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Abstract: In this work, we studied the stability of radially symmetric growth in tumor spheroids
using a reaction-diffusion model. In this model, nutrient concentration and internal pressure are local
variables that implicitly relate the proliferation of cells to the growth of the tumor. The analytical
solution of the governing model was presented in an orthonormal spherical harmonic basis. It was
shown that the radially symmetric steady-state solution to the growth of tumor spheroids, under
symmetric growth conditions, was unstable with respect to small asymmetric perturbations. Such
perturbations excited the asymmetric modes of growth, which could grow in time and change the
spherical configuration of the tumor. The number of such modes and their rates of growth depended
on parameters such as surface tension, external energy and the rate of nutrient consumption. This
analysis indicated that the spherical configuration of tumor spheroids, even under experimentally
controlled symmetric growth conditions, were naturally unstable. This was confirmed by a compari-
son between the shapes of in vitro human glioblastoma (hGB) spheroids and the configuration of the
first few asymmetric modes predicted by the model.

Keywords: asymmetric growth; instability; human glioblastoma spheroid

MSC: 35B35; 35B05

1. Introduction

Mathematical modeling has great potential in predicting different aspects of tumor
progression. The complicated behavior of growing tumors can often be interpreted by
understanding the underlying interactions in a mathematical model. In this regard, avas-
cular tumor spheroids have been extensively studied over the past decades [1–5]. The
growth of tumor spheroids, in particular, has been mathematically described from differ-
ent perspectives such as continuum models, discrete (agent-based) models and hybrid
(continuum-discrete) models [6]. Continuum models are generally built upon partial differ-
ential equations (PDEs) for mass conservation and evolution of the tumor boundary [7–9].
In some of these models, the concentration of nutrients defines the cell concentration and
type at each point in the tumor body. Indeed, these models implicitly determine the con-
centration of cells. They can also show acceptable qualitative agreement with experimental
data. Furthermore, the literature on mathematical models that explicitly consider the
concentration of cells as one of the variables is rapidly growing [10–13]. In these models,
an additional PDE defines the change in the concentration of cells.
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Primary invasive tumors emerge from small aggregations of abnormal cells that
possess cancerous characteristics, such as high proliferation potential, mainly due to the
mutations in their oncogenes, DNA repair genes and/or tumor suppressors [14]. The
progression of these tumors starts with the formation of small avascular tumors, followed
by a volumetric growth and also the initiation of cell heterogeneity, due to hypoxic/necrotic
formation, and finally leads to the formation of large and complex vascular tumors [15].
Among different aspects, asymmetric growth has gained particular attention. Studies
have tried to provide insight into why, and how, possible asymmetric configurations may
occur during tumor growth [16–18]. For instance, the response of spherical tumors to
asymmetric perturbations was studied by Byrne and Chaplain [19]. They considered the
avascular tumor spheroids as an incompressible fluid where the evolution of the radius
depends on the change in internal pressure. The stability of the steady-state solution was
then evaluated by examining the excited spherical harmonic modes. They have shown
that the growth of invasive tumors evolves according to the unstable modes and that the
number of unstable modes increases as the energy required to preserve the tumor structure
is reduced. They assumed that the rate of nutrient consumption is constant. This is not a
realistic assumption; however, experimental evidence shows that the rate of consumption
depends on the nutrient concentration [20]. In addition, the asymptotic stability of the
radially symmetric growth of tumor spheroids has been studied in [21,22]. In addition,
Li et al. [23], Cristini et al. [24] and Wu et al. [25] carried out numerical simulations of tumor
growth in circumstances where a small perturbation can eventually give rise to a radially
non-symmetric configuration. The authors investigated the role of a single parameter, such
as either nutrient supply or surface tension.

