4e" s | )
= S[Dfu1(x,1)] = 4¢* (3)"S |tz | = SIDf(x, 0] = 4e*(5)" (1)
= S[D%u;(x,t)] = 4ex(%)2
Using Equation (19) in Equation (18):
up(x,t) = 2871 [(z>2a4ex<5)1 = up(x,t) = —2(4e")S7! {(15/)24»((:)2]
= up(x,t) = —(8¢*)S [(‘;)2“1
. t21x+1
= up(x,t) = —(8e )m
uz(x, ) = —2571 [(Z)ZRS[D;"LQ]} (20)
where
S[Dfna(x, 1) = (3)"S[w] - (5)"ua(x,0) -
= S[Dfus(x, 1)) = —(8¢)(3)"S [ plaryy | = SIDFua(x, )] = = (8e) ()" (1)

= S[D%uy(x, t)] = —(8e¥) (L)
(21)
Using Equation (21) in Equation (20):

uz(x,t) = —2571 [(Z)Z‘X (_(Sex)(DHzﬂ

= —2ws (7 ()]
= us(x ) = 16757 [(‘;)2“ ((Z)HZ)] = uz(x,t) = 16e*S™! [((Z)SHZ)]
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t30(+1
I'(3a+2)
u(x,t) =ug(x,t) +up(x,t) +ux(x,t) + ug(x,t) 4+ .-

= uz(x,t) = 16¢*

Considering & = 1: u(x, t) = e*[1 — 2] + de* & — 8e¥ & + 16¢% 5

2t (202 (2t . (2p)* B
= u(x,t) = 1_Z+ T3 + 7 =u=e

x—2t

Example 6. Consider the 2D time-fractional telegraph equation as follows [23]:
D*u +3Df tt + 21 = iy + 1y (22)

where 0 < a <1
L.C.: u(x,y,0) = e and u;(x,y,0) = —3e* 1Y

= up = u(x,y,0) + tus(x,y,0) = e — 3™V = "V (1 - 3¢)
Applying the Shehu transform in Equation (22):

S[Df*u + 3D u + 2u]= S[uxx + tuyy]

= §|DP*u| = S[uzc + uyy — 2u — 3D}u] = S| DFu| = —S[3Dfu + 21 — sty — 1ty

u(x,y,t) =51 l(V)er gi<5>2arlu’(0)] -s1 {(Z)2“S{3Df‘u 42U — Uyy — uyy}}

S =0 1%

where

71- v 20 M ]
u(x,y,t) = =S| (5) " S{3DFu0 +2u0 = (o) ., — (o), }

) st
us(x,y,t) = =871 -(5)2“5{3195141 +2uy — (U1 — (ul)yy}-
) s

_1 [ /v 20 " ]
usz(x,y,t) = —S (g S543Dfup +2up — (u) ., — (uz)yy}

Considering 0 = 1 : up(x,y,t) = S’l[(%)za(s)zaqu(O)} = up(x,y,t) = u(0) =

eXtY(1—3t)
u (%, 1) = =571 (£)*8{3Dfu0 + 2u0 — (u0) ., — (o), }]
u(x,y,8) = =571 (4)* ${3D}uo} (23)
ui(x,y,t) = —3571 {(%)ZRS{D‘;‘L{O}
where

SIDfuo] = (3)"S[uo] — (5)* o (x,0)
= S[Dfup) = (£)*S[e*+V(1 - 3t)] — (5)"‘_1ex+y

v

= S[Dfup] = (3)" Hy[ (2)2] — () ety

S
= S[D%ug) = —3(%)2_“ex+y

(24)
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Using Equation (24) in Equation (23):

u(xy, 1) = =351 (4)*{-3(1)* "ertv}]
= ui(x,y,1) = 9 VS T (9 {(H)7}] = mx 1) = %S (1)

a1

= u(x,y,t) = 96x+ym (25)

ua(x,y,t) = —§1 [(%)2“5{3D‘t"u1 +2uq — (U1)yy — (ul)yy}]
= up(x,y,t) = —35~1 [(g)Z“S{D;}ul}}

where
S[D%u] = (£)"S[uy] — (£)* s (x,0)

1% 1%
= S[Dfun] = (3)"Slu] = S[Dfm] = (3)"S [0 (]

