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Abstract: In this contribution we consider sequences of monic polynomials orthogonal with respect
to the Sobolev-type inner product 〈 f , g〉 = 〈uM, f g〉 + λT j f (α)T jg(α), where uM is the Meixner
linear operator, λ ∈ R+, j ∈ N, α ≤ 0, and T is the forward difference operator ∆ or the backward
difference operator ∇. Moreover, we derive an explicit representation for these polynomials. The
ladder operators associated with these polynomials are obtained, and the linear difference equation
of the second order is also given. In addition, for these polynomials, we derive a (2j + 3)-term
recurrence relation. Finally, we find the Mehler–Heine type formula for the particular case α = 0.
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1. Introduction

Meixner orthogonal polynomials, usually denoted in the literature as Mn(x; β, c),
constitute a family of classical orthogonal polynomials introduced by J. Meixner in 1934 in
his seminal paper [1]. When β > 0 and 0 < c < 1, they are orthogonal with respect to the
well-known negative binomial distribution of the probability theory, i.e., in such a case:

∞

∑
x=0

(
x + β− 1

x

)
cx Mn(x; β, c)Mm(x; β, c) = 0, m 6= n, m, n = 0, 1, · · · ,

so the Meixner linear functional is

uM =
∞

∑
x=0

(
x + β− 1

x

)
cx δx.

Therefore, they are orthogonal on the uniform lattice in the interval [0,+∞), and they
satisfy a hypergeometric-type difference equation on the aforesaid uniform lattice. Due to
its classical character, their finite differences also constitute an orthogonal polynomial family,
their corresponding orthogonality weights satisfy a Pearson-type difference equation, and
they even satisfy two different kinds of structure relations. A distinctive and interesting
characteristic of this family is that they have certain dual character, that is, every formula
one can derive for Mn(x; β, c) has a dual formula with x and n interchanged:

cm−nn!(1 + β)m−1Mn(m; β, c) = cn−mm!(1 + β)n−1Mm(n; β, c).

(See, for example [2–4] and the references therein).
On the other hand, since the first paper [5] on Sobolev’s orthogonal polynomials was

published by Althammer, the results connected to these polynomials have attracted the
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attention of several mathematicians. The name of the Sobolev orthogonal polynomials is
given to those families of polynomials orthogonal with respect to inner products involving
positive Borel measures supported on infinite subsets of the real lines and also involving
regular derivatives. Moreover, in the case that the derivatives appear only on function
evaluations on a finite discrete set, the corresponding families are called Sobolev-type or
discrete Sobolev orthogonal polynomial sequences. For a recent and comprehensive survey
on the subject, see [6] and the references therein. In the last decade of the past century, H.
Bavinck introduced the study of orthogonal polynomials with respect to the inner product
involving differences instead of derivatives:

〈 f , g〉λ =
∫
R

f (x)g(x)dψ(x) + λ(∆ f )(d)(∆g)(d), (1)

where λ ∈ R+, d ∈ R, and ψ is a distribution function with infinite spectrum, see [7,8].
Moreover, in these works Bavinck obtained algebraic properties and some results con-
nected to the location of the zeros of the orthogonal polynomials with respect to the inner
product (1). On the other hand, in [8], he proved that the orthogonal polynomials with
respect to inner product defined in Equation (1) satisfy a five-term recurrence relation.
Furthermore, in [9], the authors considered the following inner product:

〈 f , g〉 = (1− c)β
∞

∑
x=0

f (x)g(x)
cxΓ(β + x)

Γ(β)Γ(x + 1)
+ λ f (0)g(0), (2)

where β > 0, 0 < c < 1, λ > 0, and P denotes the linear space of all polynomials with
real coefficients. Here, they obtained a second-order difference equation with polynomial
coefficients, which the orthogonal polynomials with respect to (2) satisfy. Then, in [10], the
authors showed that the Sobolev-type Meixner polynomials orthogonal with respect to the
inner product are eigenfunctions of a difference operator:

〈 f , g〉 = (1− c)β
∞

∑
x=0

f (x)g(x)
cxΓ(β + x)

Γ(β)Γ(x + 1)
+ M f (0)g(0) + N(∆ f )(0)(∆g)(0),

where β > 0, 0 < c < 1, and M, N ≥ 0. Other slightly more recent results, connected
with the Sobolev–Meixner polynomials, can be found in [11,12]. Note that our work is in
someways connected to the paper [13], where the authors consider the Charlier case.

