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Abstract: Trade credit is generally used by businesses to obtain external funds. This article demon-
strates an inventory system from the retailer’s point of view in which (1) the influence of trade credit
on expanding small businesses and their consumers is the focus of this research, and (2) the retailer’s
on-hand inventory follows the non-instantaneous deterioration. (3) To maximize profit, the demand is
disclosed, which is based on not just the sales price, but also on cumulative demand, which indicates
saturation and diffusion. (4) The product’s initial price and the permitted discount rate at the time
of deterioration are considered to be time-dependent functions of the sales price. In the absence of
deterioration, the item is sold at a constant rate, and whenever deterioration occurs, the sales price is
assumed to be an exponential function of the discount variable. The main aim is to optimize the total
profit of the retailer in terms of cycle time and sales price. The traditional algorithm of optimization
is used to address the optimization problem. Finally, the theoretical results are validated by solving
three numerical illustrations and conducting a sensitivity analysis of the main factors resulting from
the following managerial implications: (1) credit period provides the maximum profit margin of any
financing method, and (2) an increase in the initial rate of demand raises sales price while increasing
overall profit significantly.

Keywords: discount; dynamic rate of demand; non-instantaneous deterioration; time-varying sales
price; trade credit; time-dependent holding cost

MSC: 90B05

1. Introduction
1.1. Overview and Practical Motivations

In recent transactions, economic order policy is widely used in any business transaction
to increase the profitability level [1]. In addition, trade credit is now a prominent kind of
financing being commonly implemented in business. Trade credit research has expanded
from the domain of banking and finance to become a multidisciplinary scientific topic
with significant contributions from business management, operations research, production
and finance, economics, and other disciplines [2]. Many firms now have deals with credit
card corporations and a strategy of interest-free installment to offer their consumers a

Mathematics 2022, 10, 1948. https://doi.org/10.3390/math10111948 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10111948
https://doi.org/10.3390/math10111948
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6820-7786
https://orcid.org/0000-0003-3654-5232
https://orcid.org/0000-0003-4279-2686
https://orcid.org/0000-0001-7524-3902
https://orcid.org/0000-0002-3141-2900
https://doi.org/10.3390/math10111948
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10111948?type=check_update&version=1


Mathematics 2022, 10, 1948 2 of 19

limited time to gain market share. To maximize total profit, businesses must analyze the
trade-off between credit risks and the income potential of a marginal sale. This article uses
a mathematical technique to evaluate the influence and value of trade credit on the growth
of small retailers and their customers.

In real life, deterioration is a natural phenomenon in inventory control [3,4]. The
implication of deterioration has been highlighted due to scientific aspects. Items such as
electronics, fuel, blood, and cereals begin to degrade after a certain length of time and lose
their originality [5]. The term “non-deterioration period” is used in this article to describe
the period during which items in a lot are non-deteriorative [6–9]. In other words, this
is the period during which the goods in the same lot have a minimum shelf life. During
the non-deterioration phase, inventory decline is only due to demand; however, after the
non-deterioration time, the inventory decreases due to both demand and deterioration [10].
This research particularly develops a model for electronic goods which can be considered
“non-instantaneous deteriorating items”.

Recent technology advancements, such as online marketing, electronic shelf, and labeling,
have permitted dynamic pricing strategies across a wide range of businesses [11,12]. The
company can decrease its losses by using various marketing strategies and promotional
tools, such as a discount policy. Customers like to buy when there are discounts available.
Therefore, the discount strategy is also considered in this model.

Consumer demand is affected by both the product’s life and its sales price. The
demand rate in traditional inventory models is assumed to be constant, unaffected by
sales price, time, and inventory levels, which is not the case in reality. The sales price
has a huge influence on demand, and companies such as Ford and Dell Computer have
used dynamic pricing in conjunction with manufacturing and distribution strategies to
increase profitability [13,14]. The demand for a product decrease with time in areas such as
electronics and fashion design [15], and when a new product is introduced to the market,
consumers want to buy it based on its features. However, as technology advances and new
features are added to that model, the demand for the previous model decreases over time.
Customers were unhappy when Amazon initially tried dynamic pricing on DVDs, and
when they realized they were being charged more than others for the same products, they
demanded an apology and refund from Amazon [16]. The demand for items is influenced
not just by the item’s sale price, but also by the overall demand or sale of the item. Hence,
the companies are facing challenges as a result of supermarket dynamics and product
features. Therefore, a strong technique is to think about the dynamic pricing function
of demand where the demand is fluctuating according to customer demand. The study
is motivated by these factors and instead of using a fixed sales price, a dynamic pricing
approach is more successful in terms of increasing revenue.

1.2. Aim of This Study

This study focuses on the following research problems under decision-maker/retailer
behavior and the dynamic effects of supply level:

• What would be the best pricing methods for perishable products which optimize the
total profit?

• What would be the optimal sales price of a product when it depends on the time?
• What would be the optimal cycle time which optimizes the total profit?
• Under the dynamic demand with the assumption of time-varying holding cost, how

much inventory should be supplied and in what quantities?
• If the retailer collects a trade credit period from the supplier, then what would be the

effects on total profit?
• Which behavior is preferred by the retailer and how do the model’s key parameters

influence this preference?
• What would be the managerial implications of implementing this model to use in reality?
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1.3. Flow of the Paper

To address the above research questions, realistic scenarios formed the base of this
work, and the subsequent sections of the current model are accessible as follows. In
Section 2, the existing literature is reviewed. The notation and assumptions are displayed
in Section 3. For a proposed problem, the derivation of a mathematical model is discussed
in Section 4. Section 5 gives an algorithm to test the optimality of a retailer’s overall profit
function. Section 6 discusses numerical illustrations for each situation, sensitivity analysis
of main parameters, and managerial implications. The conclusions and future possibilities
are deliberated in Section 7.