Most of the existing studies either investigated the role of a single parameter in the
stability of radially symmetric growth in tumor spheroids, or they lacked an experimental
component. In this work, like that of Byrne and Chaplain, we modeled the tumor as a
incompressible continuum medium, in which the local proliferation of cells gave rise to
a change in internal pressure and, consequently, to growth. However, we relaxed the
assumption of a constant consumption rate, adopting instead a concentration-dependent
rate, which affected the stability of the steady-state solutions. To observe the behavior
of the tumor in response to asymmetric excitation, a small perturbation was introduced
to the steady-state solutions. It was seen that increasing the concentration of nutrients,
C∞, increased the number of growing asymmetric modes. However, increasing the rate of
consumption led to a smaller steady-state radius with a smaller number of growing asym-
metric modes. In addition, higher surface tension allowed for a smaller steady-state radius
and a smaller number of growing asymmetric modes. We also compared the predicted
asymmetric growth with experimental results. The growth of in vitro solid tumor spheroids
generated from the glioma cell line (U251 hGB cells) was observed over time. It was seen
that spheroids in a roughly symmetric environment lost their spherical configuration due
to small natural perturbations from perfect symmetry exerted by their environment.

2. Model Formulation

We adopted a reaction-diffusion model that considered a tumor as an incompressible
continuum medium where the proliferation depended on the presence of nutrients. The
system of the governing equations is

∂C(x, t)
∂t

= ∇2C(x, t)− η2C(x, t) , (1)

∂P(x, t)
∂t

= µ∇2P(x, t) + ζ (C(x, t)− Cd) , (2)

V Γ · n = −µ grad P(x, t)
∣∣∣∣
Γ
· n , (3)
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where C(x, t), P(x, t) are the concentrations of nutrients and the internal pressure, respec-
tively, and η2C(x, t) is the positive rate of nutrient consumption. A constitutive relation
analogous to Darcy’s law relates the velocity of cells to the pressure gradient with a constant
of proportionality µ that describes cell motility. The pressure is assumed to be proportional
to the cell density, which does not appear explicitly in the equations. However, the pressure
production is modulated by the rate of cell proliferation, ζ C, which depends linearly on
the concentration of nutrients, and the natural rate of cell death ζCd. The tumor boundary
is Γ, V Γ is the boundary velocity and n is the outward normal. Hence, Equation (3) denotes
the rate of growth of the tumor boundary, that is, the normal velocity of its boundary. The
boundary of the tumor is a two-phase interface (i.e., cells and nutrients), hence, we impose
boundary conditions as

C(x, t)
∣∣∣∣
Γ
= C∞ (1− 2γH) , (4)

P(x, t) = P∞ , (5)

where (4) is a thermodynamically consistent boundary condition as proposed in [26], C∞ is
the nutrient supply, γ is the surface tension, H is the mean curvature and P∞ is the external
pressure. Equation (4) allows a nutrient concentration jump of 2γHC∞ across the boundary
interface due to the surface tension. It should be noted that the boundary condition (4)
couples the system of the governing equations. Next, we present the analytical solution to
the governing Equations (1)–(3), subjected to the boundary conditions (4) and (5).

2.1. Analytical Solutions

Spherical coordinates, which are well suited to represent the spherical configuration
of tumors, could be used to our advantage. To study the asymmetric instabilities of tumor
growth, we first considered the radially symmetric solutions to the governing equation,
Equations (1)–(3), and the boundary conditions (4) and (5). The equations can be made
more meaningful by the following normalization

C̄ =
C
Cd

, C̄∞ =
C∞

Cd
, P̄ =

P
P∞

. (6)

Note that in spherical coordinates, the position is x = r er(θ, φ) and the Laplace
operator ∇2 has the form

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1
r2 sin2(θ)

∂2

∂φ2 , (7)

in the domain θ ∈ [0, π] and φ ∈ [0, 2π].

Symmetric Steady-State Solutions

For the radially symmetric case, the fields are only a function of r and t, i.e., C(r, t),
P(r, t) and the tumor boundary Γ is defined by r = R(t), and its velocity is V Γ = VRer.
Thus, Equations (3) and (4) read

VR = −µ
∂P(r, t)

∂r

∣∣∣∣
r=R(t)

, (8)

C(r, t)
∣∣∣∣
r=R(t)

= C∞

(
1− 2γR−1(t)

)
, (9)

where VR is the velocity of the tumor boundary and R(t) is the radius of the tumor. Note
that Equation (9) provides a lower bound for R(t) such that 2γ < R(t). To eliminate
singularities at r = 0, we use

