
Citation: Grunau, S.; Kunz, J.

Hyperelliptic Functions and Motion

in General Relativity. Mathematics

2022, 10, 1958. https://doi.org/

10.3390/math10121958

Academic Editors: Emma Previato

and Vladimir Balan

Received: 11 April 2022

Accepted: 3 June 2022

Published: 7 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Review

Hyperelliptic Functions and Motion in General Relativity
Saskia Grunau * and Jutta Kunz

Institut für Physik, Universität Oldenburg, D-26111 Oldenburg, Germany; jutta.kunz@uni-oldenburg.de
* Correspondence: saskia.grunau@uni-oldenburg.de

Abstract: Analysis of black hole spacetimes requires study of the motion of particles and light in
these spacetimes. Here exact solutions of the geodesic equations are the means of choice. Numerous
interesting black hole spacetimes have been analyzed in terms of elliptic functions. However, the
presence of a cosmological constant, higher dimensions or alternative gravity theories often necessitate
an analysis in terms of hyperelliptic functions. Here we review the method and current status for
solving the geodesic equations for the general hyperelliptic case, illustrating it with a set of examples
of genus g = 2: higher dimensional Schwarzschild black holes, rotating dyonic U(1)2 black holes,
and black rings.
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1. Introduction

More than one hundred years ago, Einstein proposed his theory of general relativity,
based on the revolutionary idea, that gravity is encoded in the geometric properties of
space and time. General relativity is very well supported by experiments and has many
applications such as the global positioning system GPS [1,2]. One of the predictions of
general relativity is the existence of black holes and their formation in the collapse of very
massive stars after exhaustion of their nuclear fuel [3–6]. Black holes possess an event
horizon, and thus a boundary beyond which no communication with the exterior is possible.
By now there is strong observational evidence not only for stellar black holes, but also for
supermassive black holes at the core of galaxies [7–15].

A powerful tool to study black holes is the analysis of their geodesics. The motion of
particles and light around a black hole provides valuable information about the spacetime.
In particular, analytic solutions of the geodesic equations can be used to calculate observables
with high accuracy, to be compared with observations in order to test theories and models.

For many well-known spacetimes like Schwarzschild and Kerr the equations of motion
are of elliptic type (see, e.g., [16–40] and references therein). These can easily be solved
analytically in terms of the elliptic and therefore doubly-periodic Weierstraß ℘-function.
However, when additional parameters (like the cosmological constant), higher dimensions
or alternative theories of gravity are considered, the equations of motion become often
more complicated and one encounters hyperelliptic integrals [41–44].

Inspired by the work on the double pendulum by Enolski et al. [45], exact solutions of the
hyperelliptic equations of motion of genus two (g = 2) arising in Schwarzschild-(anti-) de Sitter
spacetime were obtained by Hackmann and Lämmerzahl [46,47]. Subsequently exact solutions
of the g = 2 geodesic equations were obtained for spherically and axially symmetric black
holes in four and higher dimensions [48–50]. The inversion of hyperelliptic integrals was then
generalized by Enolski et al. [51] to obtain solutions of the geodesic equations also for higher
genus, g > 2. First applications included a nine-dimensional spacetime with cosmological
constant and charge [51] and special cases of a Hořava–Lifshitz spacetime [52].
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2. Geodesic Motion around Black Holes

Black holes represent some of the most intriguing objects of the universe, making their
study both observationally and mathematically highly interesting. When the black hole
spacetime is obtained as a solution of the gravitational field equations, the exploration of
the properties of this spacetime relies to a large extent on the analysis of the motion of
particles and light in this spacetime. For neutral point particles this motion is described by
the geodesic equation

0 =
d2xµ

dτ2 +
{ µ

ρσ

}dxρ

dτ

dxσ

dτ
, (1)

where xµ are the coordinates, τ is an affine parameter along the orbit, and the symbol
{ µ

ρσ

}
denotes the connection coefficients (and the Einstein summation convention is employed).
Given a spacetime described by the invariant square of the infinitesimal line element

ds2 = gµνdxµdxν (2)

with metric coefficients gµν, the connection coefficients are known functions of the coor-
dinates. The geodesic Equation (1) forms a set of coupled differential equations, whose
solution describes the sought after orbital motion in the spacetime. However, it is often of
advantage to apply the Hamilton–Jacobi formalism to obtain an equivalent set of equations,
starting from the Hamilton–Jacobi equation

2
∂S
∂τ

= gµν ∂S
∂xµ

∂S
∂xν

(3)

with Hamilton’s principal function S, and to exploit the symmetries of the spacetime to
obtain a separation of variables.

Black holes in four dimensions, i.e., one time and three spatial dimensions, are certainly
of highest interest from an astrophysical point of view. In this case separability requires
four constants of motion. The first constant of motion δ is associated with the square of the
particle momentum, δ = pµ pµ = −m2. Setting the particle mass to m = 1 yields δ = −1,
whereas for light δ = 0. The simplest black hole solutions of General Relativity are the
static spherically symmetric Schwarzschild black hole and the stationary axially symmetric
(rotating) Kerr black hole. Clearly, the symmetries of these spacetimes correspond to
the existence of Killing vectors associated with two constants of motion. In particular,
stationarity leads to conservation of energy E and axial symmetry to conservation of
angular momentum L. However, the separability of the equations of motion of the Kerr
spacetime involves still another constant of motion, the so called Carter constant [17], that
derives from the existence of a Killing tensor [53]. In Boyer–Lindquist coordinates t, r, θ, φ
the geodesic equations can then be solved after employing the separation ansatz

S =
1
2

δτ − Et + Lφ + Sr(r) + Sθ(θ) , (4)

leading to elliptic integrals, just as for the case of the static Schwarzschild black hole.
From a theoretical point of view it is very interesting to consider General Relativity

also in higher dimensions, since additional dimensions are present in various theories like
Kaluza–Klein theory or string theory. Moreover, it allows to discern genuine properties of
black holes in General Relativity and properties only present in four dimensions. Higher
dimensional generalizations of the static spherically symmetric Schwarzschild black hole
were obtained by Tangherlini [54]. The high symmetry of these solutions implies separabil-
ity of the equations of motion, but depending on the spacetime dimension D hyperelliptic
integrals arise, starting with D = 6 [48]. The generalizations of the rotating Kerr black
hole to higher dimensions was accomplished by Myers and Perry [55]. Myers–Perry black
holes in D dimensions are characterized by N = bD−1

2 c independent angular momenta,
associated with rotation in N independent planes. Thus 5-dimensional Myers–Perry black
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holes possess two conserved angular momenta, showing the need for another conserved
quantity for separability. Analogous to the Kerr case separability is guaranteed based on the
presence of a Killing tensor [56,57]. Analysis of the geodesic equations leads again to elliptic
integrals [26,32]. Proof of separability of the geodesic equations in still higher dimensions
is based on the existence of Killing-Yano tensors [58,59]. In these spacetimes hyperelliptic
integrals arise unless substitutions can be made to reduce the order of the polynomial Pd in
the geodesic equations. As discussed in more detail below, hyperelliptic integrals arise also
in numerous further black hole spacetimes, for instance, when a cosmological constant,
electromagnetic fields, etc. are present.