The structure of the paper is the following: In Section 2, we introduce some preliminary
results about Meixner polynomials, which will be very useful in the analysis presented.
In Section 3, we obtain the connection formula between the Meixner polynomials and the
polynomials orthogonal with respect to the Sobolev-type inner product:

〈 f , g〉 = 〈uM, f g〉+ λT j f (α)T jg(α), (3)

where uM is the Meixner linear operator, λ ∈ R+, j ∈ N, α ≤ 0, and T is the forward or the
backward difference operator. In addition, we deduce the hypergeometric representation of
such polynomials. In Section 4, we find the ladder (creation and annihilation) operators for
the sequence of Sobolev-type orthogonal polynomials. As a consequence, the second-order
linear difference equation associated with them is deduced. On the other hand, in Section 5,
we determine the (2j + 3)-term recurrence relation that these polynomials satisfy. Finally,
in Section 6, we determine the Mehler–Heine-type formula for the special case of α = 0.
Indeed, the techniques used in Sections 3–5 are based on those used in [3,14,15], respectively.

2. Preliminaries

We adopt the following set of notations: N0 := {0} ∪N = {0, 1, 2, 3, . . .}, and we use
the sets Z, R, and C, which represent the integers, real numbers, and complex numbers,
respectively. P denotes the vector space of univariate, complex-valued polynomials, and
let P′ denote its algebraic dual space.
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We also adopt the following notation and conventions. We denote by 〈u, p〉 the duality
bracket for u ∈ P′ and p ∈ P.

Definition 1. For u ∈ P′, π ∈ P, and c ∈ C, let πu, (x − c)−1u, ∇u, and ∆u be the linear
functionals defined by:

〈πu, p〉 := 〈u, πp〉, p ∈ P,

〈(x− c)−1u, p〉 :=
〈

u,
p(x)− p(c)

x− c

〉
, p ∈ P,

〈∇u, p〉 := −〈u, ∆p〉,

and thus: 〈∆u, p〉 := −〈u,∇p〉, where∇ and ∆ are the backward and forward difference operators,
defined as:

∆ f (x) := f (x + 1)− f (x), ∇ f (x) := f (x)− f (x− 1).

The Dirac delta functional, δc, is the functional defined by 〈δc, p〉 := p(c), p ∈ P.

In order to obtain our derived identities, we rely on properties of the Pochhammer
symbol (shifted factorial). For any n ∈ N0, a ∈ C, the Pochhammer symbol is defined as:

(a)n := (a)(a + 1) · · · (a + n− 1), n ∈ N0.

Furthermore, define for all a, b ∈ C:

(a)b :=
Γ(a + b)

Γ(a)
,

where a + b 6∈ −N0, and we will also use the common notational product convention

(a1, . . . , ak)b := (a1)b · · · (ak)b.

The hypergeometric series, which we will use often, is defined for z ∈ C such that
|z| < 1, s, r ∈ N0, with s ≥ r− 1, as [16]:

rFs

(
a1, · · · , ar
b1, · · · , bs

; z
)

:=
∞

∑
k=0

(a1, · · · , ar)k
(b1, · · · , bs)k

zk

k!
, (4)

wherethe parameters must be chosen such that the denominator factors in the terms of the
series are never zero.

The Meixner Polynomials

Let β and c be two complex numbers, such that c 6= 0, 1 and β is not a negative integer.
We write {Mn(x; β, c)}n≥0 for the sequence of monic Meixner polynomials defined by [2]:

Mn(x; β, c) =
cn n!

(1− c)n

n

∑
j=0

c−j
(

x
j

)(
−x− β

n− j

)
.

These polynomials are orthogonal with respect to the linear functional uM ∈ P′, which
is a classical functional since it fulfills the Pearson difference equation:

∆
(
xuM

)
= (x(c− 1) + βc)uM, (5)

which is equivalent to the Pearson difference equation:

∇
(
c(x + β)uM

)
= (x(c− 1) + βc)uM.
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Remark 1. Observe that when β > 0 and 0 < c < 1, then:

〈uM, f 〉 :=
∞

∑
x=0

(
x + β− 1

x

)
cx f (x),

which is a positive definite linear functional. Note that this definition can be extended to |c| < 1,
and β ∈ C is not a negative integer. Moreover, since

Mn(x; β, c) = (−1)n Mn(−x− β; β, c−1), (6)

then one can extend the Meixner functional to |c| > 1. In [17], the authors obtained an integral
representation for this operator for β, c ∈ C, with c 6∈ [0,+∞) and −β 6∈ N:

〈uM, f 〉 =
∫

C
f (z)Γ(−z)Γ(β + z)(−c)z dz,

where C is a complex contour from −∞i to ∞i separating the increasing poles {0, 1, 2, · · · } from
the decreasing poles {−β,−β− 1,−β− 2, . . . }.

When c 6= 0, 1, they satisfy the following three-term recurrence formula:

xMn(x; β, c) = Mn+1(x; β, c) +
(c + 1)n + βc

1− c
Mn(x; β, c) + γn Mn−1(x; β, c), (7)

where

γn =
cn(n + β− 1)

(1− c)2 ,

which can be given explicitly in terms of hypergeometric series as [16]:

Mn(x; β, c) =
cn (β)n

(c− 1)n 2F1

(
−n,−x

β
; 1− 1

c

)
. (8)

Next, we summarize some basic properties of Meixner orthogonal polynomials to be
used in the sequel.

