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Abstract: The global synchronization of complex networks with fractional-order chaotic nodes is
investigated via a simple Lyapunov function and the feedback controller in this paper. Firstly,
the GMMP method is proposed to obtain the numerical solution of the fractional-order nonlinear
equation based on the relation of the fractional derivatives. Then, the new feedback controllers are
proposed to achieve synchronization between the complex networks with the fractional-order chaotic
nodes based on feedback control. We propose some new sufficient synchronous criteria based on the
Lyapunov stability and a simple Lyapunov function. By the numerical simulations of the complex
networks, we find that these synchronous criteria can apply to the arbitrary complex dynamical
networks with arbitrary fractional-order chaotic nodes. Numerical simulations of synchronization
between two complex dynamical networks with the fractional-order chaotic nodes are given by the
GMMP method and the Newton method, and the results of numerical simulation demonstrate that
the proposed method is universal and effective.
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1. Introduction

In the last decades, complex dynamical networks have been the subject of world-
wide attention because of their wide and important applications in various fields. Many
practical complex systems can be modeled by complex dynamical networks, such as gene
networks [1], biological networks [2], the World Wide Web [3], ecological complex net-
works [4], and neural networks [5–7]. Synchronization is the one important aspect of the
many dynamical behaviors of complex networks. There are a large number of meaningful
and important works about the synchronization of networks, such as pinning synchroniza-
tion [8], projective synchronization [9,10], adaptive synchronization [11,12], and impulsive
synchronization [13,14].

Therefore, there are many works about the synchronization of complex networks with
various large-scale [15]. In [11], the authors studied a general criterion of networks which
can be extended to be much larger sizes than those in other papers. In [16], the authors
studied the problem of controllability of a realistic neuronal network of the cat under
constraints on control gains. The exponential synchronization issue of general chaotic
neural networks was studied in [17]. The synchronization manifold is defined based on a
distance from the collective states, and the global synchronization method for the coupled
systems was given in [18]. Furthermore, the synchronization of complex networks by the
local synchronization of networks was investigated by transferring the stability theory
to the synchronization manifold. They also discussed the synchronization of complex
network on small-world and scale-free networks in [19,20]. The authors used the means of
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evolutionary algorithms to study the problem of robust adaptive synchronization between
the complex dynamical networks with stochastic coupling [21].

However, many of the above research works mainly studied the synchronization of
the complex dynamical networks with integer-order derivatives. The fractional derivative,
which is a generalization of the integer derivative, has been the subject of worldwide atten-
tion because of its various applications in physics and engineering in recent years [22,23].
The complex dynamical networks with fractional-order nodes have more complex dynami-
cal behaviors than integer-order networks. Then, many studies have shown that complex
dynamical networks with fractional-order chaotic nodes have various applications in many
fields. Hence, it is essential to study the complex dynamical networks with fractional-
order chaotic nodes, especially the synchronization methods for the complex networks.
To our knowledge, there is a lot of research on the synchronization method for complex
dynamical networks with fractional-order chaotic nodes. The authors presented a fully
decentralized adaptive scheme for solving the complex projective synchronization (CPS) in
drive-response fractional complex-variable networks, which is a open problem [24]. In [25],
the synchronized motions of the N-coupled incommensurate fractional chaotic systems are
studied with ring connection. In [26], we have studied the pining control problem about the
fractional-order weighted complex dynamical networks. In [27], authors studied the outer
synchronization methods for the uncertain networks with adaptive scaling function and
different node numbers. The authors studied the synchronization of two networks with
fractional-order Liu chaotic oscillators by applying the results of complex systems theory
with integer-order systems [28]. In [29], the outer synchronization methods were studied
for complex dynamical networks with different fractional-order nodes by adding controller
to all nodes. In [30], the authors used an open-plus-closed-loop scheme to study the outer
synchronization of two coupled complex networks with fractional-order chaotic nodes. The
authors proposed the synchronized motions of a star-shaped complex network with the
coupled fractional-order systems [31]. In [32], the authors investigated the synchronization
of the complex networks with fractional-order chaotic nodes about a general linear dy-
namics under directed connected topology. A fractional-order controller was presented for
inner and outer synchronization of complex network [33,34] with fractional-order chaotic
nodes. In [35], the authors studied the synchronization and anti-synchronization methods
for the integer-order complex networks and fractional-order chaotic systems. Moreover, a
synchronization method for fractional-order complex dynamical networks was proposed
by the fractional-order Proportional Integral (PI) pinning control scheme [36]. The authors
used a modified Lyapunov–Krasovakii function to study the exponential sampling syn-
chronization of complex network systems based on the TCS fuzzy model [37]. A general
theorem was established for analyzing both the local and global bounded synchronization
of a class of heterogeneous networks in a unified approach [38]. The authors proposed the
linear feedback synchronization and anti-synchronization methods for a kind of fractional-
order chaotic systems based on the triangular structure [39]. The active control method for
the synchronization of two different pairs of fractional-order systems were studied [40]. By
the linear and adaptive feedback control strategies, the cluster synchronization method
was studied for fractional-order complex dynamical networks in [41]. The authors used the
pinning control to study the problem of the synchronization of singular complex networks
with time-varying delay using Lyapunov–Krasovskii functions and effective mathematical
techniques [42].