2. Literature Review

This research is relevant to three research areas: the research of the trade credit
models, models of non-instantaneous perishable items in inventory, and dynamic pricing
models. The use of trade credit may significantly improve operational efficiency. Inventory
policies have been thoroughly focused on the concept of trade credit finance. In the
actual world, cash on delivery is impractical. Therefore, permissible delay in payment
strategy becomes a more communal payment method in real-world company dealings.
Initially in [1], the optimal inventory policy with the impact of the trade credit strategy
is explored. In [2], the inventory system with the trade credit policy under an imperfect
green production environment is examined. In [3], joint dynamic pricing and investment
strategy for perishable foods with price–quality dependent demand is formulated. For
perishable items, in [4], optimal dynamic pricing and preservation technology investment
with reference to the price effects are proposed. Under trade credit policy, shortages, and
sales-price-dependent demand, a model with deterioration goods with a non-instantaneous
rate is designed in [5]. A mathematical model is constructed in [17], with the assumption
of non-linear holding cost under trade credit. In [18], an analysis of the optimal portfolio
on finite and small-time horizons for a stochastic volatility market model is developed.
In [19], a model with a supply chain, where buyers have access to trade credit provided by
an upstream vendor is designed.

In [20], the concept of “non-instantaneous deterioration” is firstly described. Following
that, researchers concentrated on the inventory issues of non-instantaneous perishable
units in numerous situations. In [21], the inventory model for perishable items is reviewed.
In [6], a mathematical model under time-varying holding expense for perishable inventory
is suggested. Contributions to inventory systems are highlighted by terms such as discount
strategy, back ordering, trade credit, and lost sale; the best joint replenishment strategy for
several non-instantaneously decaying products is designed in [7]. In [8], a mathematical
model for a non-instantaneously perishable rate under carbon emission restrictions is
introduced. In [9], a mathematical model for non-instantaneous perishable inventory under
the investment in preservation technology is developed. Further, in [22], the influence of
continuous deterioration in an inventory model to assess just-in-time agreement is analyzed.
Recently, in [23], the pricing strategy for a perishable inventory with a non-instantaneous
rate, where the demand is selling price and freshness dependent investigated. Under
price-advertisement-dependent demand, in [10], an inventory strategy for perishable
inventory with a non-instantaneous rate with trade credit policy and time value of money
is developed.

For the notion of a dynamic strategy of pricing for perishable units, there is a rising
amount of effective literature. In [11], for perishable items, a dynamic pricing model
by selling a finite-time-horizon supply of goods is analyzed. A mathematical model for
perishable inventory is proposed in [12] under a dynamic pricing policy. In [13], a dynamic
demand with multi-product and a stochastic inventory model is analyzed. A dynamic
demand model is introduced in [14] with a stock-out dependency. In [24], a dynamic pricing
problem is considered for deteriorating goods about a reference price. This approach is
designed to optimize overall profit while recognizing that demand is influenced by both
current and historical prices. Further, in [25], joint dynamic pricing and inventory control
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policy for a stochastic inventory system with perishable products is developed. The use
of stochasticity in the mathematical model also plays an important role and in [26], the
problem of portfolio optimization in a simple incomplete market for small-time horizons is
discussed. In [15], a model for firms dealing with product returns is developed, and the
paper discusses dynamic pricing and the resale of products in perfect condition. Further,
in [27], the impact of decision parameters advertising and expected delivery time on the
desire for dual supply chain setups driven by the manufacturer is investigated. Recently, a
dynamic demand model, in which the demand is influenced by the time-varying function
of the sales price and also by cumulative demand is analyzed in [28]. In [29], dynamic
pricing and inventory policies in a food supply chain of growing and deteriorating items is
investigated. In Table 1, the contributions of the existing survey are abridged.

Table 1. Gap identification and summary of previous work for this work.

Author(s) Demand Type Non-Instantaneous
Deterioration

Variable Holding
Cost Trade Credit Nature of Sales Price

[8] Fuzzy price-sensitive Yes No Yes Linear
[9] Price-sensitive Yes No No Constant
[11] Non-homogeneous No No No Dynamic price
[25] Dynamic Pricing No No No Time dependent

[28] Dynamic pricing Yes Yes No Constant and time
dependent

In this paper Dynamic pricing Yes Yes Yes Constant and time
dependent

Research Gap and Contributions

Based on the literature survey and from the above Table, several studies have been
conducted on different mixtures, but the uniqueness of this article is that all the combi-
nations are investigated which were previously not considered in any model. The most
similar work to this article is [28], but in terms of trade credit policy, this paper significantly
differs, which is the novelty of this work, and in the current scenario, permissible delay in
payment policy plays an important role for any company or organization and also helps the
retailer to earn more revenue. Therefore, this paper extends [28] by adding the upstream
trade credit policy between the supplier and the retailer.

The following are the important contributions of this article:

• This study addresses a policy with non-instantaneous perishable units with a time-
varying sales price and a permitted discount rate for items that deteriorate after a
certain period.

• The model is used to evaluate variable holding cost, as they increase over time, as well
as to manage perishable commodities to prevent spoilage.

• The rate of demand for an item is determined not only by the product’s sales price,
but also by the cumulative demand or sale.

• In contrast to many situations, this model maximizes the overall profit under the trade
credit policy.

• To determine the optimality of the total profit function, this model employs the
traditional optimization approach.

• To demonstrate the theoretical outcomes, this article discusses the numerical illustra-
tions for each situation under trade credit.

• This study analyzes the sensitivity analysis of the main parameters and managerial
implications, which gives the best strategy to the retailer for maximizing total profit.

3. Problem Explanation, Notation, and Assumptions
3.1. Problem Explanation

In this article, a dynamic pricing policy is investigated under permissible delay in
payment for perishable items with a non-instantaneous rate, in which the company suffers
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spoilage difficulties, and instead of a constant sale price, the retailer may provide variations
with the appropriate discount during the period of spoilage. A company may adjust the
price over time, especially if a customer’s demand is sensitive to price. This is a real-life
situation for many businesses around the world. The model investigates the dynamic
demand for perishable products and examines the trade credit policy situation since it
benefits the company and helps the retailer to increase sales. In a real-world inventory
scenario, developing a realistic mathematical model that incorporates information with
accuracy and certainty is extremely challenging. The focus of this article, however, is to
create a model that would be used to connect real-life situations.