Proposition 1 (cf. Proposition 2.1 in [18]). Let β, c ∈ C such that −β 6∈ N and |c| < 1. Then,
the following identities hold true for the Meixner polynomials:

1. Second-order difference equation:

c(x + β)yn(x + 1)− (x(c + 1) + βc)yn(x) + xyn(x− 1) = n(c− 1)yn(x); (9)

2. Structure relations. For every n ∈ N:

(x + β)∆Mn(x; β, c) = nMn(x; β, c) +
n(n + β− 1)

1− c
Mn−1(x; β, c), (10)

x∇Mn(x; β, c) = nMn(x; β, c) +
nc(n + β− 1)

1− c
Mn−1(x; β, c); (11)

3. Squared norm. For every n ∈ N:

d2
n = ‖Mn(x; β, c)‖2 =

〈
uM, M2

n(x; β, c)
〉
=

(β)ncn n!
(1− c)β+2n ; (12)

4. The value at the left endpoint initial extreme:

Mn(0; β, c) =
(β)ncn

(c− 1)n ; (13)
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5. Forward and backward difference operators. For every n, k ∈ N:

∆k Mn(x; β, c) = (m− k + 1)k Mn−k(x; β + k, c), (14)

where ∆k f (x) = ∆k−1∆ f (x) for k = 1, 2, . . . , and ∆0 f (x) = f (x);
6. Mehler–Heine type formula (Equation (35) in [19]):

lim
n→∞

(1− c)n+β+z Mn(z; β, c)
(z− n + 1)n

= 1, z ∈ C \N. (15)

To complete this section, we present some useful results we will need throughout
the paper.

Proposition 2 (Christoffel-Darboux formula). Let {pn}n∈N0
be a sequence of monic polynomials

orthogonal with respect to the linear functional u. If we denote the n-th reproducing kernel by

Kn(x, y) :=
n−1

∑
k=0

pk(x)pk(y)
〈u, p2

k〉
, (16)

then, for all n ∈ N and x 6= y:

Kn(x, y) =
1

〈u, p2
n−1〉

pn(x)pn−1(y)− pn(y)pn−1(x)
x− y

. (17)

Taking into account the inner product we have considered, then it is natural to consider
the partial derivatives of Kn(x, y). We will use the following notation:

K
(i,j)

n,1 (x, y) :=
n−1

∑
k=0

∇i pk(x)∇j pk(y)
〈u, p2

k〉
, (18)

and

K
(i,j)

n,2 (x, y) :=
n−1

∑
k=0

∆i pk(x)∆j pk(y)
〈u, p2

k〉
. (19)

Remark 2. Since this work is related to the Meixner polynomials, we will have to substitute pk(x)
(resp. pk(y)) in (16) by Mk(x; β, c) (resp. Mk−1(x; β, c)) and in all expressions that depend on it,
such as (18) and (19).

Proposition 3. The following identities hold:

K
(0,j)

n,1 (x, y) =
j!

d2
n−1

j

∑
k=0

(
Mn(x; β, c)∇k Mn−1(y; β, c)−Mn−1(x; β, c)∇k Mn(y; β, c)

k! (x− y + k)j+1−k

)
, (20)

K
(0,j)

n,2 (x, y) =
j!

d2
n−1

j

∑
k=0

(
Mn(x; β, c)∆k Mn−1(y; β, c)−Mn−1(x; β, c)∆k Mn(y; β, c)

k! (x− y− j)j+1−k

)
, (21)

where d2
n−1 =

〈
uM, M2

n−1(x; β, c)
〉
.

Proof. We are going to prove the first identity. After applying the difference operator∇j to
(17) with respect to y, we obtain:

K
(0,j)

n,1 (x, y) =
1

d2
n−1

(
Mn(x; β, c)∇j

y

(
Mn−1(x; β, c)

x− y

)
−Mn−1(x; β, c)∇j

y

(
Mn(y; β, c)

x− y

))
. (22)
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Using an analogue of the Leibnitz’s rule

∇n( f (x)g(x)) =
n

∑
k=0

(
n
k

)
∇k f (x)∇n−kg(x− k), (23)

and since for any positive integer k we have

∇k
y

(
1

x− y

)
=

k!
(x− y)k+1

,

the result follows after a straightforward calculation. The proof of the second identity is
analogous, and it will be omitted. Hence, the result follows.

Proposition 4. The following identity holds for the kernel associated with the Meixner polynomials:

K
(j,j)

n,2 (0, 0) =
j!(1− c)β+2j

cj(β)j

n−j−1

∑
k=0

(j + 1)k(β + j)k
(1)k

ck

k!
.