Hence, in our paper, we study some properties of the fractional derivative, and the
numerical method of fractional-order nonlinear equations firstly. Then, a linear feedback
controller for the synchronization of the complex dynamical network with fractional-order
chaotic nodes is presented. In the following, some sufficient synchronous methods are
presented based on the Lyapunov stability theory and a simple Lyapunov function. These
methods could apply to the arbitrary complex networks with fractional-order chaotic nodes.
Hence, this synchronous method is more general and effective than other methods. For ob-
taining the numerical solution the fractional-order nonlinear equation, the GMMP method
and the Newton method is proposed by the relation of the fractional derivative. All numer-
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ical simulations of the two complex dynamical networks with different fractional-order
chaotic nodes demonstrate the universality and the effectiveness of the proposed method.

The rest of the paper is described as follows: The preliminaries, definitions, and proper-
ties of the fractional derivative and numerical methods of fractional equations are presented
in Section 2. Some synchronous control methods of fractional-order complex dynamical
networks are given in Section 3. In Section 4, the results of numerical simulation for the
fractional-order complex dynamical networks show the universality and effectiveness of
the proposed method. The conclusions are given in Section 5 finally.

2. Fractional-Order Equation and Model Description
2.1. Fractional-Order Derivative and Numerical Method of Differential Equation

The fractional derivative, which is a generalization of the integer derivative, has
been the subject of worldwide attention because of its various application in physics and
engineering [25]. Many definitions of fractional derivatives are studied in many different
fields. We will study the three most frequently used definitions of fractional derivatives:
the Grunwald–Letnikov (GL) definition, the Riemann–Liouville (RL) definition and the
Caputo definition [26], which are equivalent under some conditions. There are some other
definitions, such as Abel, Weyl, Fourier, Nishimoto, Cauchy, etc. The Caputo definition
is mainly adopted in this paper since it has more advantages embracing well-understood
features of physical situation and extensive applicability in depicting real-world problems.

Then, some definitions and properties are given in the following [14].

Definition 1. The fractional integral of the function g(t) with order β can be expressed as follows:

aIβ
t g(t) = aD−β

t g(t) =
1

Γ(β)

∫ t

a
(t− τ)β−1g(τ)dτ (1)

for β > 0, a ∈ R, where Γ(z) =
∫ ∞

0 tz−1e−tdt is the Euler’s Gamma function.

Definition 2. The Riemann–Liouville definition of fractional derivative with the order β for the
function g(t) is defined by:

RL
a Dβ

t g(t) =
dn

dtn aD−(n−β)
t g(t) =

1
Γ(n− β)

dn

dtn

∫ t

a
(t− τ)n−β−1g(τ)dτ, (2)

where n− 1 < β < n, n ∈ Z+.

Definition 3. The Grünwald–Letnikov definition of a fractional derivative with the order β for the
function g(t) is defined by:

GL
a Dβ

t g(t) = lim
h→0
mh=t

h−β
m

∑
r=0

(−1)r
(

β

r

)
g(t− rh)

=
n−1

∑
k=0

g(k)(0)tk−β

Γ(k + 1− β)
+

1
Γ(n− β)

·
∫ t

a
(t− τ)n−β−1g(n)(τ)dτ, (3)

where n− 1 < β < n.

Definition 4. The Caputo definition of the fractional derivative with the order β for the function
g(t) can be written as:

C
a Dβ

t g(t) = 0D−(n−β)
t

dn

dtn g(t) =
1

Γ(n− β)

∫ t

a
(t− τ)n−β−1g(n)(τ)dτ, (4)

where n− 1 < β < n, n ∈ Z+.
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Since the difference of the definitions for fractional-order derivatives, the Grünwald–
Letnikov fractional derivatives is equivalent to the Riemann–Liouville derivatives. How-
ever, the Riemann–Liouville is not equivalent to the Caputo definition. Their relation can
be given as:

C
a Dβ

t g(t) = RL
a Dβ

t g(t)−
n−1

∑
i=0

(t− a)i−βg(i)(a)
Γ(i− β + 1)

. (5)

According to the relation (5), we find that the Riemann–Liouville and Caputo defini-
tions are also equivalent when the function g(t) satisfies all initial values g(i)(a) = 0, i =
0, 1, · · · , n− 1. Hence, we will prove another relation in the following lemma.

Lemma 1. Suppose the function g(t) ∈ Cn[a, T], then:

C
a Dβ

t g(t) = RL
a Dβ

t (g(t)−
n−1

∑
k=0

(t− a)kgk(a)
k!