3.2. Assumptions

• The current inventory system is limited to a single product.
• The rate of deterioration is considered to be non-instantaneous. That is, during the

period (0, tn), the items in inventory are non-deteriorating and at that time tn, the
deterioration begins in the system, and items deteriorate at a constant rate θn [8,10].

• When the deterioration begins in the system, per unit time, throughout (tn, T), the
holding cost is presumed to be time varying and is defined by h(t) = h + τ(t− tn),
where h is the holding cost parameter and τ is the rate of increase over time (one can
examine an article’s assumption [28]).

• The sales price of the product is assumed to be constant S; when there is no deteriora-
tion during (0, tn) and when the deterioration begin in the system, it is assumed to be
exponential decreasing function of time with variable discount ω during (tn, T) (one
can examine an article’s assumption [28]. Therefore, the time-dependent sales price is

described as S(t) =
{

S; 0 ≤ t ≤ tn
S exp(−ω(t− tn)); tn ≤ t ≤ T

• The dynamic demand rate D(S, t) =

{
D1(S, t); 0 < t < tn
D2(S, t); tn < t < T

is considered to be

a function of the sales price and also cumulative demand, which can be defined
as follows:

• When there is no deterioration, the rate of demand can be determined as dD1(S,t)
dt =

a− bS− ψD1(S, t)
• When deterioration begins in the system, the rate of demand can be determined as

dD2(S,t)
dt = a− bS exp(−ω(t− t1))− ψD2(S, t)

• Where a represents a scaling demand, b represents the sensitivity of the demand
concerning price, and both of them are known and positive. The parameter η is
the reduced rate of sales, which indicates the saturation impact and includes the
percentage of the market that will not buy the units at the specified period one can
examine an article’s assumption [28].

• The retailer obtains years of credit period from the supplier, where the retailer can pay
after M and will make the interest

(
Ig
)

throughout the interval from 0 to M and will
pay back the interest (Ip) throughout the interval from M to T [3,18].

• With a lead time of zero, the rate of replenishment is infinite.
• The retailer trades only a single kind of deteriorating item, and no replacement is

admissible throughout the entire cycle time.
• Shortages are not permitted.

4. Mathematical Model

This section frames a mathematical model for perishable items with a non-instantaneous
rate under the dynamic demand rate, which is the function of the time-dependent sales
price and cumulative demand. The inventory system is shown in Figure 1.
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By the commencement of per cycle, initial Q units reach the organization, and the
inventory system reveals no deterioration over the period from 0 to tn. As a result, the
quantity continues to decrease owing to the demand, and in this situation, the sales price of
the item is constant and defined as S(t) = S. Thus, the rate of change in the demand (0, tn)
is administered by the following equation:

dD1(S, t)
dt

= a− bS− ψD1(S, t) (1)

with initial condition D1(S, 0) = D0.
By solving (1) with the initial condition, the dynamic demand rate for non-deteriorating

items is given by

D1(S, t) = exp(−ψt)
(

D0 −
a− bS

ψ

)
+

a− bS
ψ

(2)

Now, at the time tn, the units begin to deteriorate constantly, and deterioration occurs
in the sales period (tn, T); which results in a decreasing utility or physical quantity from
the original one. However, the decrease in utility can be transformed into a reduction in
quantity while modeling. Therefore, during this period, the quantity continues to reduce
owing to the joint impact of demand and deterioration. To increase the sales of the units,
the sales price of the product is an exponentially decreasing function of time with variable
discount and is given by S(t) = S exp(−ω(t− tn)). Thus, the following equation governs
the rate of change in demand during the period (tn, T)

dD2(S, t)
dt

= a− bS exp(−ω(t− tn))− ψD2(S, t) (3)

with boundary condition D2(S, tn) = D1(S, tn).
By solving Equation (3) with boundary condition, the dynamic demand rate for

deteriorating items is determined as

D2(S, t) =
exp(−ψt)
ψ(ω− ψ)

(
−ψ(exp(−ω(tn − t) + ψt)(a− bS)) + D0ωψ−
D0ψ2(a− bS)(ψ−ω + ω exp(ψtn))

)
(4)
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Next, by following Equation (4), the inventory level for deteriorating items (tn, T) is
denoted by I2(t), and at t = T, the level of inventory vanishes. However, the deterioration
rate is measured to be a constant and is given by θn I2(t). Thus, the inventory variances for
this period are described as

dI2(t)
dt

= −D2(S, t)− θn I2(t) (5)

under the boundary condition I2(T) = 0.
By solving Equation (5), the level of inventory (tn, T) is defined as

I2(t) =
exp(−θnt)
ψ(ω− ψ)


ω(a−bS)(exp((tn−t)ψ+θnt)−exp((tn−T)ψ+θnT))

θn−ψ −

ψ(a−bS)(exp(tn−t)ω+θnt)−exp((tn−T)ω+θnT)
θn−ω −

(ω−ψ)(D0ψ+a−bS) exp(t(θn−ψ))−exp(θn−ψ)
θn−ψ

 (6)

Now, the level of inventory for non-deteriorating items during the period (0, tn) is
denoted by I1(t). Thus, the inventory variances for this period are described as

dI1(t)
dt

= −D1(S, t) (7)

and following Equation (6) and the use of continuity I1(tn) = I2(tn) (see Figure 1) gives
the boundary condition:

I1(tn) =
exp(−θntn)

ψ(ω− ψ)


(

ω
θn−ψ −

ψ
θn−ω

)( (a− bS) exp(θntn)−
(a− bS) exp((tn − T)ψ + θnT)

)
+ (ω−ψ)(D0ψ+a−bS)

θn−ψ (exp(θn − ψ)− exp(tn(θn − ψ)))

 (8)

Thus, by solving Equation (7) with Equation (8), the inventory level for the period
(0, tn) is defined as

I1(t) =
exp(−ηt)(D0ψ+a−bS)

ω2 − (a−bS)t
ψ − exp(−ψtn)(D0ψ+a−bS)

ψ2

+ (a−bS)tn
ψ +

exp(−θntn)
η(ω−η)(η−θn)(ω−θn)