Proof. Taking (13)–(16) into account, and, by definition, (18), we have:

K
(j,j)

n,2 (0, 0) =
n−1

∑
k=0

(k− j + 1)2
j (β + j)2

j c2k−2j(1− c)β+2k

(c− 1)2k−2j(β)jckk!

=
(1− c)2j+β

c2j(β)2
j

n−1

∑
k=0

(k− j + 1)2
j (β)k ck

k!
.

By using some identities of the Pochhammer symbols, we obtain:

K
(j,j)

n,2 (0, 0) =
(1− c)2j+β

c2j(β)2
j

n−1

∑
k=0

(k− j + 1)2
j (β)kck

(1)2
k−j

=
(1− c)2j+β

c2j(β)2
j

n−1−j

∑
k=0

(1)k+j(β)k+jck+j

(1)2
k

,

from this expression, it is a direct calculation to obtain the desired expression.

Corollary 1. The following limit for the kernels associated to the Meixner polynomials holds:

lim
n→∞

K
(j,j)

n,2 (0, 0) =
j!(1− c)β+2j

cj(β)j
2F1

(
1 + j, β + j

1
; c
)

.

3. The Sobolev-Type Meixner Polynomials

We start this section by introducing the Sobolev-type inner product (3):

〈 f , g〉λ,j,` = 〈u
M, f g〉+ λT j f (α)T jg(α), (24)

where uM is the Meixner linear operator, j ∈ N, α ≤ 0, and T is the operator ∇ when ` = 1,
and it is the operator ∆ when ` = 2.

We denote by
{

M
j,`
n (x; β, c; λ)

}
n∈N0

the sequence of monic polynomials, orthogonal

with respect to the inner product (24). These polynomials are said to be Sobolev-type
Meixner polynomials.
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Connection Formula and Hypergeometric Representation

We first express the Sobolev-type Meixner polynomials in terms of the monic Meixner
polynomials and the Kernel polynomials associated with the Meixner polynomials.

Taking into account the Fourier expansion and using the orthogonality conditions of
(Mn(x)) and (M

j,`
n (x; β, c; λ)), we obtain (see cf. Equation (2.8) in [20]):

M
j,`
n (x; β, c; λ) = Mn(x; β, c)− λT j Mn(α; β, c)

1 + λK
(j,j)

n,` (α, α)
K

(0,j)
n,` (x, α), ` = 1, 2. (25)

We can express the Sobolev-type Meixner polynomials in terms of the Meixner and
their associated Kernel polynomials. Moreover, starting from (25) and by using the recur-
rence relation of the Meixner polynomials (7), we have:

M
j,`
n (x; β, c; λ) = Aj,`

1,n(x)Mn(x; β, c) + Bj,`
n,1(x)Mn−1(x; β, c), (26)

where:

Aj,1
1,n(x) = 1− λT j Mn(α; β, c)

1 + λK
(j,j)

n,` (α, α)

j!
d2

n−1

j

∑
k=0

∇k Mn−1(α; β, c)
k! (x− α + k)j+1−k

, (27)

Aj,2
1,n(x) = 1− λT j Mn(α; β, c)

1 + λK
(j,j)

n,` (α, α)

j!
d2

n−1

j

∑
k=0

∆k Mn−1(α; β, c)
k! (x− α− j)j+1−k

, (28)

Bj,1
1,n(x) =

λT j Mn(α; β, c)

1 + λK
(j,j)

n,` (α, α)

j!
d2

n−1

j

∑
k=0

∇k Mn(α; β, c)
k! (x− α + k)j+1−k

, (29)

Bj,2
1,n(x) =

λT j Mn(α; β, c)

1 + λK
(j,j)

n,` (α, α)

j!
d2

n−1

j

∑
k=0

∆k Mn(α; β, c)
k! (x− α− j)j+1−k

, (30)

where, in such a case, T f (α) means

T f (α) = T f (x)
∣∣∣
x=α

.

From these identities, we can express the Sobolev-type Meixner polynomials in terms
of hypergeometric series.

Theorem 1. The monic Sobolev-type Meixner polynomial M
j,`
n (x; β, c; λ) has the following hyper-

geometric representation for ` = 1, 2:

M
j,`
n (x; β, c; λ) =

(β)n−1cn−1

(c− 1)n−1 h`n(x) 3F2

(
−n,−x,− f `n(x)
β,− f `n(x)− 1

; 1− 1
c

)
, (31)

where f `n(x) is given in (33) and

h`n(x) =
c(β + n− 1)

1− c
Aj,`

1,n(x)− Bj,`
1,n(x).

Proof. Taking into account (−x)k = 0 if x < k, as well as (8) and (26), we deduce:

M
j,`
n (x; β, c; λ) =

cn (β)n

(c− 1)n Aj,`
1,n(x)

n

∑
k=0

(−n)k(−x)k
(β)kk!