). (6)

where n− 1 < β ≤ n.

Proof. We can use the relation (5) and the definition of the Caputo derivative to prove the
relation (6). Firstly, let us suppose that:

h(t) = g(t)−
n−1

∑
k=0

(t− a)kg(k)(a)
k!

. (7)

We can easily obtain that h(k)(a) = 0, k = 0, 1, · · · , n− 1. By applying the relation (5),
we can obtain C

a Dβ
t h(t) = RL

a Dβ
t h(t), i.e.:

C
a Dβ

t h(t) = RL
a Dβ

t h(t) = RL
a Dβ

t (g(t)−
n−1

∑
k=0

(t− a)kg(k)(a)
k!

). (8)

Then, the conclusion C
a Dβ

t (t− a)k = 0 with 0 ≤ k < β can be obtained by the definition
of the Caputo derivative. It follows from the left side of the Equation (7) that

C
a Dβ

t h(t) = C
a Dβ

t g(t). (9)

Hence, the conclusion (6) is obtained.

In the following, the method of a numerical solution for fractional differential equation
is proposed. A discretization of interval [a, T] is given as a = t0 < t1 < · · · < tN = T with
ti+1 − ti = h. By the following formula, the Grünwald–Letnikov and Riemann–Liouville
fractional-order derivative can be approximated as follows:

RL
a Dβ

t g(t) = GL
a Dβ

t g(t) = lim
h→0

1
hβ

N

∑
k=0

cβ
k g(tN−k) ≈

1
hβ

N

∑
k=0

cβ
k g(tN−k), (10)

and the Caputo fractional derivative can be approximated as follows:

C
a Dβ

t g(t) ≈ 1
hβ

N

∑
k=0

cβ
k
(

g(tN−k)−
n−1

∑
j=0

(t− a)jg(j)(a)
j!

)
(11)

where cβ
k = (−1)k(β

k) are binomial coefficients.
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This scheme is first introduced in [29,30], where it is called the GMMP scheme. Based
on this scheme (10), a numerical solution method is given for the fractional-order differential
equation. To explain this method, the following fractional-order differential equation
is considered:

aDβ
t x(t) = g(t, x(t)), (12)

where 0 ≤ t ≤ T, the initial conditions are x(i)(a) = x(i)0 , i = 0, 1, · · · , n− 1, and aDβ
t is the

Riemann–Liouville (or Caputo) fractional derivative.
When aDβ

t denotes the fractional derivative of the Riemann–Liouville definition using
the above Formula (10), we obtain:

N

∑
j=0

cβ
j x(tN−j) = hβg(tN , x(tN)), (13)

i.e.,

x(tN) = hβg(tN , x(tN))−
N

∑
j=1

cβ
j x(tN−j). (14)

When aDβ
t is the fractional derivative of the Caputo definition using the above

Formula (11), we obtain:

N

∑
j=0

cβ
j
(
x(tN−k)−

n−1

∑
i=0

(t− a)ix(i)(a)
i!

)
= hβg(tN , x(tN)), (15)

i.e.,

x(tN) = hβg(tN , x(tN)) +
n−1

∑
j=0

(t− a)jx(j)(a)
j!

−
N

∑
j=1

cβ
j
(
x(tN−j)−

n−1

∑
i=0

(t− a)ix(i)(a)
i!

)
. (16)

Especially, when the fractional-order is 0 < β ≤ 1, the above Formula (16) can be
simplified to the following:

x(tN) = hβg(tN , x(tN)) + x(a)−
N

∑
j=1

cβ
j
(
x(tN−j)− x(a)). (17)

An implicit difference scheme (17) is given by the the Grünwald–Letnikov formula,
where the unknown variable x(tN) is on both sides of the nonlinear equation. Then, we
use the Newton–Raphson method to obtain the value of x(tN) from the Equation (17).

The Newton–Raphson method is widely used to solve the above Equation (17), which
is a nonlinear equation with x(tN). This method is a quick and effective method for
obtaining the solution of a nonlinear equation. If a nonlinear equation is G(x) = 0, the
Newton–Raphson method is given as:

xn+1 = xn − JG(xn)
−1G(xn), n = 0, 1, 2, · · · , (18)

where the JG(xn) denotes the Jacobian matrix. In this paper, we use the GMMP scheme and the
Newton–Raphson method to obtain the numerical solution of the fractional-order equations.

2.2. Some Properties of the Fractional Derivative

There are some useful properties of the fractional derivative with the fractional-order
0 < β < 1 given in the following property [13,14].
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Property 1 (Linearity [13]). The fractional derivative of the Caputo definition is a linear operation,
i.e.:

aDβ
t (λ f (t) + µg(t)) = λaDβ

t f (t) + µaDβ
t g(t), (19)

where λ and µ are real constants.