− exp(θntn)bω2S + exp(θntn)bω2S + exp(tn(θn − ψ))D0ω2ψ−
exp(tn(θn − ψ))D0ωψ2 + exp(tn(θn − ψ))D0ω2θn + exp(tn(θn − ψ))bω2S+

exp((tn − T)ψ + θnT)bω2S− exp((tn − T)ω + θnT)bω2S−
exp(T(θn − ψ))D0ω2ψ− exp(T(θn − ψ))D0ωψ2 − exp(T(θn − ψ))D0ω2θn−
exp(T(θn − ψ))bω2S− exp(θntn)aωθ + exp(θntn)aψθn + exp(tn(θn − ψ))aωψ+

exp(tn(θn − ψ))aωθn − exp(tn(θn − ψ))aψθn + exp((tn − T)ω + θnT)aωθn−
exp((tn − T)ω + θnT)aψθn − exp(T(θn − ψ))aψω− exp(T(θn − ψ))aωθn+

exp(T(θn − ψ))aψθn + exp(θntn)aω2 − exp(θntn)aψ2 − exp(tn(θn − ψ))aω2−
exp((tn − T)ψ + θnT)aω2 + exp((tn − T)ω + θnT)aψ2 + exp(T(θn − ψ))aω2+

exp(θntn)bωSθn − exp(θntn)bψSθn − exp(tn(θn − ψ))D0ωψθn−
exp(tn(θn − ψ))bψωS− exp(tn(θ − ψ))bωSθn + exp(tn(θ − ψ))bψSθn−
exp((tn − T)ψ + θnT)bωSθn + exp((tn − T)ω + θnT)bψSθn + exp(T(θn − ψ))D0ωψθn+

exp(T(θn − ψ))bψωS + exp(T(θn − ψ))bωSθn − exp(T(θn − ψ))bψSθn



(9)
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and by using the initial condition I1(0) = Q and following Equation (9), the optimal order
quantity is obtained as

Q = (D0ψ+a−bS)
ω2 − exp(−ψtn)(D0ψ+a−bS)

ψ2 + (a−bS)tn
ψ +

exp(−θntn)
η(ω−η)(η−θn)(ω−θn)

− exp(θntn)bω2S + exp(θntn)bω2S + exp(tn(θn − ψ))D0ω2ψ−
exp(tn(θn − ψ))D0ωψ2 + exp(tn(θn − ψ))D0ω2θn + exp(tn(θn − ψ))bω2S+

exp((tn − T)ψ + θnT)bω2S− exp((tn − T)ω + θnT)bω2S−
exp(T(θn − ψ))D0ω2ψ− exp(T(θn − ψ))D0ωψ2 − exp(T(θn − ψ))D0ω2θn−
exp(T(θn − ψ))bω2S− exp(θntn)aωθ + exp(θntn)aψθn + exp(tn(θn − ψ))aωψ+

exp(tn(θn − ψ))aωθn − exp(tn(θn − ψ))aψθn + exp((tn − T)ω + θnT)aωθn−
exp((tn − T)ω + θnT)aψθn − exp(T(θn − ψ))aψω− exp(T(θn − ψ))aωθn+

exp(T(θn − ψ))aψθn + exp(θntn)aω2 − exp(θntn)aψ2 − exp(tn(θn − ψ))aω2−
exp((tn − T)ψ + θnT)aω2 + exp((tn − T)ω + θnT)aψ2 + exp(T(θn − ψ))aω2+

exp(θntn)bωSθn − exp(θntn)bψSθn − exp(tn(θn − ψ))D0ωψθn−
exp(tn(θn − ψ))bψωS− exp(tn(θ − ψ))bωSθn + exp(tn(θ − ψ))bψSθn−
exp((tn − T)ψ + θnT)bωSθn + exp((tn − T)ω + θnT)bψSθn + exp(T(θn − ψ))D0ωψθn+

exp(T(θn − ψ))bψωS + exp(T(θn − ψ))bωSθn − exp(T(θn − ψ))bψSθn



(10)

Next, the retailer received years of credit period and may face three situations through-
out the entire cycle time T, the situations are: (1) 0 < M < tn < T, (2) 0 < tn < M < T,
and (3) 0 < tn < T < M. The interest gained Ig and the interest paid Ip for each situation
by the retailer is discussed in the following Table 2.

Table 2. Interest gained and interest paid by the retailer for each situation.

Situations Interest Gained (Ig) Interest Paid (Ip)

0 < M < tn < T

The retailer gains the interest during the time from 0
to M and that can be evaluated as

IE1 = SIg
M∫
0

tD1(S, t)dt

The retailer must pay the interest to the supplier
during the time from M to T, and that can be

evaluated as IP1 = PIp

(
tn∫

M
I1(t)dt +

T∫
tn

I2(t)dt

)

0 < tn < M < T

The retailer gains the interest during the time from 0
to tn as well as from tn to M and that can be

evaluated as

IE2 = SIg

(
tn∫
0

tD1(S, t)dt +
M∫
tn

tD2(S, t)dt

)
Same as the above case, the retailer must charge the
interest to the supplier during the time from M to T,

and that can be evaluated as IP2 = PIp

(
T∫

M
I2(t)dt

)

0 < tn < T < M

The retailer gains the maximum profit as the credit
period M occurs after the completion of the entire
cycle time and earns the additional interest during
the period from T to M, which can be evaluated as

IE3 = SIg

(
tn∫
0

tD1(S, t)dt +
M∫
tn

tD2(S, t)dt

)
+

SIg(M− T)

(
tn∫
0

D1(S, t)dt +
M∫
tn

D2(S, t)dt

)
The retailer has sold all the purchased goods from

the supplier, hence the interest charged to the retailer
will be zero. That is, IP3 = 0

Now, the generated revenue of sales, throughout the cycle time T, is evaluated as

SR =

tn∫
0

SD1(S, t)dt +
T∫

tn

S exp(−ω(t− tn))D2(S, t)dt (11)
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and total cost components are covered as shown below:

• Cost of ordering (per order): OC = O
• Cost of purchasing (per unit): PC = PQ

• Cost of holding (per unit time): HC =
tn∫
0

hI1(t)dt +
T∫

tn

(h + τ(t− tn))I2(t)dt

• Disposing cost (per unit): DC = Pd

T∫
tn

θn I2(t)dt

Therefore, per cycle time T, the retailer’s overall profit function, for all situations is
given by