= sIDfu] =904 (3)'s [ty ] = stopul =9ere (1) (1)
= S[Dfuy] = 9e¥H¥ (¥)?
Using Equation (26) in Equation (25):
us(x,y,t) = —3571 [(%)2“{933‘*?(%)2” = uy(x,y,t)
= =309 )s 71 (1) { (¥)°
= uy(x,y,t) = —(27e¥1¥)S~1 [(2)2“}(‘5’)2 1 = up(x,y,t)
= —(27e¥1)51 [(g)z"‘”] (27)
= uy(x,y,t) = —(276”%%
us(x,y,t) = —S1 {(%)2“5{3D?‘u2 +2up — (U2, — (”2)yyH
= us(x,y,t) = —3571[ (£)*'${Dfus} |
where
SDfua) = (3)"Slua] = (5)" "a(x,0)
= S[Dfua) = (5)"S[ua] = S[Dfua] = (5)"S [~ (276°) ehoury | (28)

v
= S[Dfuy] = —(27e+Y) (¥)*F2
Using Equation (28) in Equation (27):
B VA 20 v a+2 P3a+1
uz(x,y,t) = 3571 {(S> {—(27ex+y) (E) H = uz(x,y,t)= 816x+y71"(3¢x )

u(x,y,t) =uo(x,y,t) +ur(x,y,t) +up(x,y, t) +uz(x,y,t) +- - -

= u(x,y,t) ="V (1—3t)+ 9ex+yr(ﬂ;7:_12) _ (276"“&%
t3a+1
+81eX 1Y Ty~
Considering o = 1:
3t (32 (3t)° . y
u(x,y,t) =Y L = u(x,y,t) — X TYp3t — Xty

1 2 /3

Example 7. Consider the 3D time-fractional telegraph equation as follows [23]:
D¥u + 2D u + 3u = yx + ttyy + sz (29)

where 0 < o < 1.
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I.C.: u(x,y,z,0) = sinhx sinhy sinhz, u;(x,y,z,0) = —sinhx sinhy sinhz
ug = u(x,y,z,0) + tur(x,y,2,0) = (1 — t)sinhx sinhy sinhz
Applying the Shehu transform in Equation (29):
S|D?u +2D%u + 3u)= S[ury + Uyy + uzz} =38 [th“u} = —S[2Dfu + 3u — Uyx — Uyy — Uz

S\ 20 61 s\ 20—r—1
= (;) S[u(x,y,z,t)] — ;;(;) u'(0) = —S[2Dfu + 3u — gy — yy — Uz

= Slu(x,y,zt)] = (%)20( 921<7)2a471uf(0) — (%)zaS[ZD,’?‘u 43U — Uyy — Uyy — U]

r=0 v
~u=s|(2)

2001

(5 o) -5 [(2) s sy

r=0
O EC o)

up(x,y,z,t) = s-1
r=0

v

1 2u 1
w1 (x,y,2,t) = —S (S) S[2D%ug + 3ug — (10) ., (uo)yy—(uo)zz}

|
uz(x,y,2,t) = =5 (%)2“5[2 pun - 3un = (1) gy — (1), — (ul)zz}—
|

S

20 1
uB(x,y,Z, t) = —S—l (V> S 2Dt uy + 3up — (uz) (uz)yy — (Mz)zz}

Considering 0 = 1. up(x,y,zt) =51 {(%)Z'X(%)Z‘X*lu(O)} = up(x,y,z,t)
= S7H(5)u(0)]
ug(x,y ) u(0) = sinhx sinhy sinhz(1 —t)
(x Y.z t) -5 [ ZD“MO +3up — (uo)xx - (uo)yy - (u0>zz}:| (30)
= u(x,y,z,t) = =25 {(E) S[Df‘uo]]
where S[Diug] = (£)"S[ug] — (i)afluo(x,O)
= S[Dfug] = (£)"S[sinhx sinhy sinhz(1 — t)] — (%)'x—lsinhx sinhy sinhz
= S[D%ug) = sinhx sinhy sinhz[(s)aS[(l —t)] - (%)“71}
= S[D}uo] = sinhx sinhy sinhz| (£)"" ! (V)“_2 - (%)“_1}
= S[Dfug) = —(£)" “sinhx sinhy sinhz