In the following, we will give two new properties of fractional derivatives to help us
construct a simple Lyapunov function, which is used to achieve synchronization of complex
network with fractional-order nodes.

Property 2. If functions x(t) = (x1(t), · · · , xn(t))T ∈ Rn have a continuous derivatives in
interval [a, t], for any matrix A which is a positive definite, we can obtain:

C
a Dβ

t (
1
2

xT(t)Ax(t)) ≤ xT(t)AC
a Dβ

t x(t), ∀ β ∈ (0, 1), (20)

where C
a Dβ

t is the fractional derivative of the Caputo definition.

Proof. Firstly, let

g(t) = C
a Dβ

t (
1
2

xT(t)Ax(t))− xT(t)AC
a Dβ

t x(t). (21)

Then, we find that Formula (20) is equivalent to the following expression:

g(t) =
1
2

C
a Dβ

t (xT(t)Ax(t))− xT(t)AC
a Dβ

t x(t) ≤ 0. (22)

It follows from the Caputo definition (4) that the function g(t) (22) can be rewritten as:

g(t) =
1

Γ(1− β)

∫ t

a

xT(τ)Aẋ(τ)
(t− τ)β

dτ − 1
Γ(1− β)

xT(t)A
∫ t

a

ẋ(τ)
(t− τ)β

dτ

=
1

Γ(1− β)

∫ t

a

xT(τ)Aẋ(τ)− xT(t)Aẋ(τ)
(t− τ)β

dτ

=
1

Γ(1− β)

∫ t

a

(xT(τ)− xT(t))Aẋ(τ)
(t− τ)β

dτ

z(τ)=x(τ)−x(t)
==========

1
Γ(1− β)

∫ t

a

zT(τ)Aż(τ)
(t− τ)β

dτ

zT(τ)Aż(τ)dτ= 1
2 d(zT(τ)Az(τ))

===================
1

2Γ(1− β)

∫ t

a
(t− τ)−βd(zT(τ)Az(τ)). (23)

Integrating Formula (23) by parts, we can obtain the function g(t) as:

g(t) =
1

2Γ(1− β)

zT(τ)Az(τ)
(t− τ)β

∣∣∣t
a
− β

2Γ(1− β)

∫ t

a

zT(τ)Az(τ)
(t− τ)β+1 dτ

=
zT(τ)Az(τ)

2Γ(1− β)(t− τ)β

∣∣∣
τ=t
− zT(a)Az(a)

2Γ(1− β)(t− a)β
− β

2Γ(1− β)

∫ t

a

zT(τ)Az(τ)
(t− τ)β+1 dτ. (24)

Checking the first term of the Formula (24), which has an indetermination at τ = t, we
can use the L’Hopital rule to analyze the corresponding limitation:

lim
τ→t

zT(τ)Az(τ)
(t− τ)β

= lim
τ→t

2zT(τ)Aż(τ)
−β(t− τ)β−1 = lim

τ→t

2zT(τ)Aż(τ)(t− τ)1−β

−β
= 0. (25)
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It follows from the positive definite matrix A that:

zT(a)Az(a)
2Γ(1− β)(t− a)β

≥ 0, (26)

and

β

2Γ(1− β)

∫ t

a

zT(τ)Az(τ)
(t− τ)β+1 dτ ≥ 0. (27)

Finally, g(t) ≤ 0 is obtained, i.e., we obtain the conclusion (20).

Property 3. If functions x(t) = (x1(t), · · · , xn(t))T ∈ Rn have a continuous derivatives in [a, t],
for any positive definite matrix A, we have:

R
a Dβ

t (
1
2

xT(t)Ax(t)) ≤ xT(t)AR
a Dβ

t x(t). ∀ β ∈ (0, 1) (28)

where the R
a Dβ

t is the fractional derivative of the Riemann–Liouville definition.

Proof. Firstly, suppose:

g(t) = R
a Dβ

t (
1
2

xT(t)Ax(t))− xT(t)AR
a Dβ

t x(t), (29)

and we find that the expression (28) is equivalent to the following formula:

g(t) =
1
2

R
a Dβ

t (xT(t)Ax(t))− xT(t)AR
a Dβ

t x(t) ≤ 0. (30)

It follows from the Riemann–Liouville definition (3) that the function (30) can be
rewritten as:

g(t) =
1

2Γ(1− β)

d
dt

∫ t

a

xT(τ)Ax(τ)
(t− τ)β

dτ − 1
Γ(1− β)

xT(t)A
d
dt

∫ t

a

x(τ)
(t− τ)β

dτ

=
1

Γ(1− β)
{1

2
d
dt

∫ t

a

xT(τ)Ax(τ)
(t− τ)β

dτ − xT(t)
d
dt

∫ t

a

Ax(τ)
(t− τ)β

dτ} (31)