TPi(S, T) =
1
T
(SR−OC− HC− PC− DC + IEi − IPi); i = 1, 2, 3

That is,

TPi(S, T) =


TP1(S, T) i f 0 < M < tn < T

TP2(S, T) i f 0 < tn < M < T

TP3(S, T) i f 0 < tn < T < M

(12)

in which

TP1(S, T) = 1
T (SR−OC− HC− PC− DC + IE1 − IP1)

= 1
T



tn∫
0

SD1(S, t)dt +
T∫

tn

S exp(−ω(t− tn))D2(S, t)dt−O

−
tn∫
0

hI1(t)dt +
T∫

tn

(h + τ(t− tn))I2(t)dt− PQ−

Pd

T∫
tn

θn I2(t)dt + SIg
M∫
0

tD1(S, t)dt− PIp

(
tn∫

M
I1(t)dt +

T∫
tn

I2(t)dt

)


(13)

TP2(S, T) = 1
T (SR−OC− HC− PC− DC + IE2 − IP2)

= 1
T



tn∫
0

SD1(S, t)dt +
T∫

tn

S exp(−ω(t− tn))D2(S, t)dt−O

−
tn∫
0

hI1(t)dt +
T∫

tn

(h + τ(t− tn))I2(t)dt− PQ−

Pd

T∫
tn

θn I2(t)dt + SIg

(
tn∫
0

tD1(S, t)dt +
M∫
tn

tD2(S, t)dt

)
− PIp

(
T∫

M
I2(t)dt

)


(14)

TP3(S, T) = 1
T (SR−OC− HC− PC− DC + IE3 − IP3)

= 1
T



tn∫
0

SD1(S, t)dt +
T∫

tn

S exp(−ω(t− tn))D2(S, t)dt−O

−
tn∫
0

hI1(t)dt +
T∫

tn

(h + τ(t− tn))I2(t)dt− PQ− Pd

T∫
tn

θn I2(t)dt+

SIg

(
tn∫
0

tD1(S, t)dt +
M∫
tn

tD2(S, t)dt

)
+ SIg(M− T)

(
tn∫
0

D1(S, t)dt +
M∫
tn

D2(S, t)dt

)


(15)

The goal is to evaluate the optimum cycle time and sales price, which maximize
the retailer’s total profit. Therefore, the optimization problem of this planned model is
defined as

Maximize TPi(S, T); i = 1, 2, 3

according to the condition T > 0 and S > 0
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5. Algorithm Rule for Optimality

To optimize the total profit function TPi(S, T); i = 1, 2, 3, this paper uses the classical
optimization technique to solve the above-defined optimization problem. To analyze the
optimality of the decision variables, the mathematical software Maple XVIII is used with
the following phases:

Phase-1: Assign mathematical measures to the given inventory system.
Phase-2: Solve the necessary conditions of the first-order partial derivatives

∂TPi(S, T)
∂T

= 0,
∂TPi(S, T)

∂S
= 0; i = 1, 2, 3

simultaneously, to find the optimal measures (say S∗ and T∗) of the decision variables S
and T.

Phase-3: Compute all possible second-order partial derivatives at the optimal measures
S∗ and T∗ as follows:

∂2TPi(S∗, T∗)
∂S2 ,

∂2TPi(S∗, T∗)
∂S∂T

,
∂2TPi(S∗, T∗)

∂T∂S
, and

∂2TPi(S∗, T∗)
∂T2

Phase-4: Generate the Hessian matrix Hi(S∗, T∗); i = 1, 2, 3 for each situation as

Hi(S∗, T∗) =

 ∂2TPi(S∗ ,T∗)
∂S2

∂2TPi(S∗ ,T∗)
∂S∂T

∂2TPi(S∗ ,T∗)
∂T∂S

∂2TPi(S∗ ,T∗)
∂T2

; i = 1, 2, 3

Phase 5: To check that the Hessian matrix Hi(S∗, T∗) is negative definite, define the
principal minor determinants of Hi(S∗, T∗) as follows:

D1 =

∣∣∣∣∂2TPi(S∗, T∗)
∂S2

∣∣∣∣ and D2 =

∣∣∣∣∣∣∣
∂2TPi(S∗ ,T∗)

∂S2
∂2TPi(S∗ ,T∗)

∂S∂T

∂2TPi(S∗ ,T∗)
∂T∂S

∂2TPi(S∗ ,T∗)
∂T2

∣∣∣∣∣∣∣
Phase 6: Check the sufficient conditions of the partially second-order derivatives for

optimization of the total profit function as follows:

D2 = |Hi(S∗, T∗)| =

∣∣∣∣∣∣∣∣
∂2TPi(S∗ ,T∗)

∂S2
∂2TPi(S∗ ,T∗)

∂S∂T

∂2TPi(S∗ ,T∗)
∂T∂S

∂2TPi(S∗ ,T∗)
∂T2

∣∣∣∣∣∣∣∣ > 0

and ∂2TPi(S∗ ,T∗)
∂S2 < 0, ∂2TPi(S∗ ,T∗)

∂T2 < 0

Proposition 1. The Hessian matrix Hi(S∗, T∗); i = 1, 2, 3 is said to be a negative definite if
the signs of the principal minor determinants of Hi(S∗, T∗); i = 1, 2, 3 are alternative where the
principal minor of even determinants are positive (i.e., |D1| < 0, and |D2| > 0).

Proposition 2. The condition for a stationary point (S∗, T∗) is a maximum point if the Hessian
Matrix Hi(S∗, T∗); i = 1, 2, 3 is negative definite.

Proposition 3. If the sufficient conditions of the second-order partial derivatives satisfy, then the
total profit function TPi(S, T); i = 1, 2, 3 has a maximum point, then it is said to be a strictly
concave function and attains the maximum value at the optimum measures (S∗, T∗).
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6. Numerical Illustrations, Comparison Chart, Sensitivity Analysis, and
Managerial Implications
6.1. Numerical Illustrations

For determining this resultant model, this article reviewed three numerical illustra-
tions, which facilitated in defining an optimal result for the profit function of the retailer.
Additionally, for each case, the optimality of a total profit function is shown by the graphs.