3. Hyperelliptic Integrals

When the equations of motion are of hyperelliptic type they take the form(
yn dy

dx

)2
= Pd(y) (5)

with the initial values xin and yin, and have to be solved for a function y(x). Pd(y) is
a polynomial of order d ≥ 5. The number n can take the values n = 1 . . . g − 1 where
g = b d−1

2 c.
Equation (5) leads to a hyperelliptic integral of the first kind

x− xin =
∫ y

yin

y′n dy′√
Pd(y′)

(6)

which has to be inverted to find y(x). The solution has been discussed in [46–48,51,52]. The
inversion of the integral should not depend on the integration path and thus for a closed
integration path with the integral ω =

∫ yn dy√
Pd(y)

the following must apply: y(x−ω) = y(x).

Therefore y(x) is periodic. For each y the square root in the integrand can take two
different signs. It is therefore not clearly defined in the complex plane. To resolve this issue,
a Riemann surface can be constructed, where y 7→

√
Pd(y) is a single valued function. The

two signs of
√

Pd(y) correspond to two copies of the Riemann sphere. Both spheres are
cut between pairs of the zeros ei with i = 1 . . . d of the polynomial Pd(y). Here the zeros
are called branch points. The branch cuts between the branch points should not be right
next to each other, i.e., there should not be two cuts starting at the same branch point. If d
is odd, the branch point ed+1 is placed at infinity. At the branch points

√
Pd(y) is the same

at both spheres and therefore they can be identified here. Along the branch cuts the two
spheres can be put together to get the Riemann surface, which now has holes. The number
of holes is described by the genus g = b d−1

2 c. For example in the case g = 2, the Riemann
surface is a double torus with two holes.

Let Pd(y) = λ2g+1y2g+1 + λ2gy2g + . . . + λ0 be the polynomial with one branch point
at infinity. For the problems considered in this review, the polynomial is often considered
in the canonical form, which is defined by setting the first coefficient λ2g+1 = 4. The factor
4 is chosen so that the canonical form looks like the Weierstraß form of the polynomial in
the corresponding elliptic problem [51].

Then a basis of holomorphic differentials of the first kind dui and meromorphic
differentials of the second kind dri with i = 1 . . . g is defined as

dui =
yi−1dy√

Pd(y)
, dri =

d−i

∑
k=i

(k + 1− i)λk+1+i
yk

4
√

Pd(y)
dy . (7)

A differential ykdy√
Pd(y)

is holomorphic if k = 0 . . . g− 1. However, if k = g . . . 2g− 1 a

pole at infinity occurs and the differential is therefore meromorphic.
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A homology basis of closed integration paths {ai, bi|i = 1, . . . , g} can be introduced to calcu-
late the period matrices (2ω, 2ω′) and (2η, 2η′) of the solution y(x) of the inversion problem (6)

2ωij =
∮

aj

dui, 2ω′ij =
∮

bj

dui,

2ηij = −
∮

aj

dri, 2η′ij = −
∮

bj

dri. (8)

The period matrices satisfy the Legendre relation, see [47] or [52]. If the periods are
calculated numerically for a specific problem, the Legendre relation can be used to check
the calculations.

Equation (6) is closely related to the Jacobi inversion problem, given by the equations

~x =
g

∑
i=1

∫ yi

y0

d~u . (9)

In the case y0 = ∞ it is possible to find a solution ~y for a given ~x. Each component of
the solution vector ~y is determined by the equation [47]

λ2g+1

4
yg −

g

∑
i=1

℘gi(~x)yi−1 = 0 (10)

and can be extracted using the theorem of Vieta. However, it should be noted that the order
of the components yi is not defined. The generalized Weierstraß function is defined as the
second logarithmic derivative of the Kleinian σ-function

℘ij(~u) = −
∂

∂ui

∂

∂uj
ln σ(~u) . (11)

The Kleinian σ-function is defined as [47]

σ(~u) = Ce−
1
2~u

Tηω−1~uθ
(
(2ω)−1~u + ~Kx0 ; τ

)
(12)

with τ = ω−1ω′. The constant C is given in [52]. The θ-function is

θ(~u, τ) = ∑
~m∈Zg

eiπ~mT(τm+2~u) . (13)

~Kx0 is the vector of Riemann constants [47,52].
The solution of Equation (6) can be obtained in a limiting process which restricts

the Jacobi inversion problem to the Θ-divisor, the set of zeros of the θ-function. Let us
demonstrate the limiting process in the case of genus 2 (see [47,48]). For g = 2 the Jacobi
inversion problem is

x1 =
∫ y1

y0

dy√
P5(y)

+
∫ y2

y0

dy√
P5(y)

x2 =
∫ y1

y0

ydy√
P5(y)

+
∫ y2

y0

ydy√
P5(y)

. (14)

If y0 = ∞, the Jacobi inversion problem has a solution in the form of Equation (10).
Therefore we rewrite the Equation (14)

z1 =
∫ y1

∞

dy√
P5(y)

+
∫ y2

∞

dy√
P5(y)
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z2 =
∫ y1

∞

ydy√
P5(y)

+
∫ y2

∞

ydy√
P5(y)

(15)

with
~z = ~x− 2

∫ ∞

y0

d~u . (16)

The solution of Equation (15) can by expressed as

y1 + y2 = ℘22(~z)

y1y2 = −℘21(~z) (17)

by applying the theorem of Vieta to Equation (10).
Now we take the limit y2 → ∞. In this limit one can write y1 as

y1 = lim
y2→∞

y1y1

y1 + y2
. (18)