∂C(0, θ, φ, t)
∂r

= 0 , (10)
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∂P(0, θ, φ, t)
∂r

= 0 . (11)

The solution for the nutrient concentration is

C̄(r, t) =
C̄∞(R(t)− 2γ) sinh(ηr)

r sinh(ηR(t))
, (12)

and substitution into (2) and (3) yields

µP∞

ζCd

∂P̄
∂r

(r, t) =
C̄∞(R(t)− 2γ) sinh(ηr)

η2r2 sinh(ηR(t))
− C̄∞(R(t)− 2γ) cosh(ηr)

ηr sinh(ηR(t))
+

r
3

, (13)

1
ζCd

dR(t)
dt

=
C̄∞(R(t)− 2γ)

sinh(ηR(t))

(
1

ηR(t)
cosh(ηR(t))− 1

η2R(t)2 sinh(ηR(t))
)
− R(t)

3
. (14)

To understand the role of the model parameters, the tumor growth rate VR was plotted
against the tumor radius R for different values of nutrient source C∞, surface tension γ and
rate of consumption η.

Figure 1 shows that at most two plausible steady-state solutions, VR = 0 existed. The
plausible steady-state solutions could be stable for dVR/dR < 0 or unstable for dVR/dR > 0.
However, in the current context it was necessary for a steady-state solution to be stable.
Figure 1a shows that no steady-state solution existed for C̄∞ ≤ 1 since the net proliferation
was negative due to the limited nutrient supply. Thus, the tumor continuously diminished
to zero. For sufficient nutrient supply, C̄∞ ≥ 1.25, two steady-state solutions existed.
Similarly, Figure 1b shows that two steady-state solutions existed for the low consumption
rate η ≤ 3, and no steady-state solution existed for η ≥ 4 due to the insufficient supply
of nutrients. It followed that, for a particular η = η0 in the range (3, 4), the two solutions
coincided into one unstable solution, such that for 0 ≤ η < η0 one stable solution existed
and for η > η0 no solutions existed. Figure 1c shows that for large surface tension no
steady-state solution existed. Recall that R > 2γ, hence the curves where R < 2γ were not
physically admissible. When two plausible steady-state solutions existed, the large radius
solution was stable, but the small radius solution was unstable. It was also observed that
the radius of the stable steady-state solution increased with increasing C̄∞ and decreased
with increasing η and γ. It should be noted that only dimensional stability was investigated
above; shape stability is yet to be considered. In what follows, we investigated shape
instability in the form of asymmetric instability of the radially symmetric steady-state
solutions by introducing asymmetric perturbations. We also explored the growth rate
of unstable asymmetric modes to obtain an insight into the perturbed configuration of
the tumor.

2.2. Instability to Asymmetric Perturbation

A tumor microenvironment can exert external stimuli in various non-symmetric
ways. For instance, tumor tissue can apply forces in different directions or cells can be
exposed to an asymmetric gradient of chemoattractants, growth factors, etc. In addition,
the heterogeneity of the cell population may change the local properties in large tumors
and lead to an inhomogeneous structure. Therefore, tumors are susceptible to asymmetric
growth. This can be seen in the growth of benign tumors when they eventually lose
their close-to-spherical shape. The vast majority of invasive tumors are not spherical [27].
To investigate the stability of the steady-state radially symmetric solution, small time-
dependent asymmetric perturbations were introduced as

C(r, θ, φ, t) = C̄(r) + ε Cp(r, θ, φ, t) , (15)

P(r, θ, φ, t) = P̄(r) + ε Pp(r, θ, φ, t) , (16)

R(θ, φ, t) = R̄ + ε Rp(θ, φ, t) , (17)
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where 0 < ε 6 1, C̄(r), P̄(r) and R̄ are the dimensionally stable steady-state radially sym-
metric solutions of the governing Equations (1)–(3) and Cp, Pp and Rp are the asymmetric
perturbations. The substitution of (15) and (16) into (1) and (2) immediately yields the
governing equations for Cp and Pp, respectively. In order to obtain the equation of Rp, first
substitute (17) into (3), which yields