Illustration 1: For situation-(i): 0 < M < tn < T
For an inventory system, consider the following measures:
a = 1000, b = 11, P = $30/unit, ω = 0.005, Pd = $50/unit, τ = 0.4, ψ = 0.35,

D0 = 5, M = 0.3 years, h = $0.2/unit/year, O = $50/order, θn = 0.2, Ig = 0.1/dollar/year,
Ip = 0.12/dollar/year, φ = 0.2. Now, by using the above phrases, the decision vari-
able’s optimal measures are T∗ = 1.580 years, and S∗ = $68.72. Thus, the optimal
time when there is no deterioration is tn

∗ = φT∗ = 0.316 and the optimal order quan-
tity is Q∗ = 302.10 with total profit TP1(S∗, T∗) = $3736.77. The Hessian matrix for

this situation is H1(S∗, T∗) =

[
−14.52 82.42
82.42 −2600.35

]
with principal minor determinants

D1 =
∣∣∣ ∂2TPi(S∗ ,T∗)

∂S2

∣∣∣ = − 14.52 < 0, D2 =

∣∣∣∣∣∣∣
∂2TPi(S∗ ,T∗)

∂S2
∂2TPi(S∗ ,T∗)

∂S∂T

∂2TPi(S∗ ,T∗)
∂T∂S

∂2TPi(S∗ ,T∗)
∂T2

∣∣∣∣∣∣∣ = 30, 964.02 > 0.

Additionally, the sufficient conditions of the second-order partial derivatives are∣∣∣∣ −14.52 82.42
82.42 −2600.35

∣∣∣∣ = 30, 964.02 > 0 and

∂2TPi(S∗ ,T∗)
∂S2 = −14.52 < 0, ∂2TPi(S∗ ,T∗)

∂T2 = −2600.35 < 0

Hence, it is observed that all the principal minor determinants have alternative signs,
whereas the even principal minors have positive signs. Therefore, from Proposition 1,
the Hessian matrix H1(S∗, T∗) is negative definite; from Proposition 2, a stationary point
(S∗, T∗) is maximum; and from Proposition 3, the total profit function TP1(S∗, T∗) is a
strictly concave function and attains a maximum value at the optimal measure (S∗, T∗),
and its graphical representation is also shown in Figure 2.
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Illustration 2: For situation-(ii): 0 < tn < M < T
Considering the same data as per example 1 except M = 0.4 years and by using

the above phrases, the decision variables’ optimal measures are T∗ = 1.589 years, and
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S∗ = $68.55. Thus, the optimal time when there is no deterioration is tn
∗ = ϕT∗ = 0.317

and the optimal order quantity is Q∗ = 307.78 with total profit TP2(T∗, S∗) = $3814.73.

The Hessian matrix for this situation is H2(S∗, T∗) =
[
−14.60 82.78
82.78 −2609.12

]
with principal

minor determinants

D1 =

∣∣∣∣∂2TPi(S∗, T∗)
∂S2

∣∣∣∣ = −14.60 < 0, D2 =

∣∣∣∣∣∣∣
∂2TPi(S∗ ,T∗)

∂S2
∂2TPi(S∗ ,T∗)

∂S∂T

∂2TPi(S∗ ,T∗)
∂T∂S

∂2TPi(S∗ ,T∗)
∂T2

∣∣∣∣∣∣∣ = 31, 240.62 > 0

Additionally, the sufficient conditions of the second-order partial derivatives are∣∣∣∣ −14.60 82.78
82.78 −2609.12

∣∣∣∣ = 31, 240.62 > 0 and

∂2TPi(S∗ ,T∗)
∂S2 = −14.60 < 0, ∂2TPi(S∗ ,T∗)

∂T2 = −2609.12 < 0

Hence, it is observed that all the principal minor determinants have alternative signs,
whereas the even principal minors have positive signs. Therefore, from Proposition 1,
the Hessian matrix H2(S∗, T∗) is negative definite; from Proposition 2, a stationary point
(S∗, T∗) is maximum; and from Proposition 3, the total profit function TP2(S∗, T∗) is a
strictly concave function and attains a maximum value at the optimum measure (S∗, T∗),
and its graphical representation is also shown in Figure 3.
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Figure 3. Optimality of a total profit function for situation 2 (0 < tn < M < T).

Illustration 3: For situation-(iii): 0 < tn < T < M
Considering the same data as per example 1, except M = 1.3 years, and by using

the above phrases, the decision variables’ optimal measures are T∗ = 0.918 years, and
S∗ = $61.44. Thus, the optimal time when there is no deterioration is tn

∗ = φT∗ = 0.184
and the optimal order quantity is Q∗ = 138.15 with total profit TP3(S∗, T∗) = $4964.62.

The Hessian matrix for this situation is H3(S∗, T∗) =
[
−10.91 95.51
95.51 −1587.93

]
with principal

minor determinants

D1 =

∣∣∣∣∂2TPi(S∗, T∗)
∂S2

∣∣∣∣ = −10.91 < 0, D2 =

∣∣∣∣∣∣∣
∂2TPi(S∗ ,T∗)

∂S2
∂2TPi(S∗ ,T∗)

∂S∂T

∂2TPi(S∗ ,T∗)
∂T∂S

∂2TPi(S∗ ,T∗)
∂T2

∣∣∣∣∣∣∣ = 8202.16 > 0
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Additionally, the sufficient conditions of the second-order partial derivatives are∣∣∣∣ −10.91 95.51
95.51 −1587.93

∣∣∣∣ = 8202.16 > 0 and

∂2TPi(S∗ ,T∗)
∂S2 = −10.91 < 0, ∂2TPi(S∗ ,T∗)

∂T2 = −1587.93 < 0

Hence, it is observed that all the principal minor determinants have alternative signs,
whereas the even principal minors have positive signs. Therefore, from Proposition 1,
the Hessian matrix H3(S∗, T∗) is negative definite; from Proposition 2, a stationary point
(S∗, T∗) is maximal; and from Proposition 3, the total profit function TP3(S∗, T∗) is a strictly
concave function and attains a maximum value at the optimum measure (S∗, T∗), and its
graphical representation is also shown in Figure 4.
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6.2. Comparison Chart

The model [28] develops a dynamic pricing policy for non-instantaneous deteriorating
items with time-varying holding costs, where the nature of the sales price is considered
to be constant and time dependent. This research is now being expanded [28] by taking
into account the retailer and supplier’s trade credit policy. The retailer may face three
distinct situations as a result of this policy, as defined and expressed in Table 2. This section
displays a comparison chart of the retailer’s total profit between the previous model [28]
and the current model, as shown in Figure 5.