Inserting Equation (17) yields

y1 = lim
y2→∞

−℘21(~z)
℘22(~z)

(19)

= lim
y2→∞

σ(~z)σ12(~z)− σ1(~z)σ2(~z)
σ2

2 (~z)− σ(~z)σ22(~z)
(20)

=
σ(~x∞)σ12(~x∞)− σ1(~x∞)σ2(~x∞)

σ2
2 (~x∞)− σ(~x∞)σ22(~x∞)

(21)

where σi is the ith derivative of the Kleinian σ-function and ~x∞ = limy2→∞~z. It can be
shown [47] that ~x∞ is an element of the Θ-divisor, which is the set of zeros of the θ-function.
That means θ(~x∞) = 0 and therefore σ(~x∞) = 0. Then we have

y1 = −σ1(~x∞)

σ2(~x∞)
. (22)

In the end we want to find the inversion of the integral (6). For this we have to consider

~x∞ = lim
y2→∞

~z = lim
y2→∞

~x− 2
∫ ∞

y0

d~u =
∫ y1

y0

d~u−
∫ ∞

y0

d~u . (23)

In a nutshell, for a genus 2 curve the inversion of the integral (6) with the initial value
yin = y(xin) is

y(x) = − σ1(~x∞)

σ2(~x∞)

∣∣∣∣
σ(~x∞)=0

. (24)

The vector ~x∞ depends on the considered holomorphic integral:

~x∞ =

(
x− x′in

x2

)
to solve x− xin =

∫ y

yin

dy′√
P5(y′)

(25)

and

~x∞ =

(
x1

x− x′′in

)
to solve x− xin =

∫ y

yin

y dy′√
P5(y′)

, (26)

where x′in = xin +
∫ ∞

yin

dy′√
P5(y′)

and x′′in = xin +
∫ ∞

yin

y dy′√
P5(y′)

. The components x1 and x2 are

determined by the condition σ(~x∞) = 0.
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In higher genera the inversion is given by [51,52]

y(x) = −

∂M+1

∂x1∂xM
g

σ(~x∞)

∂M+1

∂x2∂xM
g

σ(~x∞)

∣∣∣∣∣∣∣∣∣
~x∞∈Θ1

, M =
(g− 2)(g− 3)

2
+ 1 , (27)

where

Θ1 =

{
~x∞ ∈ Jac(Xg)

∣∣∣ σ(~x∞) = 0,
∂j

∂xj
g

σ(~x∞) = 0 ∀ j = 1, . . . , g− 2

}
. (28)

Jac(Xg) = Cg/Γ is the Jacobian of the Riemannian surface Xg, where Γ =
ωv + ω′v′|v, v′ ∈ Zg is the lattice spanned by the periods ωij and ω′ij. The solution for-
mula (27) is a conjecture based on the properties of the Schur-Weierstraß functions. A
relation similar to Equation (27) holds for the Schur-Weierstraß polynomials and in [51,52]
it was conjectured that this formula can also be used for the σ-function. An analogue of
this formula was considered in [60]. In the case genus g = 3 Equation (27) also holds,
as shown in [61].

However, some geodesic equations yield hyperelliptic integrals of the third kind∫ y

yin

1
y′ − p

dy′√
Pd(y′)

, (29)

where p is a pole and Pd(y) a polynomial of order d. A formula to solve these integrals, which
can be proven with the help of the Riemann vanishing theorem [62], was found in [52]

∫ y

yin

1
y′ − p

dy′√
Pd(y′)

=
1√

Pd(p)

[
−2

∫ y

yin

d~uT
∫ p

e2

d~r + ln
σ
(∫ y

∞ d~u−
∫ p

e2
d~u− ~K∞

)
σ
(∫ y

∞ d~u +
∫ p

e2
d~u− ~K∞

)
− ln

σ
(∫ yin

∞ d~u−
∫ p

e2
d~u− ~K∞

)
σ
(∫ yin

∞ d~u +
∫ p

e2
d~u− ~K∞

)
. (30)

d~u and d~r are the vectors of the holomorphic differentials of the first kind and the mero-
morphic differentials of the second kind respectively (Equation (7)). The basepoint e2 is a
zero of the polynomial Pd. ~K∞ is the vector of Riemann constants. The integral

∫ p
e2

d~r can
be rewritten in terms of the ζ-function

~ζ(~u) = (ζ1(~u), . . . , ζg(~u))T (31)

ζi(~u) =
∂

∂ui
ln σ(~u) (32)

and the characteristic

[Ai] =

(
~ε′Ti
~εT

i

)
=

(
ε′i1 ε′i2
εi1 εi2

)
(33)

of a branch point ei [52]. In [52] the characteristics are explicitly calculated for g = 2 in
section (V.A.) and for g = 3 in section (VI.A.). The vectors~εi and~ε′i ∈ R2 have the entries 1

2
or 0. Then the integral is∫ p

e2

d~r = ~ζ

(∫ p

e2

d~u + ~K∞

)
− 2(η′~ε′ + η~ε)− 1

2
~Z(p,

√
Pd(p)) (34)
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where η and η′ are the half period matrices (see Equation (8)), and the gth component of
the vector~Z(Z, W) is Zg(Z, W) = 0 and for 1 ≤ j < g we have

Zj(Z, W) =
W

∏
g
k=2(Z− e2k)

g−j−1

∑
k=0

(−1)g−k+j+1ZkSg−k−j−1(~e) . (35)

The Sk(~e) are elementary symmetric functions of order k built on g− 1 branch points
e4, . . . , e2g: S0 = 1, S1 = e4 + . . . + e2g, etc [52].