∂

∂t
(

R̄ + ε Rp
)
= −µ

∂

∂r
(

P̄ + ε Pp
)∣∣∣∣

r=R̄+ε Rp

, (18)

and then utilize the Taylor series of (16) about R̄ in the form

∂

∂r
(

P̄ + ε Pp
)∣∣∣∣

r=R̄+εRp

=
∂P̄
∂r

∣∣∣∣
r=R̄

+ ε
∂Pp

∂r

∣∣∣∣
r=R̄

+ εRp
∂2P̄
∂2r

∣∣∣∣
r=R̄

+ O(ε2) . (19)

2 4 6 8 10
-1

-0.5

0

0.5

1
(a)

2 4 6 8 10
-1

-0.5

0

0.5

1
(b)

0 2 4 6 8 10
-2

0

2
(c)

Figure 1. Tumor growth rate, VR, vs. R for various values of nutrient supply C̄∞ in (a), nutrient
consumption η in (b) and surface tension γ in (c). A maximum of two plausible steady-state solutions
existed, which could be stable (dVR/dR < 0) or unstable (dVR/dR > 0). It could be seen that
the maximum of two steady-state solutions was achieved for sufficient nutrient supply (a), low
consumption rate (b) and low surface tension (c).

Finally, substitution of (19) into (18) yields the governing equation for Cp. The system
of governing equations of the perturbations Cp, Pp and Rp reads

∇2Cp − η2Cp = 0 , (20)

µ∇2Pp + ζ Cp = 0 , (21)

∂Rp

∂t
= −µ

(
∂Pp

∂r
+ Rp

∂2P̄
∂r2

)∣∣∣∣
r=R̄

. (22)

Similarly, substitution of the perturbations into (4,5) yields the perturbed bound-
ary conditions
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Cp

∣∣∣∣
r=R̄

=
γC∞

R̄2

[
2Rp +

1
r2 sin(θ)

∂

∂θ

(
sin(θ)

∂Rp

∂θ

)
+

1
r2 sin2(θ)

∂2Rp

∂φ2

]
− Rp

∂C
∂r

∣∣∣∣
r=R̄

, (23)

Pp

∣∣∣∣
r=R̄

= −Rp
∂P
∂r

∣∣∣∣
r=R̄

. (24)

Also, the following conditions can be simply inferred from (10) and (11)

∂Cp

∂r

∣∣∣∣
r=0

= 0 , (25)

∂Pp

∂r

∣∣∣∣
r=0

= 0 . (26)

Separation of variables Cp(r, θ, φ) = R(r)Θ(θ)Φ(φ) is used to solve Equation (20).
Substitution gives the following equations for the polar and azimuthal angles

1
Φ(φ)

d2Φ(φ)

dφ2 = −m2 → Φ(φ) = eimφ , (27)

d
dx

(
(1− x2)

dΘ(x)
dx

)
+

(
l(l + 1)− m2

1− x2

)
Θ(x) = 0 → Θ(x) = Pm

l (x) , (28)

where m is an integer, x = cos θ and Pm
l (x) = 1

2l l! (1− x2)
m
2 dl+m

dxl+m (x2 − 1)l are the Legendre
polynomials. Combining Θ(θ) and Φ(φ) forms the spherical harmonics

Ym
l (Θ, φ) = χlm Pm

l (x) eimφ , (29)

where the coefficients χlm(t) are determined by the boundary conditions. The equation for
the radial component of Cp(r, θ, φ) reads

r2 d2z
dr2 + r

dz
dr
−
(

η2r2 +

(
l +

1
2

)2
)

z = 0, (30)

where z = R(r)(ηr)
1
2 . The known solutions to Equation (30) are the modified spherical

Bessel functions of the first kind, R(r) = i(1)l (ηr), where i(1)l (ηr) =
√(

π
2r
)

Il+ 1
2
(ηr); Il+ 1

2
is

Bessel’s function of the first kind. Gathering all components of the solution yields (note

that here we used i(1)
′

l (r) = i(1)l+1(ηR(t)) + l
ηR(t) i(1)l (ηR(t))),

Cp(R(r), Θ(θ), Φ(φ)) = ∑
l≥0

∑
|m|≤l

χlm(t) i(1)l (ηr)Ym
l (θ, φ) . (31)

To solve for the pressure, we multiply (20) by s
η2 and add it to (21) to obtain

∇2
(

Pp +
s

η2µ
Cp

)
= 0.