From Figure 5, it is observed that the retailer will generate more profit if the retailer
receives the credit period from the supplier. In addition, the various situations indicate
that as the credit period increases, the total profit of the retailer also increases. Therefore,
if the retailer receives a higher credit period from the supplier, then the retailer generates
the maximum revenue. As a result, the inclusion of a trade credit policy benefits both
the supplier and retailer by increasing the demand for goods and generating revenue by
earning some interest.
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6.3. Sensitivity Analysis

In Example 2, the sensitivity analysis is accomplished in this section, for the various
inventory parameters, by adjusting one parameter at a time as −20%, −10%, 10%, and 20%,
and the results are revealed in Tables 3–13 below.

Table 3. Impact of market potential (a).

a T S Q TP2(S,T)

800 1.211 57.38 126.13 1473.63
900 1.404 62.97 204.82 2476.34

1100 1.765 74.11 436.25 5524.50
1200 1.855 77.87 580.36 6728.10

Table 4. Impact of price sensitivity factor (b).

b T S Q TP2(S,T)

8.8 1.989 81.65 529.05 6898.85
9.9 1.784 74.75 407.15 5174.67

12.1 1.421 63.45 234.11 2835.47
13.2 1.275 59.18 178.89 2117.52

Table 5. Impact of purchasing cost (P).

P T S Q TP2(S,T)

24 1.847 66.15 456.39 5238.21
27 1.714 67.36 375.28 4480.38
33 1.472 69.73 251.62 3231.24
36 1.363 70.89 204.90 2721.35

Table 6. Impact of holding cost (h).

h T S Q TP2(S,T)

0.16 1.593 68.55 309.11 3822.37
0.18 1.591 68.55 308.46 3818.66
0.22 1.587 68.55 307.09 3811.19
0.24 1.586 68.56 306.42 3807.33
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Table 7. Impact of ordering cost (O).

O T S Q TP2(S,T)

40 1.587 68.54 307.21 3820.99
45 1.588 68.55 307.51 3818.02
55 1.590 68.56 308.60 3811.55
60 1.591 68.56 308.64 3808.65

Table 8. Impact of deterioration rate (θn).

θn T S Q TP2(S,T)

0.16 1.845 68.37 401.13 4350.09
0.18 1.708 68.46 349.83 4065.43
0.22 1.486 68.63 272.76 3594.14
0.24 1.395 68.70 243.43 3397.45

Table 9. Impact of the reduced rate of sales (ψ).

ψ T S Q TP2(S,T)

0.28 1.611 68.74 325.11 3931.83
0.31 1.599 68.63 315.02 3864.32
0.38 1.580 68.48 300.78 3766.63
0.42 1.568 68.38 291.79 3704.49

Table 10. Impact of initial rate of demand (D0).

D0 T S Q TP2(S,T)

4 1.591 68.51 307.76 3793.32
4.5 1.590 68.53 307.78 3803.52
5.5 1.588 68.57 307.80 3826.31
6 1.587 68.59 307.81 3837.27

Table 11. Impact of upstream trade credit (M).

M T S Q TP2(S,T)

0.24 1.574 68.82 298.42 3692.01
0.27 1.577 68.77 300.24 3714.38
0.33 1.589 68.72 308.51 3792.03
0.36 1.592 68.67 310.28 3815.69

Table 12. Impact of interest gain
(

Ig
)
.

Ig T S Q TP2(S,T)

0.08 1.591 68.57 308.16 3810.23
0.09 1.590 68.56 307.96 3812.64
0.11 1.588 68.54 307.57 3817.19
0.12 1.587 68.53 307.38 3819.59

Table 13. Impact of interest paid
(

Ip
)
.

Ip T S Q TP2(S,T)

0.096 1.643 68.59 327.74 3902.40
0.108 1.615 68.57 317.46 3857.67
0.132 1.564 68.53 298.57 3773.95
0.144 1.540 68.51 289.87 3734.09
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Impact of Scale Demand (a): The parameter (a) can be considered as the maximum
demand that a company can assess in a particular cycle time. The cycle time (T), sales price
(S), order quantity (Q), and overall profit TP2(S, T) all increase as the scale demand rate
rises. Thus, the increase is favorable to this model since it increases the retailer’s net profit.

Impact of Price Sensitivity Factor (b): The parameter (b) indicates that the product’s
sale decreases as its sales price increases. The (Q), (T), (S), and TP2(S, T) all decrease as the
(b) increases. The increase has a negative impact since it reduces the overall profit function.

Impact of Purchasing Cost (P): The sales price (S) increases as the cost price (P)
increases, while the cycle time (T), order quantity (Q), and overall profit TP2(S, T) decrease.
The impact of purchasing cost (P) on sales price (S) and overall profit TP2(S, T) is quite
significant. As a result, the increase is unfavorable.

Impact of parameter Holding Cost (h): As the parameter (h) rises, (Q), (T), and over-
all profit TP2(S, T) decreases, which suggests that the increase is unfavorable to this model.

Impact of Ordering Cost (O): The sales price (S), (T), and (Q) increases as the
ordering cost (O) surges, while overall profit TP2(S, T) decreases. Thus, an increase in
ordering cost decreases the retailer’s overall profit, which suggests that the increase is not
favorable to this model.

Impact of Deterioration Rate (θn): The sales price (S) increases as (θn) increases
while the (T), (Q), and the overall profit TP2(S, T) decrease. Thus, there is a negative
impact of the deterioration on the retailer’s overall profit. The results are reliable to the
result of [8,10], who discovered that as the deterioration increases, the total profit per unit
of time decreases.