Let

h(t) =
1
2

d
dt

∫ t

a

xT(τ)Ax(τ)
(t− τ)β

dτ − xT(t)
d
dt

∫ t

a

Ax(τ)
(t− τ)β

dτ. (32)

Then:

h(t)
ξ=t−τ
=====

1
2

d
dt

∫ t−a

0

xT(t− ξ)Ax(t− ξ)

ξβ
dξ − xT(t)

d
dt

∫ t−a

0

Ax(t− ξ)

ξβ
dξ

=
1
2

xT(a)Ax(a)
(t− a)β

+
∫ t−a

0

xT(t− ξ)Aẋ(t− ξ)

ξβ
dξ − xT(t){ Ax(a)

(t− a)β
+
∫ t−a

0

Aẋ(t− u)
ξβ

dξ}

=
1
2

xT(a)Ax(a)
(t− a)β

− xT(t)Ax(a)
(t− a)β

+
∫ t−a

0

(xT(t− ξ)− xT(t))Aẋ(t− ξ)

ξβ
dξ

τ=t−ξ
=====

1
2

xT(a)Ax(a)
(t− a)β

− xT(t)Ax(a)
(t− a)β

+
∫ t

a

(xT(τ)− xT(t))Aẋ(τ)
(t− τ)β

z(τ)=x(τ)−x(t)
===========

1
2

xT(a)Ax(a)
(t− a)β

− xT(t)Ax(a)
(t− a)β

+
∫ t

a
(t− τ)−βd(

1
2

zT(τ)Az(τ)). (33)
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Integrating Formula (33) by parts, we can obtain the function h(t), as follows:

h(t) =
1
2

xT(a)Ax(a)
(t− a)β

− xT(t)Ax(a)
(t− a)β

+
1
2

zT(τ)Az(τ)
(t− τ)β

∣∣∣t
a
− β

2

∫ t

a

zT(τ)Az(τ)
(t− τ)β+1 dτ

=
1
2

lim
τ→t

zT(τ)Az(τ)
(t− τ)β

− xT(t)Ax(t)
2(t− a)β

− β

2

∫ t

a

zT(τ)Az(τ)
(t− τ)β+1 dτ. (34)

The first term of the Formula (34) has an indetermination at τ = t. We can check it to
analyze the corresponding limitation by L’Hopital rule:

lim
τ→t

zT(τ)Az(τ)
(t− τ)β

= lim
τ→t

2zT(τ)Aż(τ)
−β(t− τ)β−1 = lim

τ→t

2zT(τ)Aż(τ)(t− τ)1−β

−β
= 0. (35)

The matrix A is positive definite, thus:

xT(a)Px(a)
2(t− a)β

≥ 0, (36)

and
β

2

∫ t

a

zT(τ)Pz(τ)
(t− τ)β+1 dτ ≥ 0. (37)

Hence, h(t) ≤ 0 is obtained, i.e., if g(t) ≤ 0 is true, then we can obtain the conclu-
sion (28).

Remark 1. In the application, the positive definite matrix can be chosen an identity matrix, i.e.,
A = I, and the above properties (2) and (3) can be written as:

aDβ
t (

1
2

xT(t)x(t)) ≤ xT(t)aDβ
t x(t). ∀ β ∈ (0, 1) (38)

where aDβ
t denotes the Caputo definition C

a Dβ
t (or the Riemann–Liouville definition R

a Dβ
t ).

2.3. Stability of Fractional-Order Nonlinear System

A general fractional complex dynamical network consists of N identical nodes, and
each node is a n-dimensional fractional-order nonlinear dynamical system. For studying
the synchronization for this kind of complex networks with fractional-order nodes, we
must first study the stability of fractional nonlinear system. We consider the fractional
nonlinear system as follows:

0Dβ
t y(t) = g(t, y(t)), (39)

where β is the fractional-order of derivative; 0Dβ
t denotes the Caputo (or Riemann–Liouville)

fractional-order derivative; g = (g1, g2, · · · , gn)T is a vector function and gi is the contin-
uous differential nonlinear functions; and y(t) = (y1(t), y2(t), · · · , yn(t))T is the state
variable of the system. We can obtain the equilibrium points of the above system by solving
g(y∗) = 0. In the following, the fractional extension of the Lyapunov direct method is
proposed for the fractional nonlinear system [31].

Theorem 1. Suppose that the fractional-order nonautonomous system (39) has an equilibrium
point y = 0. If there exists a Lyapunov function V(t, y(t)) and class-K functions κi(i = 1, 2, 3)
satisfying

κ1(||y(t)||) ≤ V(t, y(t)) ≤ κ2(||y(t)||), (40)

0Dγ
t V(t, x(t)) ≤ −κ3(||x(t)||) (41)

where γ ∈ (0, 1), then the equilibrium point of fractional-order system (39) is asymptotically stable.