4. g = 2 Examples for Geodesic Motion
4.1. Higher Dimensional Schwarzschild Black Holes

Schwarzschild black hole spacetimes in D dimensions are given by [54]

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΩ2
D−2 , f (r) = 1−

( rS
r

)D−3
, (36)

with Schwarzschild radius rS and standard metric on the D− 2-sphere dΩ2
D−2. Since energy

E and angular momentum L are conserved, and the motion is confined to an equatorial plane

E = f (r)
dt
dτ

, L = r2 dϕ

dτ
, (37)

the remaining equation of motion is the radial equation(
dr
dτ

)2
= E2 − f (r)

(
L2

r2 − δ

)
, (38)

respectively, the orbital equation(
dr
dφ

)2
=

r4

L2

(
E2 − (1− f (r))

(
L2

r2 − δ

))
, (39)

yielding the particle orbit in the black hole spacetime. Introducing dimensionless quantities

λ =
r2

S
L2 , µ = E2 , r̃ =

r
rS

(40)

the right hand side of Equation (39) can be expressed as Pn(r̃)/r̃m, where Pn(r̃) is a polyno-
mial of order n. Moreover, a substitution is possible in odd dimensions, u = 1/r̃2, to reduce
the order of the polynomial by a factor of 2. Thus a g = 2 case is obtained in D = 6, 9 and
11 dimensions (while D = 5 and 7 are still elliptic) [48]. In 9 and 11 dimensions, the orbital
equations read (

du
dϕ

)2
= 4u

(
u4 + λu3 − u + λ(µ− 1)

)
= 4P5(u) , (41)(

du
dϕ

)2
= 4u

(
u5 + λu4 − u + λ(µ− 1)

)
= 4P6(u) , (42)

respectively, leading to the solutions

r̃(ϕ) =

√
−σ2(~ϕ∞,z1)

σ1(~ϕ∞,z1)
, (43)

r̃(ϕ) =
1√

− σ2(~ϕ∞,z2 )

σ1(~ϕ∞,z2 )
+ u6

, (44)
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where in the latter 11 dimensional case a substitution u = 1
x + u6 was performed, with u6

a root of P6(u), transforming the orbital equation to
(

x dx
dϕ

)2
= 4P5(x) [48]. The ~ϕ∞,zi are

defined as

~ϕ∞,z2 =

(∫ x1
xin

dz1 −
∫ ∞

xin
dz1

ϕz2 − ϕ′in,z2

)
, (45)

~ϕ∞,z1 =

(
ϕz1 − ϕ′in,z1∫ x1

xin
dz2 −

∫ ∞
xin

dz2

)
, (46)

with ϕ′in,z2
= ϕin +

∫ ∞
xin

dz2 and ϕ′in,z1
= ϕin +

∫ ∞
xin

dz1.
Further analysis of the possible particle motion reveals, that these higher dimensional

Schwarzschild black hole spacetimes do not allow for periodic bound orbits. Only escape
orbits away from the black hole to spatial infinity are allowed and orbits terminating at the
central black hole singularity.

4.2. Rotating Dyonic U(1)2 Black Holes

The problem of dark matter and dark energy is still an unsolved problem of physics,
which could possibly be solved by introducing scalar fields like the dilaton and the axion.
An interesting spacetime containing these fields is the rotating dyonic black hole with
four electromagnetic charges of the U(1)2 gauged supergravity found by Chow and Com-
père [63]. The exact solutions of the equations of motion in the rotating dyonic black hole
spacetime were found in [64]. The metric is given by

ds2 = −
Rg

B− aA

(
dt− A

Ξ
dφ

)2
+

B− aA
Rg

dr2 +
Θga2 sin2 ϑ

B− aA

(
dt− B

aΞ
dφ

)2
+

B− aA
Θg

dϑ2 , (47)

with

Rg = r2 − 2Mr + a2 + e2 − N2
g + g2[r4 + (a2 + 6N2

g − 2v2)r2 + 3N2
g(a2 − N2

g)]

Θg = 1− a2g2 cos2 ϑ− 4a2Ng cos ϑ

A = a sin2 ϑ + 4Ng sin2 ϑ

2
B = r2 + (Ng + a)2 − v2

Ξ = 1− 4Ngag2 − a2g2 .

(48)

Here M describes the mass of the black hole, a is the rotation parameter, e and v
correspond to the charges, Ng is the Newman-Unti-Tamburino (NUT) parameter and g is
the gauge coupling constant. The Boyer-Lindquist like coordinates (t, r, ϑ, φ) transform to
Cartesian coordinates as

x =
√
(r2 + a2) sin ϑ cos ϕ

y =
√
(r2 + a2) sin ϑ sin ϕ

z = r cos ϑ .

(49)

Using the Hamilton-Jacobi formalism as described in Section 2 one finds four differen-
tial equations which describe the motion of particles and light in the above spacetime.(

dr̃
dγ

)2
= X , (50)

sin2 ϑ

(
dϑ

dγ

)2
= Y , (51)
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(
dφ

dγ

)
=

ãΞ̃(B̃E− ãL̃Ξ̃)
R̃

+
Ξ̃(ÃE− L̃Ξ̃)

Θ̃ sin2 ϑ
, (52)(

dt̃
dγ

)
=

B̃(B̃E− ãL̃Ξ̃)
R̃

+
Ã(L̃Ξ̃− ÃE)

Θ̃ sin2 ϑ
. (53)

with the functions

X = (B̃E− ãL̃Ξ̃)2 + R̃(K̃− B̃δ) ,

Y = −(ÃE− L̃Ξ̃)2 + Θ̃ sin2 ϑ(ãÃδ− K̃) ,

R̃ = r̃2 − r̃ + ã2 + ẽ2 − Ñg
2 g̃2[r̃4 + (ã2 + 6Ñg

2 − 2ṽ2)r̃2 + 3Ñg
2
(ã2 − Ñg

2
)] ,

Θ̃ = 1− ã2 g̃2 cos2 ϑ + 4ã2 g̃2Ñg cos ϑ ,

Ã = ã2 sin2 ϑ + 2Ñg(1− cos ϑ) ,

B̃ = r̃2 + (Ñg + ã)2 − ṽ2 ,

Ξ̃ = 1− ã2 g̃2 − 4ãÑg g̃2 .

(54)

Here dimensionless quantities were used

r̃ =
r

2M
, t̃ =

t
2M

, τ̃ =
τ

2M
, Ñg =

Ng

2M
, ã =

a
2M

,

g̃ = 2Mg , ẽ =
e

2M
, ṽ =

b
2M

, K̃ =
K

2M
, L̃ =

L
2M

.
(55)

The definition of γ with dτ̃ = (B̃− ãÃ)dγ simplifies the equation by absorbing the r
and ϑ dependent prefactor (B̃− ãÃ).