(31)

Using Equation (31) in Equation (30):

uy(x,y,z,t) = —2871 [(15/)2“ { - (%)lxizsinhx sinhy Sinhz}]

x+2
= uy(x,y,z,t) = 2sinhx sinhy sinhz S~ [(s) }

t/XJrl

= ui(x,y,z,t) = 2sinhx sinhy sinhz Tt

ur(x,y,z,t) = —S°1 {(Z)zas [ZD?‘ul +3uy — (1), — (ul)yy - (”l)zzH
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us(x,y,z,t) = —2571 [(Z)ZNS[D‘[‘W]}

where .
S[Dfuq] = (£)*S[ua] — (£)* ua(x,0)= S[D“ul] (£)*S[uy]

= S[Dfuy] = (£)°S {2 sinhx sinhy sinhz 5 —

= S[Dfuq] = 2sinhx sinhy sinhz (£)" (3)')‘+2

= S[D{uq] = 2sinhx sinhy sinhz (%)

Using Equation (33) in Equation (32):

us(x,y,z,t) = —25~ [( ) {2sznhx sinhy sinhz (% )2”

= uy(x,Y,2,t) = —(4sinhx sinhy sinhz)S™! {(g)z““]
t2 a+1
T(2a+2)

w2 t) = =57 [(4)S[2Df 2+ — (1), — (1), = (1)
= u3(x,y,z,t) = —2571 {(%)ZKS[Df‘uz]]

= us(x,y,z,t) = —(4sinhx sinhy sinhz) ¢

where
S[IDfua) = (§)"S[ua] — (5)" 'ua(x,0) = S[D

= S[Dfup| = —(4sinhx sinhy sinhz)
= S[D%uy| = —(4sinhx sinhy sinhz )(%)"‘Jr2

fun] = (%2)“5[”2]
)" ()™

Using Equation (35) in Equation (34):
_ 1 K 2w a2
= uz(x,y,z,t) = —25 {( . ) { (4sinhx sinhy sinhz ) ( 5 ) H

v 3a+2
= uz(x,y,z,t) = (8sinhx sinhy sinhz)S’1 {(s) }

t31X+1
T(3a +2)
u(x,y,z,t) =uo(x,y,z,t) +ui(x,y,zt)+ux(x,y,zt) +us(x,y,z t) +

= us(x,y,z,t) = (8sinhx sinhy sinhz)

= u(x,y,z,t) = sinhx sinhy sinhz(1 — t) + 2sinhx sinhy sinhz g~y (

] a+2)
— (4sinhx sinhy sinhz) (2(;2)
+(8sinhx sinhy smhz)r("‘TJrz) —
Considering & = 1: = u(x,y,z,t) = sinhx sinhy sinhz {1 —t+Z & - ﬁ +%

5. Graphical and Tabular Discussion

(32)

(33)

(34)

(35)

In Figure 1, approx. and exact results are matched at f = 1, 2, and 3 regarding Example
1. In Figure 2, a comparison of approx. and exact results is given at t = 1, 2, and 3 regarding
Example 2. In Figure 3, a comparison of approx. and exact profiles is provided att =1, 2,
and 3 regarding Example 3. In Figure 4, approx. and exact profiles are compared att =1, 2,
and 3 regarding Example 4. In Figure 5, approx. and exact profiles are matched at t =1, 2,
and 3 regarding Example 5. In Figure 6, contour and surface representations are provided
at t = 1 regarding Example 6. In Figure 7, contour and surface representations are provided
at t = 2 regarding Example 6. In Figure 8, contour and surface representations are provided
at t = 3 regarding Example 6 With the aid of an analysis of the figures, it can be affirmed
that the proposed regime is providing the good compatibility of the approx. and exact

profiles for a wide range of time levels.
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0.4

035

03[

0.25

0.2

u(x, t)

0.15

01

% Approx. solution at t = 1
—Exact solution at t = 1

% Approx. solution at t =2
—Exact solution at t= 2

% Approx. solution att=3
——Exact solution at t=3

Figure 1. Comparison of approx. and exact profiles at t = 1, 2, 3 regarding Example 1.