It follows that the known solution is

Pp +
ζ

η2µ
Cp = ∑

l≥0
∑
|m|≤l

Πlm(t)rl Ym
l (θ, φ) ,

which by (31) yields the final solution in the form
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Pp(R(r), Θ(θ), Φ(φ)) = ∑
l≥0

∑
|m|≤l

(
Πlm(t)rl − ζ

η2µ
χlm(t) i(1)l (ηr)

)
Ym

l (θ, φ) , (32)

where the coefficients Πlm(t) are determined by the boundary conditions. From (25) and (26),
we infer that

χ1m(t) = 0 and Π1m(t) = 0 ,

and from (24), we find ρ1m(t) = 0. For l 6= 1 we have

χlm(t) i(1)l (
ηR(t)

Cd
) =

[
γC̄∞

R2 (2− l(l + 1))− ∂C̄
∂r

(R(t))
]

ρlm(t)

=

(
−l(l + 1)

γ

R(t)2 −
(

1− 2γ

R(t)

)
η coth(ηR(t)) +

1
R(t)

)
C̄∞ρlm(t) , (33)

and by (32)

1
CdP∞

(
Πlm(t)R(t)l − ζ

η2µ
χlm(t) i(1)l (ηR(t))

)
= −∂P̄

∂r
(R(t))

ρlm(t)
Cd

(34)

=

(
− C̄∞

η2

(
1

R(t)
− 2γ

R(t)2

)
+

C̄∞

η

(
1− 2γ

R(t)

)
coth(ηR(t))− R(t)

3

)
ζ

P∞µ
ρlm(t).

Hence, substitution of (33) into (34) yields

µ

Cdζ
Πlm(t)R(t)l =

(
(1− l)(l + 2)

γC̄∞

η2R(t)2 −
R(t)

3

)
ρlm(t). (35)

By writing the perturbed radius in an orthonormal spherical basis,

Rp(t) = ∑
l≥0

∑
|m|≤l

ρlm(t)Ym
l (θ, φ) , (36)

and implementing (22), we conclude that dρ1m
dt (t) = 0 and for l 6= 1

1
Cdζρlm(t)

dρlm(t)
dt

=− µ

Cd

(
l Πlm(t) l R(t)l−1 − ζ

µη
χlm(t) i(1)

′

l (ηR(t)) +
∂2P
∂r2 (R(t))

)
=− l

µ

Cdζ
Πlm(t)R(t)l−1 +

1
Cdη

χlm(t)
(

i(1)l+1(ηR(t)) +
l

ηR(t)
i(1)l (ηR(t))

)
− 2C̄∞(R(t)− 2γ) coth(ηR(t))

ηR(t)2 +
2C̄∞(R(t)− 2γ)

η2R(t)3 +
C̄∞(R(t)− 2γ)

R(t)
− 1

3

=− l
R(t)

µ

Cdζ

(
Πlm(t)R(t)l − 1

η
χlm(t) i(1)l (ηR(t))

)
+

1
Cdη

χlm(t) i(1)l+1(ηR(t))

− 2C̄∞(R(t)− 2γ) coth(ηR(t))
ηR(t)2 +

2C̄∞(R(t)− 2γ)

η2R(t)3 +
C̄∞(R(t)− 2γ)

R(t)
− 1

3

=− l
R(t)

(
− C̄∞

η2

(
1

R(t)
− 2γ

R(t)2

)
+

C̄∞

η

(
1− 2γ

R(t)

)
coth(ηR(t))− R(t)

3

)
− 2C̄∞(R(t)− 2γ) coth(ηR(t))

ηR(t)2 +
2C̄∞(R(t)− 2γ)

η2R(t)3 +
C̄∞(R(t)− 2γ)