The equations of motion are of hyperelliptic type and can be solved in terms of
the Kleinian σ-function. The r-Equation (50) yields a hyperelliptic integral of the first
kind. In general the right hand side of (50) is a polynomial of order six X = ∑6

i=1 ai r̃i.
The substitution r̃ = ± 1

x + r̃0, where r̃0 is a zero of X, transforms X into a polynomial of
order five and the r-equation becomes(

x
dx
dγ

)2
=

5

∑
i=0

bixi =: Pr̃
5(x) . (56)

A separation of variables yields the hyperelliptic integral

γ− γin =
∫ x

xin

x′dx′√
Pr̃

5(x′)
. (57)

As described in Section 3, see Equations (24) and (26), the solution of the above
equation is

x = −σ1(~γ∞)

σ2(~γ∞)
, (58)

where σi is the ith derivative of the Kleinian σ-function and

~γ∞ =

γ1, γ− γin −
∫ ∞

xin

xdx√
Pr̃

5(x)

T

. (59)

γ1 is determined by the condition σ(~γ∞) = 0. A resubstitution yields the full solution of (50)

r̃(γ) = ∓σ2(~γ∞)

σ1(~γ∞)
+ r̃0 . (60)
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The ϑ-Equation (51) can be solved similarly by substituting cos ϑ = ± 1
ν + ν0, where ν0

is a zero of Y, so that (
ν

dν

dγ

)2
=

5

∑
i=0

b′iν
i =: Pϑ

5 (ν) . (61)

The solution is

ϑ = arccos

(
∓σ2(~γ′∞)

σ1(~γ′∞)
+ ν0

)
(62)

with

~γ′∞ =

γ′1, γ− γin −
∫ ∞

νin

νdν√
Pϑ

5 (ν)

T

, (63)

where γ′1 is determined by the condition σ(~γ′∞) = 0.
The φ-Equation (52) involves hyperelliptic integrals of the third kind. Here we use the

Equations (50) and (51) to rewrite the φ-Equation (52) as

φ− φin =
∫ r̃

r̃in

ãΞ̃(B̃E− ãL̃Ξ̃)
R̃

dr̃√
X

+
∫ ϑ

ϑin

Ξ̃(ÃE− L̃Ξ̃)
Θ̃ sin ϑ

dϑ√
Y

= Ir̃(r̃) + Iϑ(ϑ) . (64)

Ir̃ and Iϑ can be solved separately. Both integrals can be decomposed into several integrals
of the form

I =
∫ x

xin

dx′

(x− Z)
√

P5(x)
, (65)

where Z is a pole and P5(x) is a polynomial of the fifth order. The solution is (see
Equation (30) in Section 3)

I =
2√

P5(Z)

∫ x

xin

d~zT
∫ Z

e2

d~y + ln

σ(
∫ x

∞ d~z−
∫ Z

e2
d~z)

σ(
∫ x

∞ d~z +
∫ Z

e2
d~z)

− ln

σ(
∫ xin

∞ d~z−
∫ Z

e2
d~z)

σ(
∫ xin

∞ d~z +
∫ Z

e2
d~z)

 . (66)

e2 is a zero of the polynomial P5(x) with the coefficients ak and the holomorphic and
meromorphic differentials are

d~z :=

(
dx√
P5(x)

,
xdx√
P5(x)

)T

(67)

d~y =

(
4

∑
k=1

kak+1
xkdx

4
√

P5(x)
,

3

∑
k=2

(k− 1)ak+3
xkdx

4
√

P5(x)

)T

. (68)

Analogously, the solution of the t̃-Equation (53) can be found.

With the full set of analytical solutions we can visualize the orbits in this spacetime,
see Figure 1.

For the calculation of a specific orbit, first the periods have to be computed according
to Equation (8). The integration path depends on the location of the zeros of the polynomial
in the complex plane. The zeros are singularities of the integrand and therefore the integral
has to be split into several parts, integrating from one zero to the next. When complex zeros
occur, real and imaginary parts are integrated separately. One has to keep in mind that the
sign of the square root

√
Pd is different for each part of the integration, see [47] for further

details and pictures of the integration paths.
As the starting point xin in Equation (57) we choose one of the turning points of

the orbit we want to plot, i.e., a zero of the polynomial. This has the advantage, that
γ− γin−

∫ ∞
xin

xdx√
Pr̃

5(x)
in Equation (59) can be expressed in terms of the periods (if we choose

γin = 0) . The solution of the radial equation is computed pointwise. For each gamma
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in ~γ∞, we have to compute a γ1 according to the condition σ(~γ∞) = 0. Here we use the
Newton-Raphson method to determine γ1. With the resulting vector ~γ∞, we can compute
the solution r(γ) (Equation (60)). All our calculations are performed with the help of the
software MAPLE , including the numerical calculation of the θ- and σ-function and their
derivatives.

Possible types of motion are bound orbits and escape orbits, which can also cross
the horizons. The maximal analytic extension of the spacetime gives rise to an infinite set
of universes or worlds, i.e., asymptotically flat regions, that are connected by intermediate
regions delimited by horizons and by regions containing a singularity. Thus a particle
can pass from one asymptotically flat region via an outer horizon into an intermediate
region, from there via an inner horizon into a region with a singularity, leave again this
region via an inner horizon, pass through another intermediate region, and then leave
across an outer horizon into another asymptotically flat region. Such a two-world escape
orbit is illustrated in Figure 1c. Here the first outer horizon represents a black hole horizon
for the particle, whereas the second outer horizon is experienced by the particle as a
white hole horizon, allowing it to leave the black hole it had entered. The Figure 1c does
not distinguish between the universes, though, and identifies their spatial coordinates.
Furthermore, the shape of the singularity (which varies from ring-like to three dimensional
structures) allows some geodesics to pass the singularity and reach negative r̃, that can be
interpreted as reaching a universe with anti-gravity. The types of orbits around the rotating
dyonic U(1)2 black hole are similar those in the Kerr-Newman-AdS spacetime.

(a) (b) (c)

Figure 1. Orbits of particles (blue curves) around the rotating dyonic U(1)2 black hole. The horizons
are represented by grey ellipsoids and the dark grey structure is the singularity of the black hole.
(a) Bound orbit; (b) Escape orbit; (c) Two-world escape orbit crossing both horizons twice and
emerging into another universe.