09~

¥ Approx. profile at t= 1
= = =Exact profile at t = 1

% Approx. profile at t = 2
= = =Exact profile at t = 2

¥ Approx. profile att= 3
= = =Exact profile att = 3

Figure 2. Comparison of approx

25

15—

u(x, t)

O Approx. profile at t =1
= = =Exact profile at t = 1

O Approx. profile att = 2
= = =Exact profileatt =2

O Approx. profile at t = 3
= = =Exact profile att =3

u:-.!u}n!:}':‘d‘-:"i's‘:':"

!

Figure 3. Comparison of approx. and exact profiles at t = 1, 2, 3 regarding Example 3.
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I-| O Approx. profile at t = 1

| = = =Exact profile att =2

= = —Exact profile at t = 1
O Approx. profile at t = 2

O Approx. profile att = 3
= = =Exact profie att =3

Figure 4. Comparison of approx. and exact profiles at t = 1, 2, 3 regarding Example 4.

0.4

0.35

0.3

0.25

0.2

u(x, t)

0.15,

% Approx. profile at t= 1
= = =Exact profile att =1
L | % Approx. profileatt=2
= = =Exact profile at t = 2
- % Approx. profile at t=3
= = =Exact profile att =3

Figure 5. Comparison of approx. and exact profiles at t = 1, 2, 3 regarding Example 5.
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Figure 6. Comparison of approx. and exact profiles at t = 1 regarding Example 6.
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Approximated Solution att =2

Approximated u(x,y,t)

Figure 7. Comparison of approx.

Approximated Solution att=3

e
5 NN

0 1 2 3 4 5 L

X
Approximated Solution att =3

n B
S =

So

Approximated u(x,y,t}

Figure 8. Comparison of approx. and exact profiles at t = 3 regarding Example 6.

and exact profiles at t = 2 regarding Example 6.

2
=
=

Exact u(x.y,t)

Exact Solution att=2

X
Exact Solution att=2
700

@
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Seo

Exact Solution att=3

6 f s *
s N 30
y 2
>, 2

0 1 2 3 4 5 8

X
Exact Solution att =

3

5
%0 o
2%
20
15
0 10

10 .

8
6

5 5 4
00
y X

Exact u(x,y,t)
=

In Table 4, the Lo, error was provided at diverse time levels. It is noticeable that at
each time level, the obtained error got reduced by increasing the value of N, which is a
parameter of the convergence of the proposed scheme. In Table 5, L, errors were fetched
att=1.1,1.2, and 1.3, where, upon increasing the value of N, obtained errors got reduced
up to 10716, L, errors were obtained at t = 1.1, 1.2, and 1.3, and on changing the value of
N from 10 to 20, errors got reduced significantly up to 1071°. In Table 6, the L error was
evaluated at t = 1.1, 1.2, and 1.3, upon changed values of N, errors got reduced up to 10715,
In Table 7, the Lo error was calculated at t = 0.1, 0.2, and 0.3; with the change in the value
of N, the error got reduced up to 10~ !1. Therefore, it is affirmed that the proposed regime
is generating the convergent solution with a higher and acceptable order of convergence
for a wide range of time levels.
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Table 4. Error analysis regarding Example 1.

N Lo Error
t=1 t=13 t=1.5
10 1.3701 x 1073 1.8034 x 102 7.3219 x 102
20 3.1701 x 10~12 5.8706 x 1010 1.0099 x 10~8
30 2.2204 x 10716 —34417 x 10~ 7.2164 x 10716
ConvergenceuptolO*16 Convergenceupt010*15 Convergenceupto10*16
Table 5. Error analysis regarding Example 2 and 4.
N Lo Error
r=11 =12 =13
10 3.7337 x 10~ 8.8389 x 10~° 1.9517 x 10~°
20 4.4409 x 1016 4.4409 x 1016 4.4409 x 10~16

Table 6. Error analysis regarding Example 5.

N Lo Error

t=1.1 t=1.2 t=1.3
10 3.4987 x 1073 8.2241 x 1073 1.8034 x 1072
20 21144 x 1011 1.1944 x 10710 5.8706 x 1010
30 1.3323 x 10712 —1.4433 x 10715 —3.4417 x 10712

Table 7. Error analysis regarding Example 6.

N Lo Error

t=0.1 t=0.2 t=0.3
10 45419 x 1077 45299 x 104 2.5457 x 1072
20 8.7311 x 10~ 11 7.2760 x 10711 43656 x 10~ 11

Application of the proposed regime [93].