R(t)
− 1

3

+
1

Cdη
χlm(t) i(1)l+1(ηR(t)) .
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Finally, from (33) we obtain

1
Cdζρlm(t)

dρlm(t)
dt

=(l + 2)
C̄∞(R(t)− 2γ)

η2R(t)3 − (l + 2)
C̄∞(R(t)− 2γ) coth(ηR(t))

ηR(t)2 (37)

+
C̄∞(R(t)− 2γ)

R(t)
+ (l − 1)

1
3

+

(
−l(l + 1)

γC̄∞

R2 − C̄∞

(
1− 2γ

R(t)

)
η coth(ηR(t)) +

C̄∞

R(t)

) i(1)l+1(ηR(t))

λi(1)l (ηR(t))
.

Equation (37) describes the growth of asymmetric modes ρlm(t) in time, which de-
pends on both system parameters {C∞, Cd, γ, η} and the system variable R(t). These modes
can be either excited or damped for various ranges of R(t). In order to find these ranges,
the evolution equation in (37) was plotted against R(t) for particular choices of system
parameters in Figure 2. Each curve corresponded to a particular asymmetric mode number.
The rate of growth dR(t)/dt was also plotted to indicate the steady-state radially symmet-
ric solutions. As discussed in Section 2.1, there were at most two steady-state solutions,
0 < R1 < R2, depicted in the figure, identified by dR/dt = 0; however, only R2 was
dimensionally stable. Therefore, we carried out asymmetric stability analysis only for R2.

For a given R2, high mode numbers were stable, but low mode numbers were unstable
as can be seen in Figure 2. Note that changing the system parameters changed the number
of stable and unstable modes. As can be seen in Figure 2a,b, increasing the concentration of
nutrients C∞ increased the number of growing asymmetric modes. This was directly related
to the tumor’s access to nutrients, which increased tumor activity and proliferation, which
in turn enabled them to adopt a new homeostatic equilibrium and become invasive. This
allowed the tumor to evolve from a spherical shape, which was energy-wise preferred, and
grow along asymmetric modes, called invasion modes. Therefore, a higher concentration
of nutrients enabled a tumor to gain invasion modes. On the other hand, as depicted in
Figure 2c,d, increasing the rate of consumption led to a smaller steady-state radius with
a smaller number of invasion asymmetric modes. The same behavior can be seen for the
change in surface tension (γ) in Figure 2e,f. Higher surface tension allowed for a smaller
steady-state radius and a smaller number of growing asymmetric modes.

2.3. Growing Asymmetric Modes

To achieve insight into the perturbed configuration of the tumor, it was important to
find the fastest growing mode, i.e., the dominant mode number ld. Such mode(s) could
determine the long-term change in the shape of the tumor. In addition, the surface tension
γ could stabilize the growth of this mode. Therefore, we centered our focus on the variation
of ld for different values of γ, in close proximity to the steady-state solution R2(t). The
steady-state solution of (14), dR/dt = 0, takes the form

C̄∞(R(t)− 2γ)

η2R(t)2 − C̄∞(R(t)− 2γ)

ηR(t)
coth(ηR(t)) +

R(t)
3

= 0.

Substitution of this into (37) gives

1
Cdζρlm(t)

dρlm(t)
dt

=
C̄∞(R− 2γ)

R(t)
(38)

+

(
(1− l)(l + 2)

γC̄∞

R2 +
η2R

3

) i(1)l+1(ηR)

ηi(1)l (ηR)
− 1 .
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Figure 2. Growth rate of asymmetric modes Ym
l (θ, φ) with respect to R(t) for four choices of mode

number l = {2, 10, 20, 40}. In each sub-figure, the radii where the curves cross dR
dt = 0 indicate the

steady-state solutions, i.e., R1 < R2. In (a) C̄∞ = 1.25 and (b) C̄∞ = 1.5; the number of unstable
asymmetric modes for R2 was reduced by lowering the nutrient source C̄∞. For instance, for l = 20,
the steady state was unstable in (b), while reducing C̄∞ stabilized it in (a). In (c) η = 0.3 and (d)
η = 0.6; a higher rate of consumption led to smaller steady-state R2 with a smaller number of unstable
asymmetric modes. In (e) γ = 0.01 and (f) γ = 0.12; reducing the surface tension allowed for larger
steady-state R2, while more asymmetric modes became unstable. In all cases, R2 was unstable to
low-mode numbers, but was stable with respect to sufficiently large mode numbers.