(
1− 1

c

)k

+
cn−1 (β)n−1

(c− 1)n−1 Bj,`
1,n(x)

n−1

∑
k=0

(1− n)k(−x)k
(β)kk!

(
1− 1

c

)k
.
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By using the identity:
(a + k)(a)k = a(a + 1)k, (32)

we obtain:

M
j,`
n (x; β, c; λ) =

cn (β)n

(c− 1)n Aj,`
1,n(x)

n

∑
k=0

(−n)k(−x)k
(β)kk!

(
1− 1

c

)k

+
cn−1 (β)n−1

(c− 1)n−1

Bj,`
1,n(x)

n

n

∑
k=0

(n− k)(−n)k(−x)k
(β)kk!

(
1− 1

c

)k
.

Thus, we have:

M
j,`
n (x; β, c; λ)=

(β)n−1cn−1

(c− 1)n−1

Bj,`
1,n(x)

n

n

∑
k=0

( f `n(x)− k + 1)
(−n)k(−x)k

(β)kk!

(
1− 1

c

)k
,

where

f `n(x) = n− 1−
nc(β + n− 1)Aj,`

1,n(x)

(1− c)Bj,`
1,n(x)

. (33)

In addition, after a straightforward calculation and by using (32) with a→ − f `n(x)− 1,
the identity (31) follows. This completes the proof.

4. Second-Order Linear Difference Equation

In this section, we obtain a second-order linear difference equation that the sequence
{M j,`

n (x; β, c; λ)}n≥0 satisfies. In order to achieve this, we will find the ladder (creation
and annihilation) operators, using the connection Formula (26), the three-term recurrence
relation (7), and the structure relations (10) and (11) satisfied by them.

From (26) and the recurrence relation (7), we deduce the following result:

M
j,`
n−1(x; β, c; λ) = Aj,`

2,n(x)Mn(x; β, c) + Bj,`
2,n(x)Mn−1(x; β, c), (34)

where

Aj,`
2,n(x) =

(c− 1)Bj,`
1,n−1(x)

(c + 1)(n− 1) + βc
, and Bj,`

2,n(x) = Aj,`
1,n−1(x) + Aj,`

2,n(x)(1− x).

Applying the operator T to (26) and by using (23), we have:

T M
j,`
n (x; β, c; λ) = Mn(x; β, c)T Aj,`

1,n(x) + Aj,`
1,n(x + (−1)`)T Mn(x; β, c)

+Mn−1(x; β, c)T Bj,`
1,n(x) + Aj,`

1,n(x + (−1)`)T Mn−1(x; β, c).

Then, multiplying the previous expression by x and using the structure relation (11) if
` = 1 and x + β, using the structure relation (10) if ` = 2, as well as using the recurrence
relation (7), we deduce the following expressions:

x∇M
j,1
n (x; β, c; λ) = C1

1,n(x)Mn(x; β, c) + D1
1,n(x)Mn−1(x; β, c), (35)

(x + β)∆M
j,2
n (x; β, c; λ) = C2

1,n(x)Mn(x; β, c) + D2
1,n(x)Mn−1(x; β, c), (36)

x∇M
j,1
n−1(x; β, c; λ) = C1

2,n(x)Mn(x; β, c) + D1
2,n(x)Mn−1(x; β, c), (37)

and
(x + β)∆M

j,2
n−1(x; β, c; λ) = C2

2,n(x)Mn(x; β, c) + D2
2,n(x)Mn−1(x; β, c), (38)
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respectively, where all the coefficients can be computed explicitly. Moreover, from (26)–(34),
for ` = 1, 2, we have:

Θn(x; `)Mn(x; β, c) = B`
2,n(x)M j,`

n (x; β, c; λ)− B`
1,n(x)M j,`

n−1(x; β, c; λ),

and

Θn(x; `)Mn−1(x; β, c) = A`
1,n(x)M j,`

n−1(x; β, c; λ)− A`
2,n(x)M j,`

n (x; β, c; λ),

where

Θn(x; `) = det

A`
1,n(x) B`

1,n(x)

A`
2,n(x) B`

2,n(x)

, ` = 1, 2.