Considered an infinitesimal piece of the telegraph cable wire as an electrical circuit
[Figure 9], and consider that the cable has the perfect insulation, so that the capacitor and
leakage to the floor are present. C is the capacitance to the ground; x is the distance from
the end of cable; u(x,t) is the voltage; G is the inductance; i(x, t) is the current; L is the
inductance of the cable.

Fractional derivative model equations are [93]:

D% = DPi+ (6 + ¢)D% + O¢pi

and
?Dou = Dfu + (60 + ¢)Dfu + 6pu

and where 0 < < 1,1 < 9,5 < 2.
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i(x, t) 1(x +dx, t)
p Ldx Rdx
L W > S
u(x, t)

Gdx 1Cdx u(x + dx, t)
I

v
. * —
X x + dx

Figure 9. Telegraph transmission line with leakage.

6. Conclusions

In the present paper, the general formulae are provided to obtain the approximated and
exact solutions of the HT equation in 1D, 2D, and 3D using the iterative Shehu transform
method. With the aid of graphical representation, it is claimed that a good compatibility of
results is obtained for a wide range of time levels. In the tabular discussion, it is noticed
that on changing the value of grid points, the obtained L., error was reduced up to a high
and acceptable order of convergence. With the aid of the tabular form, the convergence
of the proposed regime was claimed. The present regime might be one of the most useful
regimes to tackle fractional differential equations and partial-integro differential equations.
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Appendix A

Implementation of proposed regime upon 2D time-fractional hyperbolic telegraph equa-
tion.
Applying the Shehu transform upon a 2D time-fractional hyperbolic telegraph equation:

S[DFu(x,y, )] +S[L[u(x,y,t)] + N{u(x,y, )]} = Slq(x,y,1)]

s\« 61 g\ a—r—1
() sinnl - L (3) wxy,0) =Slalxy,t)] - S[Liu(xy, )] - SN[u(x,y, )]

1% =0 v



Mathematics 2022, 10, 1961 22 of 26

where, L[u] = LE2qu(xyt) = L[uo(x/yff)]+Z§’°:1[L(Z]r'=o“j(x/%t))
—L(z;-;suj(x,y,t))]

r=1 j=0 j=0
Hence,
) -1 e
Eutont) =57 | (£ (0w w0+ St o]}

=571 (4)"S{Llwo(x, v, )] + Nluo(x,,1)]}]

-5~ [(5)“5{ flL[ur(x,y, B+ N(ﬁ()ur(x,y,t)) (Z iy (%,y, t)) H
r= j= i=0

wiwu =5 () w0+ st ]

0

i (x,9,8) = =571 (£) "S{Lluo(x,, 1) + Nluo(x,y, )]}

v r r—1
qu(x,y,t):—Sl[(s) {ZLur x,y,t)] +N<Z (x,y,1) ) (Z(:)ur(x,y,t)> }],r:1,2,3,
]:

Appendix B

Implementation of proposed regime upon 3D time-fractional hyperbolic telegraph equa-
tion.

Applying the Shehu transform upon the 3D time-fractional hyperbolic telegraph equa-
tion:

S[DFu(x,y,z, )| +S[L{u(x,y,2, )] + N[u(x,y, 2 t)]] = S[g(x,y, 2, 1)]

()" (x,,2,0) +5[q<x,y,z,t)]H
%,y,2 1)) + S[N[u(x,,2,)]]]

N(Xr: uj(x,y,z,t)> - N(E W(x,y,z,t))]

j=0 j=0

Hence,

E ez =57 (D ()W w200+ Stz 0) |
|

|

-5~ [(Z)“S{L[uo] + N(uo) +§1L[ur(x,y,zf )] +§1N[ur(x,y,z,t)]



Mathematics 2022, 10, 1961 23 of 26

3 uk(x,y,z,t)zs_l{( )" {Z( ) (x,y,z,o)+S[q(x,y,z,t)]H
k=0 =0

. 1[% S{L[uo xy,z,t)]—l—N[Mo(x/y/Zrt)]}]

(

S GRS (N R )

no(x,y,2,1) = 5 [ {9 (5 (x,y,z,m+sm<x,y,z,t>1H
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