Mathematics 2022, 10, 1928 9 of 22

By the new property of fractional derivatives and the fractional-order extension of the
Lyapunov direct method, a suitable Lyapunov function can be used to propose the stability
condition of the fractional-order nonlinear system.

Theorem 2. For the fractional nonlinear system:

0Dβ
t y(t) = g(y(t)), (42)

where β ∈ (0, 1) and 0Dβ
t is the Riemann–Liouville (or Caputo) derivative. Without loss of

generality, let y∗ = 0 be the equilibrium point and y(t) ∈ Rn. If a positive definite matrix A
satisfies

yT(t)Ag(y(t)) ≤ 0, (43)

we can obtain that the origin of the fractional-order nonlinear system (39) is asymptotically stable.

Proof. It follows positive definite matrix A that a Lyapunov function is introduced as:

V(y(t)) =
1
2

yT(t)Ay(t). (44)

By the Property 2, we can obtain:

0Dβ
t V(y(t)) ≤ yT(t)A0Dβ

t y(t) = yT(t)Ag(y(t)). (45)

It follows yT(t)Ag(y(t)) ≤ 0 that the fractional derivative of the Lyapunov function
is a negative definite. Due to the relation between class-K functions and positive definite
functions in [32], it follows from Theorem (1) that the origin of the fractional-order nonlinear
system (39) is asymptotically stable.

2.4. Instruction of the Complex Dynamical Network with Fractional Order Nodes

A general fractional complex dynamical network consists of N identical nodes, and
each node is an n-dimensional fractional nonlinear chaotic system. It can be described as:

Dβ
t xj(t) = g(xj(t)) + C

N

∑
k=1

pjk Axk(t), j = 1, 2, · · · , N, (46)

where β ∈ (0, 1) is the fractional-order; xj(t) = (xj1(t), xj2(t), · · · , xjn(t))T ∈ Rn denotes
the state vector of the ith node; g : Rn → Rn is a given smooth nonlinear vector field;
the dynamics of the ith node is given by the fractional-order equation Dβ

t xj(t) = g(xj(t));
A ∈ Rn×n is the inner-coupling matrix which describes the interactions between the vari-
ables of the node itself; C is the coupling strength; P = (pjk)n×n denotes the coupling
configuration diffusive matrix representing the topological structure of the network, in
which pjk > 0 if there is a connection from node j to node k (j 6= k), and pjk = 0 (j 6= k)
otherwise. The diagonal elements of P are given by pjj = −∑N

k=1,j 6=k pjk.
We consider the complex network (46) with N fractional-order nodes as a drive

network, the response complex network with N fractional-order nodes is given as follows:

Dβ
t yj(t) = g(yj(t)) + C

N

∑
k=1

pjk Ayk(t), j = 1, 2, · · · , N, (47)

which have the same topological structure and node dynamics as the drive complex
network (46). Our aim is to propose a suitable feedback controller to achieve the synchro-
nization of the complex dynamical network (47) and network (46), i.e.,

lim
t→∞
||yj(t)− xj(t)|| = 0, 1 ≤ j ≤ N. (48)
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Adding feedback control to the complex network (47), the controlled response complex
network with fractional-order nodes is as follows:

Dβ
t yj(t) = g(yj(t)) + C

N

∑
k=1

pjk Ayk(t) + ψj(xj, yj), j = 1, 2, · · · , N. (49)

where ψj : Rn → Rn(1 ≤ j ≤ N) are all control functions. In the following the mathe-
matical definition of synchronization for complex network with fractional-order nodes
is given.

Definition 5. Let xj(t; t0, X0) and yj(t, Y0)(1 ≤ j ≤ N) be the solutions of the complex net-
works (46) and (49) with fractional-order nodes, respectively, where X0 = (x10, x20, · · · , xN0) ∈
Rn×N , and g : Ω → Rn is a continuous function. If there is a nonempty subset Γ ⊆ Ω, with
xj0, yj0 ∈ Γ(1 ≤ j ≤ N), such that xj(t; t0, X0), yj(t; t0, Y0) ∈ Ω for all t > t0, and

lim
t→∞
||yj(t, Y0)− xj(t, X0)|| = 0, 1 ≤ j ≤ N, (50)

then the response complex network (49) with fractional-order nodes is said to be asymptotically
synchronized to the drive network (46).

The error vector is defined by:

ej(t) = yj(t)− xj(t), 1 ≤ j ≤ N. (51)

Then, the error fractional dynamical system can be given as follows:

Dβ
t ej(t) = g(yj(t))− g(xj(t)) + C

N

∑
k=1

pjk Aek(t) + ψj(xj, yj), j = 1, 2, · · · , N. (52)

Then, the stabilization of the fractional error dynamical system (52) is equivalent
to the synchronization of the complex dynamical networks (46) and (49) with fractional-
order nodes.