After replacing the above in (35)–(38), we conclude:(
Θ̃n(x; `)T + Λ(1)

2,n(x; `)
)[

M
j,`
n (x; β, c; λ)

]
= Λ(1)

1,n(x; `)M j,`
n−1(x; β, c; λ).

and (
Θ̃n(x; `)T + Λ(2)

1,n(x; `)
)[

M
j,`
n−1(x; β, c; λ)

]
= Λ(2)

2,n(x; `)M j,`
n (x; β, c; λ),

respectively, where

Θ̃n(x; `) =

 xΘn(x; `), if ` = 1,

(x + β)Θn(x; `), if ` = 2,
(39)

and

Λ(k)
j,n (x; `) = (−1)k det

C`
k,n(x) Aj,`

ν,n(x)

D`
k,n(x) Bj,`

ν,n(x)

, ν = 1, 2, k = 1, 2, ` = 1, 2. (40)

Proposition 5. Let
{

M
j,`
n (x; β, c; λ)

}
n∈N0

be the sequence of monic Sobolev-type Meixner poly-

nomials defined by (31) and let I be the identity operator. Then, the ladder (destruction and
creation) operators a, a† are defined by:

a = Θ̃n(x; `)T + Λ(1)
2,n(x; `),

a† = Θ̃n(x; `)T + Λ(2)
1,n(x; `),

which verify
a(M

j,`
n (x; β, c; λ)) = Λ(1)

1,n(x; `)M j,`
n−1(x; β, c; λ), (41)

a†(M
j,`
n−1(x; β, c; λ)) = Λ(2)

2,n(x; `)M j,`
n (x; β, c; λ),

where Θ̃n(x; `) and Λ(k)
j,n (x; `) with j, k, ` = 1, 2 are given in (39) and (40).

Theorem 2. The monic Sobolev-type Meixner polynomial sequence, which is orthogonal with
respect to the inner product (24), fulfills the second-order difference equation:

Fn(x; `)T 2y(x) + Gn(x; `)T y(x) +Hn(x; `)y(x) = 0, (42)

where

Fn(x; `) =
Θ̃n(x; `)Θ̃n(x + (−1)`; `)

Λ(1)
1,n(x + (−1)`; `)

,
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Gn(x; `) =
Θ̃n(x; `)

Λ(1)
1,n(x + (−1)`; `)

T Θ̃n(x; `)−
Θ̃n(x; `)T Λ(1)

1,n(x; `)

Λ(1)
1,n(x; `)

+ Λ(1)
2,n(x + (−1)`; `)

)
+

Θ̃n(x; `)Λ(2)
1,n(x; `)

Λ(1)
1,n(x; `)

,

and

Hn(x; `) =
Θ̃n(x; `)T Λ(1)

2,n(x; `)

Λ(1)
1,n(x + (−1)`; `)

−
Θ̃n(x; `)Λ(1)

2,n(x; `)T Λ(1)
1,n(x; `)

Λ(1)
1,n(x; `)Λ(1)

1,n(x + (−1)`; i)

+
Λ(2)

1,n(x; `)Λ(1)
2,n(x; `)

Λ(1)
1,n(x; `)

−Λ(2)
2,n(x; `),

where Θ̃n(x; `) and Λ(k)
j,n (x; `) with j, k, ` = 1, 2 are given in (39) and (40).

Proof. From (41), we have:

1

Λ(1)
1,n(x; `)

a(M
j,`
n (x; β, c; λ)) = M

j,`
n−1(x; β, c; λ).

Next, applying the operator a† to both members of the previous expression, we obtain:

a†

 1

Λ(1)
1,n(x; `)

a(M
j,`
n (x; β, c; λ))

 = Λ(2)
2,n(x; `)M j,`

n (x; β, c; λ).

Thus, by using the definitions of the operators a and a†, taking into account the
identity:

T

{
f (x)
g(x)

}
=

g(x)T f (x)− f (x)T g(x)
g(x)g(x + (−1)`)

,

and after tedious calculations we obtain (42). Hence, the result follows.

5. The (2j + 3)-Term Recurrence Relation

In this section, we find the (2j + 3)-term recurrence relation that the sequence of monic
Sobolev-type Meixner polynomials (31) fulfill. For this purpose, we use the fact, which is
a straightforward consequence of (3), that the multiplication operator by (x− α)j+1 is a
symmetric operator with respect to such a discrete Sobolev inner product. Indeed, for any
p, q ∈ P and for ` = 1 we have the following:〈

(x− α)j+1 p(x), q(x)
〉

λ,j,` =
〈
(x− α)j+1uM, p(x)q(x)

〉
=
〈

p(x), (x− α)j+1q(x)
〉

λ,j,`,
(43)

and for ` = 2:〈
(x− α− j)j+1 p(x), q(x)

〉
λ,j,` =

〈
(x− α− j)j+1uM, p(x)q(x)

〉
=
〈

p(x), (x− α− j)j+1q(x)
〉

λ,j,`.
(44)

Taking these identities into account and by using the three-term recurrence relation (7),
we can state the following result.
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Lemma 1. The following identities related to the monic Sobolev-type Meixner polynomials hold:

(x− α)j+1M
j,1
n (x; β, c; λ) = A1

n(x)Mn(x; β, c) + B1
n(x)Mn−1(x; β, c), (45)

(x− α− j)j+1M
j,2
n (x; β, c; λ) = A2

n(x)Mn(x; β, c) + B2
n(x)Mn−1(x; β, c), (46)

where A`
n(x), B`n(x) are polynomials which can be computed explicitly.