To better understand the role of the surface tension, γ, given a particular choice of
system parameters {C∞, Cd, η}, Equation (37) can be expressed as in Equation (38) as a
function only of l and γ. Figure 3 shows the positive rate of growth of asymmetric modes.
Modes with a negative rate of growth (damped modes) were neglected. Mode numbers
that had the maximum rate of growth (maximal modes) are marked in red. It can be seen
that for C̄∞ = 1.5, by increasing the surface tension the dominant mode dropped from
l = 9 to l = 7; however, it had a fixed value of l = 3 for C̄∞ = 1.2. This behavior could
be interpreted as the role of nutrients and surface tension on tumor invasiveness, that is,
a higher concentration of nutrient source maximized the growth of a higher asymmetric
mode number, which dropped to a lower mode number by increasing the surface tension.
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Figure 3. Growth rate of asymmetric modes Ym
l (θ, φ) with respect to l (mode number) for γ = {0.01,

0.1, 0.2, 0.3} and C∞ = {1.25, 1.5}. The mode number that maximized the asymmetric growth rate
(maximal mode) is marked in red, indicating that increasing surface tension dropped the dominant
mode from l = 9 to l = 7 for C∞ = 1.5; however, it had a fixed value of l = 3 for C∞ = 1.25.

3. Asymmetric Configuration

The progression of tumors starts with the formation of small symmetric-shaped avascu-
lar tumors (spherical configuration) and proceeds with their volumetric growth. However,
a tumor microenvironment can exert external stimuli that trigger asymmetric growth and,
therefore, tumors lose their symmetric shape and acquire an asymmetric configuration.
Here, we present an instability analysis of such responses as associated with tumor inva-
sion modes. We considered asymmetric radius perturbation (17) in terms of a spherical
harmonic basis, which has the form of (36). The perturbed axisymmetric radius is a super-
position of infinitely many modes. However, only the growing modes, and particularly the
maximal mode, eventually dominate the tumor configuration. The total radius is

Rt(θ, φ, t) = R̄ + ε ∑
l≥0

∑
|m|≤l

ρlm(t)Ym
l (θ, φ) , (39)

where R̄ is the steady-state radius. Integration of (38) gives the evolution of coefficients

ρlm(t) = ρ0
lm exp

(
ζ

Cd

(
C̄∞(R− 2γ)

R
+

(
(1− l)(l + 2)

γC̄∞

R2 +
η2R

3

) i(1)l+1(λR)

ηi(1)l (ηR)
− 1

)
t

)
, (40)

where ρ0
lm are the coefficients corresponding to the initial condition Rp0 , i.e.,

Rp0(θ, φ) = ∑
l≥0

∑
|m|≤l

ρ0
lm Ym

l (θ, φ).

Figure 4 depicts the three-dimensional configurations of the tumor (39) and (40) after
sufficient time when only the growing modes were observable. For the two choices of
parameters used in Figure 2a,b, i.e., {C̄∞ = 1.25, η = 0.5, γ = 0.1, R̄ = 3.37} and {C̄∞ = 1.5,
η = 0.5, γ = 0.1, R̄ = 5.69}, the corresponding unstable modes were l = {0, 2, 3, ..., 7} and
l = {0, 2, 3, ..., 30}, respectively. Implementing these parameters and the unstable modes
in (39), perturbed radii were obtained to plot the asymmetric configurations.
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Figure 4. The asymmetric configuration of a tumor for two different choices of parameters,
(a-1,a-2) {C̄∞ = 1.25, η = 0.5, γ = 0.1, R̄ = 3.37}, the corresponding growing modes l = {0, 2, 3, ..., 7},
(b-1,b-2) {C̄∞ = 1.5, η = 0.5, γ = 0.1, R̄ = 5.69} and the corresponding unstable modes
l = {0, 2, 3, ..., 30}. The top (left) and side (right) views are shown in the figure. Colors represent the
value of the z component of the radius; yellow means Rz = 0.