3. Method of Synchronization Control for the Complex Network with
Fractional-Order Nodes

In the following, we would give the synchronization method of the complex network
with fractional-order nodes. Firstly, the fractional-order complex network (46) can be
rewritten as follows:

Dβ
t xj(t) = Lxj(t) + h(xj(t)) + C

N

∑
k=1

pjk Axk(t), j = 1, 2, · · · , N, (53)

where Lxj(t) is the linear part of network (46), and h(xj(t)) is the nonlinear part of net-
work (46). We find that this way of writing is so general that almost all complex dynamical
networks with fractional-order chaotic nodes can be written as this form (53). We consider
the complex network (53) is the drive network, then the response network is given as:

Dβ
t yj(t) = Lyj(t) + h(yj(t)) + C

N

∑
k=1

pjk Ayk(t), j = 1, 2, · · · , N. (54)

In order to achieve the synchronization of above two complex networks (53) and (54),
a linear feedback control input is added to the response network (54). As we known, the
linear controller has many advantages, such as being very simple, easily realized, and more
suitable for engineering applications.
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With the linear feedback control input, the controlled response complex network (54)
can be rewritten as:

yj(t) = Lyj(t) + h(yj(t)) + C
N

∑
k=1

pjk Ayk(t)− Kj(yj(t)− xj(t)), j = 1, 2, · · · , N, (55)

where the feedback gain matrices Kj ∈ Rn×n(j = 1, 2, · · · , N) of the linear feedback control
input Kj(yj(t)− xj(t)) need to be determined.

The synchronization error is e(t) = yj(t)− xj(t), j = 1, 2, · · · , N, and the fractional-
order error system from (53) and (55) is obtained as follows:

0Dβ
t ej(t) = Lej(t) + (h(yj(t))− h(xj(t))) + C

N

∑
k=1

gjk Aek(t)− Kjej(t)

= Lej(t) + Bxj ,yj ej(t) + C
N

∑
k=1

pjk Aek(t)− Kjej(t), (56)

where Bxj ,yj a matrices which are bounded to their elements xj and yj, respectively.
Hence, the conclusion can be obtained that the fractional error system (56) is asymp-

totically stable at the origin point only if the fractional-order networks (53) and (55) are
synchronized. Therefore, our objective is to propose the suitable feedback gain matrices Ki
which make the fractional error system (56) asymptotically stable.

Theorem 3. The controlled fractional error system (56) is asymptotically stable at the origin, i.e.,
the fractional-order complex networks (53) and (55) are asymptotically synchronized, if the feedback
gain matrices Kj makes the corresponding symmetric matrix:

Sj =
(L + Bxj ,yj − Kj)

T + (L + Bxj ,yj − Kj)

2
(57)

be a negative definite matrix for all xj(t), yj(t) and j = 1, 2, · · · , N.

Proof. For the controlled error system (56), we introduce a Lyapunov function as follows:

V =
1
2

N

∑
j=1

eT
i (t)ej(t). (58)

It follows from Properties (2) that
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0Dβ
t V =

1
2 0Dβ

t

N

∑
j=1

eT
j (t)ej(t)

≤
N

∑
j=1

eT
j (t)0Dβ

t ej(t)

=
N

∑
j=1

eT
j (t)

(
Lej(t) + Bxj ,yj ej(t) + C

N

∑
k=1

pjk Aek(t)− Kjej(t)

)

=
N

∑
j=1

eT
j (t)Lej(t) +

N

∑
j=1

eT
j (t)Bxj ,yj ej(t) + C

N

∑
j=1

N

∑
k=1

pjkeT
j (t)Aek(t)

−
N

∑
j=1

eT
j (t)Kjej(t)

=
N

∑
j=1

eT
j (t)Lej(t) +

N

∑
j=1

eT
j (t)Bxj ,yj ej(t) + C

N

∑
j=1

N

∑
k 6=j

pjkeT
j (t)Aek(t)

+ C
N

∑
j=1

pjjeT
j (t)Aej(t)−

N

∑
j=1

eT
j (t)Kjej(t)

≤
N

∑
j=1

eT
j (t)Lej(t) +

N

∑
j=1

eT
j (t)Bxj ,yj ej(t) +

C
2

N

∑
j=1

N

∑
k 6=j

pjk(e
T
j (t)Aej(t) + eT

k (t)Aek(t)) (59)

=
N

∑
j=1

eT
j (t)Lej(t) +

N

∑
j=1

eT
j (t)Bxj ,yj ej(t) +

C
2

N

∑
j=1

N

∑
k 6=j

pjkeT
j (t)Aej(t)

+
C
2

N

∑
j=1

N

∑
k 6=j

pjkeT
k (t)Aek(t) + C

N

∑
j=1

pjjeT
j (t)Aej(t)−

N

∑
j=1

eT
j (t)Kjej(t)

=
N

∑
j=1

eT
j (t)Lej(t) +

N

∑
j=1

eT
j (t)Bxj ,yj ej(t)−

C
2

N

∑
j=1

pjjeT
j (t)Aej(t)