Theorem 3. Let λ ∈ R+ and j ∈ N, and let
{

M
j,`
n (x; β, c; λ)

}
n∈N0

be the sequence of monic

Sobolev-type Meixner polynomials defined by (31).
Then, the norm of these polynomials fulfills the following identity:

‖M j,`
n (x; β, c; λ)‖2

λ,j,` = ‖Mn(x; β, c)‖2 + bj,`
n ‖Mn−1(x; β, c)‖2, (47)

where

bj,`
n =

λ

‖Mn−1(x; β, c)‖2
T j Mn(α; β, c)T j Mn(α; β, c)

1 + λK
(j,j)

n,` (α, α)
≥ 0. (48)

Proof. We will consider the ` = 1 case. The ` = 2 case is analogous.
By the property of orthogonality of Sobolev-type Meixner polynomials, we have:

‖M j,`
n (x; β, c; λ)‖2

λ,j,` =
〈
M

j,`
n (x; β, c; λ), (x− α)j+1πn−j−1(x)

〉
λ,j,`

,

for any monic polynomial π of degree n− j− 1. From (43), we have:〈
M

j,`
n (x; β, c; λ), (x− α)j+1π(x)

〉
λ,j,`

=
〈
(x− α)j+1M

j,`
n (x; β, c; λ), π(x)

〉
λ,j,`

.

By using the connection Formula (45) and taking into account that A`
n(x) is a monic

polynomial of degree j+ 1 and B`n(x) is a polynomial of degree j with the leading coefficient
bj,`

n , we deduce:

‖M j,`
n (x; β, c; λ)‖2

λ,j,` =
〈
(x− α)j+1M

j,`
n (x; β, c; λ), π(x)

〉
λ,j,`

=
〈

uM,A`
n(x)Mn(x; β, c)π(x)

〉
+
〈

uM,B`n(x)Mn−1(x; β, c)π(x)
〉

=
〈
uM, Mn(x; β, c) xn〉+ bj,`

n

〈
uM, Mn−1(x; β, c) xn−1

〉
,

which coincides with (47).

Remark 3. Observe that a direct consequence is the following:

‖M j,`
n (x; β, c; λ)‖2

λ,j,`

‖Mn(x; β, c)‖2 =
1 + λK

(j,j)
n+1,`(α, α)

1 + λK
(j,j)

n,` (α, α)
. (49)

Theorem 4 ((2j + 3)-term recurrence relation). Let λ ∈ R+, j ∈ N0. Then, the monic Sobolev-
type Meixner orthogonal polynomials sequence with respect to the inner product (24) satisfies the
following (2j + 3)-term recurrence relation:

(x− α)j+1M
j,1
n (x; β, c; λ) = M

j,1
n+j+1(x; β, c; λ) +

n+j

∑
k=n−j−1

cj,1
n,k M

j,1
k (x; β, c; λ),
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and

(x− α− j)j+1M
j,2
n (x; β, c; λ) = M

j,2
n+j+1(x; β, c; λ) +

n+j

∑
k=n−j−1

cj,2
n,k M

j,2
k (x; β, c; λ),

where the constant coefficients cj,`
n,k can be explicitly computed for ` = 1, 2.

Proof. In such a case, we will consider the ` = 2 case.
Since the Sobolev-type Meixner polynomials form a basis in L2(〈·, ·〉λ,j,`), if we con-

sider the Fourier expansion of (x− α− j)j+1M
j,`
n (x; β, c; λ) in terms of the Sobolev-type

Meixner polynomials, then:

(x− α− j)j+1M
j,`
n (x; β, c; λ) = M

j,`
n+j+1(x; β, c; λ) +

n+j

∑
k=0

cj,`
n,kM

j,`
k (x; β, c; λ).

Thus, by using the property of orthogonality of the sequence {M j,`
n (x; β, c; λ)}, we

obtain:

cj,`
n,k =

〈
(x− α− j)j+1M

j,`
n (x; β, c; λ), M j,`

k (x; β, c; λ)
〉

λ,j,`

‖M j,`
k (x; β, c; λ)‖2

λ,j,`

, k = 0, · · · , n + j.

Using (44) and the property of orthogonality of {M j,`
n (x; β, c; λ)}, we deduce that

cj,`
n,k = 0 for k = 0, . . . , n− j− 2. Observe that the rest of the coefficients can be computed by

using again the same orthogonality conditions. The proof of the another identity is similar,
and it will be omitted.

6. Mehler–Heine-Type Formula

The main result of this section will be to establish a Mehler–Heine-type formula for
the polynomial M

j,`
n (x; β, c; λ) for the α ≤ 0 case. The following results will allow us to

prove such an expression.