4.3. Black Rings

In four dimensions the event horizon of a black hole is spherical, however, in higher
dimension new topologies arise. In 2001 Emparan and Reall [65] presented a black hole so-
lution with a topology of S1× S2: the rotating black ring. A doubly spinning black ring with
two independent angular momenta was found by Pomeransky and Sen’kov [66]. Elvang
constructed a charged singly spinning black ring in 2003 [67] and soon after, Hoskisson
presented a doubly spinning version of the charged black ring [68]. Exact solutions of the
equations of motion were found in the singly spinning black ring spacetime [69] and the
charged doubly spinning black ring spacetime [70].

The metric of a doubly spinning charged black ring can be written as

ds2 = −D(x, y)−2/3 H(y, x)
H(x, y)

(dt + cΩ)2 + D(x, y)1/3 R2H(x, y)
(x− y)2(1− ν)2

[
dx2

G(x)
− dy2

G(y)

+
A(y, x)dφ2 − 2L(x, y)dφdψ− A(x, y)dψ2

H(x, y)H(y, x)

]
. (69)
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The metric functions read

G(x) = (1− x2)(1 + λx + νx2)

H(x, y) = 1 + λ2 − ν2 + 2λν(1− x2)y + 2xλ(1− y2ν2) + x2y2ν(1− λ2 − ν2)

L(x, y) = λ
√

ν(x− y)(1− x2)(1− y2)[1 + λ2 − ν2 + 2(x + y)λν− xyν(1− λ2 − ν2)]

A(x, y) = G(x)(1− y2)[((1− ν2)− λ2)(1 + ν) + yλ(1− λ2 + 2ν− 3ν2)]

+ G(y)[2λ2 + xλ((1− ν)2 + λ2) + x2((1− ν)2 − λ2)(1 + ν)

+ x3λ(1− λ2 − 3ν2 + 2ν3) + x4ν(1− ν)(1− λ2 − ν2)]

D(x, y) = c2 − s2 H(y, x)
H(x, y)

= 1 + s2 2λ(1− ν)(x− y)(1− νxy)
H(x, y)

. (70)

The shape, mass and angular momenta of the black ring are represented by the
parameters R, λ and ν, where 0 ≤ ν < 1 and 2

√
ν ≤ λ < 1 + ν. The metric reduces to

a singly spinning black ring for ν = 0. The doubly spinning black ring possesses two
independent angular momenta and thus the rotation is given by

Ω = Ωψdψ + Ωφdφ , (71)

with

Ωψ = −Rλ
√

2((1 + ν)2 − λ2)

H(y, x)
1 + y

1− λ + ν
(1 + λ− ν + x2yν(1− λ− ν) + 2νx(1− y)) ,

Ωφ = −Rλ
√

2((1 + ν)2 − λ2)

H(y, x)
(1− x2)y

√
ν . (72)

The charge is described by the parameters

c = cosh(α) and s = sinh(α) with α ∈ R . (73)

For c = 1 and s = 0 one obtaines an uncharged black ring.

The black ring metric is given in toroidal coordinates with −1 ≤ x ≤ 1, −∞ < y ≤ −1
and −∞ < t < ∞. φ and ψ are 2π-periodic. The toroidal coordinates can be seen as two
pairs of polar coordinates

x1 = r1 sin(φ)
x2 = r1 cos(φ)

and
x3 = r2 sin(ψ)
x4 = r2 cos(ψ)

(74)

with

r1 = R

√
1− x2

x− y
and r2 = R

√
y2 − 1

x− y
(75)

x1, x2, x3, x4 are four-dimensional Cartesian-like coordinates.
A ring-like curvature singularity is located at y = −∞, light and particles cannot return

from this area. At G(y) = 0 the metric has a coordinate singularity resulting in two horizons

yh+ =
−λ +

√
λ2 − 4ν

2ν
(76)

yh− =
−λ−

√
λ2 − 4ν

2ν
. (77)

If the angle φ is constant, the black ring horizon has a donut-like topology S1 × S1.
On the other hand if ψ is constant the horizon will look like two S2 spheres.
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To obtain the equations of motion for light and test particles in the five-dimensional
spacetime of a charged doubly spinning black ring, we use the Hamilton-Jacobi formalism,
see Section 2. The metric of the black ring and the Hamiltonian H = 1

2 gab pa pb do not
depend on the coordinates t, φ and ψ and therefore three conserved momenta pa = gab ẋb

with the associated killing vector fields ∂/∂t, ∂/∂φ and ∂/∂ψ exist

pt = −D(x, y)−2/3 H(y, x)
H(x, y)

(ṫ + cΩφφ̇ + cΩψψ̇) ≡ −E (78)

pφ = −cΩφE− D(x, y)1/3 R2

H(y, x)(x− y)2(1− ν)2 (−A(y, x)φ̇ + L(x, y)ψ̇) ≡ Φ (79)

pψ = −cΩψE− D(x, y)1/3 R2

H(y, x)(x− y)2(1− ν)2 (A(x, y)ψ̇ + L(x, y)φ̇) ≡ Ψ . (80)

The dot denotes a derivative with respect to the affine parameter τ.
In the Hamilton-Jacobi equation we need the non-vanishing components of the inverse metric

gtt = −D(x, y)2/3 H(x, y)
H(y, x)

+ c2D(x, y)−1/3 (x− y)2

R2H(x, y)

×
[

Ω2
φ A(y, x)− 2ΩφΩψL(x, y)−Ω2

ψ A(x, y)

G(x)G(y)

]

gtφ = cD(x, y)−1/3 (x− y)2

R2H(x, y)
ΩψL(x, y)−Ωψ A(x, y)

G(x)G(y)

gtψ = cD(x, y)−1/3 (x− y)2

R2H(x, y)
ΩφL(x, y) + Ωψ A(y, x)

G(x)G(y)

gφφ = D(x, y)−1/3 (x− y)2

R2H(x, y)
A(x, y)

G(x)G(y)

gψψ = −D(x, y)−1/3 (x− y)2

R2H(x, y)
A(y, x)

G(x)G(y)

gφψ = −D(x, y)−1/3 (x− y)2

R2H(x, y)
L(x, y)

G(x)G(y)

gxx = D(x, y)−1/3 (x− y)2(1− ν)2

R2H(x, y)
G(x)

gyy = −D(x, y)−1/3 (x− y)2(1− ν)2

R2H(x, y)
G(y) .