Impact of The Reduced Rate of Sales (ψ): (ψ) represents the saturation impact. The
cycle time (T), sales price (S), order quantity (Q), and overall profit TP2(S, T) decrease as
(ψ) increases. The change has a negative impact since it decreases sales price, which affects
the net profit function. The net profit function decreases as the saturation impact increases.
The result follows the study by [28], who observe that the total profit function decreases
with an increase in saturation effect.

Impact of Initial Rate of Demand (D0): Cycle time (T) diminutions as the initial rate
of demand (D0) rise while sales price (S), order quantity (Q), and overall profit TP2(S, T)
increase. The increase is beneficial for the retailer since it increases the total profit.

Impact of Upstream Trade Credit (M): The cycle time (T), sales price (S), order
quantity (Q), and overall profit TP2(S, T) increase as the credit period (M) increases while
sales price (S) decreases, which implies that when the credit time (M) is longer, the overall
profit of the retailer would be larger as well. A similar result is observed in [3,18].

Impact of Interest Gain
(

Ig
)
: The cycle time (T), sales price (S), and order quantity

(Q) decrease as interest gain
(

Ig
)

increases, while overall profit TP2(S, T) increases. Hence,
the increase is favorable to this model.

Impact of Interest Paid
(

Ip
)
: The cycle time (T), sales price (S), order quantity (Q),

and overall profit TP2(S, T) decrease as interest paid
(

Ip
)

increases. Thus, the increase
(

Ip
)

is not desirable as the overall profit function declines.

6.4. Managerial Implications

The following results are derived from the aforementioned insights, which may assist
the retailer/decision-maker in making the proper decision for the optimal business policy,
and by the analyses of this model, the retailer should consider all of these below aspects so
that management may utilize this idea for business purposes to maximize profit:

• It is observed that the overall profit for the retailer under the proposed model is
maximal when the initial rate of demand of a customer and the scaling demand of a
product is high, which proposes to the retailer that if the initial customer’s demand
for a product is high, then it would be better for the retailer to order a large number
of units.
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• The price-sensitive parameter and reduced rate of sales parameter affect negatively
a retailer’s total profit as they decrease the sales price of a product. Therefore, the
increase is not beneficial for the retailer.

• The increase in the purchasing cost of a unit rises the sales price, and it is noticeable
that an increase in the sales price would have a direct impact on the demand rate.
Thus, the total profit will decrease as demand decreases. Therefore, if the purchasing
cost of a product is high, then the retailer should not place any order.

• The increase in holding cost and ordering cost of a product is not beneficial for the
retailer, as it decreases the overall profit for a retailer. Hence, if the ordering cost and
holding cost both are low, then the retailer should order more units so that the retailer
can easily carry the inventory to achieve the maximum profit when the demand for a
product is high.

• When the rate of deterioration is high, the retailer does not need to hold items for an
extended period. It is not recommended because the increase decreases total profit.

• Since the trade credit period and interest gain increase the retailer’s overall profit, it
suggests that if the retailer obtains a higher credit period from a supplier, then the
retailer should accept the proposal of a supplier and order more units to achieve
maximum profit.

7. Conclusions

This work is beneficial where the demand is a key factor in increasing sales, and when
a business is facing problems due to spoilage, this article helps to solve the situation. They
can have variations with appropriate discounts for perishable items during the deteriorating
time instead of a constant sales price. In inventory management, dynamic pricing is an
effective technique, and this will support them to satisfy customers’ requirements according
to their demands. In particular, when customer demand is price sensitive, a business might
adjust its price over time. When deterioration occurs, the model analyzes dynamic pricing
strategies for perishable items, where the sales price is time dependent and is a function
of the exponential with the discount variable. This study extends the model of [28] by
incorporating a trade credit policy between the supplier and the retailer. The results are also
compared to model [28], which shows the higher retailer’s total profit in various situations.
Moreover, according to the results of this study, if any industry wants to implement a new
policy to increase profits, a higher credit period is the best option. The algorithm rule
is developed for the optimality of the retailer’s overall profit function. To determine the
cycle time and initial sales price, this study includes the traditional optimization approach.
Finally, to examine the implementation of significant parameters, a sensitivity analysis is
achieved for the overall profit of the retailer. Therefore, by assimilating the above results
and from the sensitivity table, it is advised that the business sell as many items as possible
before deterioration occurs, and the higher credit period will be the best technique for the
retailer to achieve the maximum overall profit. Increases in holding costs, ordering costs,
and purchasing costs have a negative impact on the total profit function, so retailers should
try to minimize these costs to maximize revenue.

Existing research can be further stretched by considering shortages and preservation
technology investment as considered in the work of [18], multi-item integrated supply
chain as suggested in the work of [30], two-stage trade credit financing [4], diverse demand
types for example advertisement dependent [10] and stochastic dependent [13].
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Notation

Parameters
P Purchasing cost; (in $/unit)
O Ordering cost; (in $/order)
θn Deterioration with the constant rate (in %)
ω The discount variable; ω > 0
ψ The reduced rate of sales; ψ > 0
h Cost of holding per unit; (in $//unit time)
τ The rate of increase in holding cost; τ > 0
M Period of trade credit (in years)
Ig The retailer’s earned interest throughout the interval (0, M)
Ip The retailers paid interest throughout the interval (M, T)
Q The initial order quantity (in units)
D0 The initial rate of demand at a time t = 0
Decision variables
S The original sales price of a product (in $/unit)
T The replenishment time (in years)
Functions
tn(T) = φT; the length of time for non-deteriorating units (in years)
h(t) The time-dependent holding cost which increases over time
S(t) The time-varying function of the sales price
D1(S, t) The dynamic demand rate throughout the time (0, tn)
D2(S, t) The dynamic demand rate throughout the time (tn, T)
I1(t) The inventory level for the non-deteriorating items (in units)
I2(t) The inventory level for the deteriorating items (in units)

TPi(S, T);
i = 1, 2, 3

Retailer’s overall profit function per cycle time T for each situation (in $)
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