Lemma 2. Let β, c ∈ C, with |c| < 1 and −β 6∈ N, and let m be a positive integer. Then, the
following limit holds:

lim
n→∞

(β)nnmcn

(n− 1)!
= 0. (50)

Proof. If we use the identity (p. 23) [21]

Γ(z) = lim
n→∞

(n− 1)!nz

(z)n
,

we deduce:

lim
n→∞

(β)nnmcn

(n− 1)!
=

1
Γ(β)

lim
n→∞

nβ+mcn. (51)

Therefore, if Re(β + m) > 0, then, applying to (51) the L’Hôpital’s rule several times,
we obtain the desired result; otherwise, the limit is zero. Hence, the result holds.

Lemma 3. Let β, c ∈ R, with |c| < 1, and β is not a negative integer, and let k, j be integers, with
0 ≤ k ≤ j. If we set α = 0 in (25), then the following limits hold:

lim
n→∞

Aj,`
1,n(x) = 1 and lim

n→∞
Bj,`

1,n(x) = 0, ` = 1, 2. (52)
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Proof. By starting with (25) and using (21), we obtain:

Aj,`
i,n(x)= 1− λT j Mn(α; β, c)

1 + λK
(j,j)

n,` (α, α)

j!
d2

n−1

j

∑
k=0

T k Mn−1(α; β, c)
k! (x− α + k)j+1−k

,

and

Bj,`
i,n(x)= λ

T j Mn(α; β, c)

1 + λK
(j,j)

n,` (α, α)

j!
d2

n−1

j

∑
k=0

T k Mn(α; β, c)
k! (x− α + k)j+1−k

.

where i = 1, 2. Then, to prove this result, it is enough to check:

lim
n→∞

(1− c)naj,`
k,n = lim

n→∞
(1− c)nbj,`

k,n = 0, k = 0, 1, . . . , n, i = 1, 2, ` = 1, 2,

where

aj,`
k,n =

λ j! T j Mn(α; β, c)T k Mn−1(α; β, c)

k!(1 + λK
(j,j)

n,` (α, α))d2
n−1

,

and

bj,`
k,n =

λ j! T j Mn(α; β, c)T k Mn(α; β, c)

k!(1 + λK
(j,j)

n,` (α, α))d2
n−1

.

After a straightforward calculation, by using (15), we have that for any 0 ≤ k ≤ j

T k Mn(α; β, c) ≈ T j Mn(α; β, c),

for n large, and since c− 1 < c, then by using Lemma 2, it is clear that both limits related to
such coefficients tend to zero. Hence, we deduce (52).

Theorem 5. Let β, c ∈ R, with |c| < 1 and β is not a negative integer, and let m be a positive
integer. Then, we have:

lim
n→∞

(1− c)n+β+zM
j,`
n (z; β, c; λ)

(z− n + 1)n
= 1, z ∈ C \N, (53)

uniformly on compact subsets of the complex plane.

Proof. If we multiply (26) by (1− c)n+β+z/(z− n + 1)n, we obtain:

(1− c)n+β+zM
j,`
n (z; β, c; λ)

(z− n + 1)n
=A(j,`)

i,n (z)
(1− c)n+β+z Mn(z; β, c)

(z− n + 1)n

+ B(j,`)
1,n (z)

(1− c)n+β+z Mn−1(z; β, c)
(z− n + 1)n

.

Then, applying the previous Lemma as well as the (15), we arrive at the desired
result.

Remark 4. Observe that we can extend some of the previous results even for c ∈ C, so that
|c− 1| < |c| < 1, or even into a wider region of the complex plane taking into account (6).

Finally, we show some graphical experiments of the limit function in (53) for several
values of n using Mathematica software at the masspoint α = 0. Since

(z− n + 1)n = (−1)n Γ(−z + n)
Γ(−z)

,
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then (53) can be rewritten as:

lim
n→∞

(c− 1)nM
j,`
n (z; β, c; λ)

Γ(n− z)
=

1
(1− c)β+zΓ(−z)

, z ∈ C \N. (54)

The Figures 1–3 show how such limit converges to the right value.

−1 1 2 3

−5

−10

5

10

Figure 1. The gray-color curve represents the function in the left hand side in (54) for n = 50, and the
black curve is the limiting function. Data: β = 7, c = 1/5, λ = 10−21 and j = 2.

−1 1 2 3

−5

−10

5

10

Figure 2. The gray-color curve represents the function in the left hand side in (54) for n = 70, and the
black curve is the limiting function. Data: β = 7, c = 1/5, λ = 10−21 and j = 2.
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−1 1 2 3
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−10
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Figure 3. The gray-color curve represents the function in the left hand side in (54) for n = 100, and
the black curve is the limiting function. Data: β = 7, c = 1/5, λ = 10−21 and j = 2.
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