(81)

E is the energy of the particle and its angular momenta in φ- and ψ-direction are Φ
and Ψ. In the x- and y-direction the conjugate momenta are:

px = D(x, y)1/3 R2H(x, y)ẋ
(x− y)2(1− ν)2G(x)

(82)

py = −D(x, y)1/3 R2H(x, y)ẏ
(x− y)2(1− ν)2G(y)

(83)

It is useful to split the polynomials A(x, y) and L(x, y) into x- and y-parts

A(x, y) = G(x)α(y) + G(y)β(x)

L(x, y) = G(x)δ(y)− G(y)δ(x) , (84)

with

α(ξ) = ν(1− ξ2)[−(1 + λ2)− ν(1− ν) + λξ(2− 3ν)− (1− λ2)ξ2]
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β(ξ) = (1 + λ2) + λξ(1 + (1− ν)2)− νξ2(2λ2 + ν(1− ν))− λν2ξ3(3− 2ν)

− ν2ξ4(1− λ2 + ν(1− ν))

δ(ξ) = λ
√

ν(1− ξ2)(λ− (1− ν2)ξ − λνξ2) . (85)

Having the three constants of motion E, Φ and Ψ one can think of an ansatz to solve
the Hamilton-Jacobi equation

S(τ, t, x, y, φ, ψ) =
1
2

δτ − Et + Φφ + Ψψ + Sx(x) + Sy(y). (86)

Inserting everything into the Hamilton-Jacobi equation yields

0 = δ− D(x, y)2/3 H(x, y)
H(y, x)

E2 + D(x, y)−1/3 (x− y)2(1− ν)2

R2H(x, y)

[
G(x)

(
∂S
∂x

)2
− G(y)

(
∂S
∂y

)2

+
A(x, y)

(
Φ + cΩφE

)2 − 2L(x, y)
(
Φ + cΩφE

)(
Ψ + cΩψE

)
− A(y, x)

(
Ψ + cΩψE

)2

(1− ν)2G(x)G(y)

]
.

(87)

In general Equation (87) does not seem to be separable. However, it can be separated
in three cases:

1. E = δ = 0: This special case describes zero energy null geodesics, which are realistic
inside the ergoregion only.

2. x = ±1: This case describes geodesics in the equatorial plane of the black ring, which
is also the “axis” of rotation in φ-direction. The equatorial plane can be divided into
two parts: The plane enclosed by the black ring x = +1 and the plane around the
black ring x = −1

3. y = −1: Here geodesics on the “axis” of rotation in ψ-direction are considered.
The case y = −1 describes a plane between two S2 spheres which represent the
horizon of the black ring.

In the first case E = δ = 0 the Hamilton-Jacobi formalism yields five equations of
motion, which are of elliptic type and can be solved in terms of the Weierstraß ℘-, σ- and
ζ-function. In the second and third case, the motion takes place in a plane and we get three
equations of motion, which are of hyperelliptic type. Since the solution in the two planes of
rotation is similar we will focus here on the case y = −1.

On the “axis” of ψ-rotation, we have y = −1, Ψ = 0 and py = ∂S
∂y = 0. Then the

Hamilton-Jacobi equation depends on the coordinate x only

0 = m2 − D2/3(x,−1)
H(x,−1)
H(−1, x)

E2 + D−1/3(x,−1)
(x + 1)2(1− ν)2

R2H(x,−1)

{
G(x)

(
∂S
∂x

)2

+
(Φ + cΩφE)2

(1− ν)2

[
β(x)
G(x)

− ν[2 + ν(1− ν) + λ(2− 3ν)]

1− λ + ν

]}
. (88)

From this we get the derivative of the action S(
∂S
∂x

)2
=

D1/3(x,−1)R2H(x,−1)
(x + 1)2(1− ν)2G(x)

(
D2/3(x,−1)

H(x,−1)
H(−1, x)

E2 −m2
)

−
(Φ + cΩφE)2

(1− ν)2G(x)

(
β(x)
G(x)

− ν[2 + ν(1− ν) + λ(2− 3ν)]

1− λ + ν

)
=: XS .

(89)
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and the ansatz for the action S in the Hamilton-Jacobi equation (see Section 2) becomes

S =
1
2

m2τ − Et + Φφ +
∫ √

XS dx . (90)

Following the Hamilton-Jacobi formalism we set the partial derivatives of S with respect
to the constants m2, E and Φ to zero, which gives us three differential equations of motion

dx
dγ

=
√

X(x) (91)

dφ

dγ
=

(x + 1)H(x,−1)H(−1, x)
(1 + ν− λ)2G(x)

(Φ + cΩφE) (92)

dt
dγ

= R2E
D(x,−1)H2(x,−1)
(x + 1)H(−1, x)

− (x + 1)H(x,−1)H(−1, x)
(1 + ν− λ)2G(x)

cΩφ(Φ + cΩφE) (93)

with

X(x) = (1− ν)2 H(x,−1)
H(−1, x)

{
R2G(x)

[
D(x,−1)H(x,−1)E2 − D1/3(x,−1)H(−1, x)δ

]
− (x + 1)2

(1− λ + ν)2

[
H(−1, x)Φ + cRλ

√
ν
√

2((1 + ν)2 − λ2)(1− x2)E
]2
}

(94)

and

H(−1, x) = (1− λ)2 − ν2 + νx2(1− λ2 − ν2 + 2λν)

H(x,−1) = 1 + λ2 − ν2 − 2λν(1− x2) + 2λx(1− ν2) + x2ν(1− λ2 − ν2)

D(x,−1) = 1 +
s2

H(x,−1)
[2λ(1− ν)(x + 1)(1 + νx)]

Ωφ =
Rλ
√

2((1 + ν)2 − λ2)

H(−1, x)
(1− x2)

√
ν . (95)

We also defined γ = (x+1)
D(x,−1)1/3R2 H(x,−1)

τ to simplify the equations of motion.

It is possible to solve the equations of motion (91)–(93) if X(x) is a polynomial, which
happens in two cases

1. D(x,−1) = 1 (which implies c = 1 and s = 0): This case represents the motion of
photons or particles around an uncharged doubly spinning black ring.

2. δ = 0: In this case the motion of photons around a charged doubly spinning black
ring is described.