4. Results and Discussion

In this section, experimental results are compared to the model predictions presented
in previous sections. To this end, the asymmetric modes were compared against the forma-
tion of in vitro solid tumor spheroids generated from a glioma cell line (U251 hGB cells).
HGB cells were cultured in Dulbecco’s Modification of Eagle’s Medium (DMEM) supple-
mented with 10% (v/v) Fetal Bovine Serum (FBS) and 1% (v/v) Penicillin/Streptomycin and
incubated at 37 °C in 5% CO2. Cells were then dissociated with GibcoTM Trypsin-EDTA
(0.5%), centrifuged at 300× g (5 min) and counted using a Trypan blue assay. Self-filling
micro-well arrays (SFMAs) were used to produce tumor spheroids [28]. Spheroids were
then supplemented with fresh medium every 24 h to maintain the concentration of nutri-
ents. To resemble the conditions considered in the analytical part as closely as possible,
only approximately spherical tumor spheroids were selected, and only small spheriods of
∼200 µm diameter, to avoid heterogeneity in their cell population, such as hypoxic and
necrotic cells. Presence of such heterogeneity violated the adopted assumption of linear
nutrient consumption throughout the tumor, η2C , η = constant, as hypoxic cells normally
switch their metabolism to anaerobic glycolysis where they consume glucose at a higher
rate compared to normal cells. We also provided them with a constant concentration of nu-
trients C∞ at their boundary by regularly refreshing the medium. Although the spheroids
were kept in a symmetric medium, asymmetric stimuli are always a part of the natural
environment of tumors. Images of tumors were obtained using optical microscopy (Axio
Observer, ZEISS, Oberkochen, Germany). Figure 5 shows images of a few representative
examples of aspherical tumors frequently observed in experiments, compared with model
predictions of the maximal asymmetric modes. The qualitative comparison showed that
the tumor spheroids acquired configurations similar to the model predictions. It should be
noted that the experimental results were limited in terms of quantitative measurements
due to the complexity in implementation of the parameters of interest. For instance, the
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real system could only start from an approximately spherical shape. In addition, the envi-
ronment could not be perfectly uniform. However, reasonable agreement was observed
between the experimental results and the model predictions where the salient features of
the tumor configurations aligned with the model predictions of configurations dominated
by the growth of asymmetric modes.

Figure 5. Asymmetric configurations of in vitro human glioblastoma (hGB) spheroids (left column)
compared with the similar configurations of maximal asymmetric modes predicted by the model
(right column). Nearly spherical tumors with no heterogeneity in their cell population were provided
with constant concentration of nutrients C∞ at their boundary to resemble a symmetric environmental
condition. Scale bars are 200 µm.
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5. Conclusions

The stability of the radially symmetric growth of tumor spheroids was studied by
introducing asymmetric perturbations to the symmetric steady-state solution of a reaction-
diffusion model in which the rate of nutrient consumption was concentration dependent.
The analytical solution, expressed in terms of a spherical harmonic basis, manifested the
growth of asymmetric modes. It was shown that the radially symmetric steady-state
solution for the growth of tumor spheroids in a symmetric environment was unstable with
respect to small asymmetric perturbations. Such perturbations excited asymmetric modes
of growth. These modes could grow in time and dominate the tumor configuration. The
number of such modes and their rates of growth depended on surface tension, external
nutrient sources and the rate of nutrient consumption. A high nutrient source concentration
allowed for a large tumor size, which increased the number of unstable excited asymmetric
modes. However, high rates of nutrient consumption and surface tension led to a smaller
size of the tumor and a smaller number of growing asymmetric modes. In addition, we
showed that spherical tumors were unstable since asymmetric growing modes always
dominated the tumor configuration. Hence, the spherical configurations of tumors, even
under experimentally controlled symmetric conditions, were naturally unstable. These
analytic results were in agreement with the configurations of growing in-vitro human
glioblastoma (hGB) spheroids.
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