In both cases the equations of motion are of hyperelliptic type (genus g = 2), since the
polynomial X = ∑6

i=1 aixi is of 6th order.
The substitution x = ± 1

u + xZ, where xZ is a zero of X, transforms X into a polynomial
of order five and the x-Equation (91) becomes(

u
du
dγ

)2
=

5

∑
i=0

biui =: P5(u) . (96)

A separation of variables yields the hyperelliptic integral

γ− γin =
∫ u

uin

u′du′√
P5(u′)

(97)
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As described in Section 3, see Equations (24) and (26), the solution of the above
equation is

u = −σ1(~γ∞)

σ2(~γ∞)
. (98)

A resubstitution yields the full solution of (91)

x(γ) = ∓σ2(~γ∞)

σ1(~γ∞)
+ xZ . (99)

where σi is the ith derivative of the σ-function and

~γ∞ =

(
γ1

γ− γ′′in

)
(100)

with γ′′in = γin +
∫ ∞

uin
u du√
P5(u)

. γ1 is determined by the condition σ(~γ∞) = 0.

Next we will solve the φ-Equation (92) of the black ring. Using Equation (91) the
φ-equation can be written as

φ− φin =
∫ x

xin

(x + 1)H(x,−1)H(−1, x)
(1 + ν− λ)2G(x)

(Φ + cΩφE)
dx√
X(x)

. (101)

The substitution x = ± 1
u + xZ and a partial fraction decomposition yields

φ− φin =
∫ u

uin

(
3

∑
i=1

Ki
u− pi

+ K4 + K5u

)
du√
P5(u)

. (102)

The constants Ki and the poles pi depend on the parameters of the black ring and the
test particle.

The hyperelliptic integrals of the first kind are known from the solution of the x-
Equation (91) and thus ∫ u

uin

K5
udu√
P5(u)

= K5(γ− γin) . (103)

and ∫ u

uin

K4
du√
P5(u)

= K4

(
γ1 +

∫ ∞

yin

du√
P5(u)

)
(104)

where
∫ ∞

yin
du√
P5(u)

can be calculated in terms of the periods if yin is chosen to be a zero of P5.

The hyperelliptic integral of the third kind

∫ u

uin

3

∑
i=1

Ki
u− pi

du√
P5(u)

(105)

can be solved with the solution Equation (30) in Section 3.
The complete solution of the φ-Equation (92) is

φ =
3

∑
i=1

[
2√

P5(pi)

∫ u

uin

d~zT
∫ pi

e2

d~y + ln

(
σ(
∫ u

∞ d~z−
∫ pi

e2
d~z)

σ(
∫ u

∞ d~z +
∫ pi

e2
d~z)

)
− ln

(
σ(
∫ uin

∞ d~z−
∫ pi

e2
d~z)

σ(
∫ uin

∞ d~z +
∫ pi

e2
d~z)

)]

+ K4

(
γ1 +

∫ ∞

yin

du√
P5(u)

)
+ K5(γ− γin) + φin . (106)

Analogously, the solution of the t-Equation (93) can be found.
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Using the analytical solutions we can plot orbits in the black ring spacetime. Figure 2a
shows an escape orbit in the equatorial plane (x = ±1) of the black ring. In Figure 2b a
many-world bound orbit for light in the case E = δ = 0 is depicted. As discussed above
for Figure 1c, also for this ring spacetime the maximal analytic extension consists of an
infinite set of worlds, intermediate regions and regions with a singularity. A bound orbit
of a particle that crosses both outer and inner horizons twice then emerges into another
world, only to enter the black ring again, and repeat this whole process periodically. A
bound orbit is shown in Figure 2c. In the black ring spacetime bound orbits only exist in
the plane of ψ-rotation (y = −1). Interestingly, in higher dimensional spherical black hole
spacetimes, such as the higher dimensional Schwarzschild and Myers-Perry black holes,
stable bound orbits are not possible. In the Myers-Perry spacetime stable bound orbits can
only be found hidden behind the horizons. Therefore, the bound orbit in Figure 2c seems to
be a particular feature of the black ring. We note, that Figure 2 illustrates orbits in the black
ring spacetime by making use of different projections. Figure 2a,b suppress one spatial
coordinate of the S2 and retain the S1, whereas Figure 2c suppresses the S1 while retaining
the S2. Therefore the horizons look connected and ringlike in (a) and (b), whereas in (c) the
horizon appears as two separate spheres.

(a) (b) (c)

Figure 2. Orbits of particles (blue curves) around the black ring. The horizons are depicted as grey
tori or spheres. (a) Escape orbit in the equatorial plane (x = ±1); (b) Many-world bound orbit in the
case E = m = 0; (c) Bound orbit in the plane of ψ-rotation (y = −1).

5. Conclusions

Geodesic motion in black hole spacetimes is of utmost relevance for fundamental
physics and astrophysics, as well as for technological applications. Since exact solutions
of the differential equations provide arbitrary accuracy, they are the means of choice.
Numerous black hole spacetimes allow for exact solutions, based on elliptic and hyperel-
liptic integrals. Whereas the elliptic case has been widely studied, hyperelliptic geodesic
equations have received much less attention [43,47–52,64,71–78].

Here we have reviewed the general method for constructing solutions of hyperelliptic
geodesic equations [51], and we have illustrated the method for the g = 2 case with several
examples: 9- and 11-dimensional Schwarzschild black holes, 4-dimensional supergravity
black holes, and 5-dimensional black rings. Whereas numerous interesting spacetimes with
g = 2 hyperelliptic geodesic equations are still awaiting analysis, this is even more so for
spacetimes with g > 2 hyperelliptic equations [51,52].

However, in alternative theories of gravity also geodesic equations can arise, that are
characterized by polynomials of the more general type

yn + P(n−2)
mn−2 (x)yn−2 + P(n−3)

mn−3 (x)yn−3 + . . . + P(1)
m1 (x)y + P(0)

m0 (x) = 0 , (107)
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with P(n)
m (x) polynomials of order m in x. For instance, in Hořava–Lifshitz black hole

spacetimes [79–81] as well as Gauß–Bonnet black hole [82] spacetimes quartic equations of
the form

y4 + P(2)
m (x)y2 + P(0)

n (x) = 0 (108)

arise. While in special cases such curves can be reduced to lower genera and the above
methods become applicable [52], for the general set of geodesic equations so far only
numerical analysis has been performed [83]. The extension of the above methods to obtain
exact solutions also in such general cases remains a challenge to be tackled.
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