− C
2

N

∑
k=1

pkkeT
k (t)Aek(t) + C

N

∑
j=1

pjjeT
j (t)Aej(t)−

N

∑
j=1

eT
j (t)Kjej(t)

=
N

∑
j=1

eT
j (t)Lej(t) +

N

∑
j=1

eT
j (t)Bxj ,yj ej(t)−

N

∑
j=1

eT
j (t)Kjej(t)

=
N

∑
j=1

eT
j (t)

(
L + Bxj ,yj + Kj

)
ej(t)

=
N

∑
i=1

eT
j (t)Sjej(t),

where

Sj =
(L + Bxj ,yj − Kj)

T + (L + Bxj ,yj − Kj)

2
(60)

is a n-order symmetric square matrix. If Sj is a negative definite matrix for all xj(t), yj(t),
and j = 1, 2, · · · , N, we have

0Dβ
t V ≤

N

∑
i=1

eT
j (t)Siej(t) < 0. (61)
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According to Theorem (2), we can obtain the controller to make the fractional error
system asymptotically stable at the origin, i.e., the complex networks (53) and (55) with
fractional-order nodes are asymptotically synchronized.

Here, we mainly study the synchronization of complex dynamical networks with
fractional-order nodes, and each node is an n-dimensional fractional-order chaotic system.
It is well-known that xj(t) and yj(t) are bounded in the fractional chaotic system. Hence, it
indicates that we can find a constant matrix Mj for any Bxj ,yj

, which satisfies:

eT
j (t)Bxj ,yj

ej(t) ≤ eT
j (t)Miej(t), (62)

for all j = 1, 2, · · · , N. Then, some corollaries can be obtained, which are simpler than the
above Theorem (3).

Corollary 1. The fractional-order complex dynamical networks (53) and (55) are asymptotically
synchronized, i.e., the controlled fractional error system (56) is asymptotically stable at the origin, if
the feedback gain matrix Kj, j = 1, 2, · · · , N makes the matrix

Sj =
(L + Mj − Kj)

T + (L + Mj − Kj)

2
(63)

a negative definite for all j = 1, 2, · · · , N, where Mj is given as (62).

We can easily prove this corollary by the Theorem (3) and inequality (62).
If the constant matrix Mj = mj I and the feedback gain matrix Kj = k j I, where I is

identity matrix and j = 1, 2, · · · , N, the simpler corollaries can be obtained as follows.

Corollary 2. The fractional-order complex dynamical networks (53) and (55) are asymptotically
synchronized, i.e., the controlled fractional error system (56) is asymptotically stable at the origin, if
the feedback gain matrix Ki = k j I makes the matrix:

Sj =
LT + L

2
+ (mj − k j)I (64)

negative definite for all j = 1, 2, · · · , N. Especially, let λmax be the maximal eigenvalue of the
matrix LT+L

2 , if Kj = k j I satisfies:

λmax + mj − k j < 0, j = 1, 2, · · · , N, (65)

the controlled fractional error system (56) is asymptotically stable at the origin.

Let the constant matrix be Mj = mI and the feedback gain matrix be Kj = kI for
all j = 1, 2, · · · , N, where I is the identity matrix. The simplest corollary can be given
as follows.

Corollary 3. The fractional-order complex dynamical networks (53) and (55) are asymptotically
synchronized, i.e., the controlled fractional error system (56) is asymptotically stable at the origin, if
the feedback gain matrix Kj = kI (for all j = 1, 2, · · · , N) makes the following matrix

Sj =
LT + L

2
+ (m− k)I (66)

a negative definite. Especially, let λmax denote the maximal eigenvalue of the symmetric matrix
LT+L

2 , if Kj = kI satisfies
λmax + m− k < 0, (67)

the controlled fractional error system (56) is asymptotically stable at the origin.
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Remark 2. In these Theorems and corollaries, we obtain some sufficient conditions for the syn-
chronization of the complex dynamical networks with fractional-order nodes. For easy application,
the feedback gain matrix is only chosen as Kj = kI satisfying k > λmax + m, which can make the
complex dynamical networks (53) and (55) with N fractional-order nodes synchronize, i.e., the
fractional-order error system (56) asymptotically stable at the origin.

Remark 3. For the Corollary (3), if the constant matrix and feedback gain matrix are chosen
as Mj = mI and Kj = kI, respectively, the conclusion is also obtained. Furthermore, let those
matrices Mj and Kj be diagonal, i.e., the constant matrix and feedback gain matrix are Mj =
diag(m1, m2, m3) and Kj = diag(k1, k2, k3), respectively, for all j = 1, 2, · · · , N. It follows from
Theorem (3) and Corollary (3) that a suitable k j can be found to satisfy the condition. However, some
k j and mj are equal to zero in many cases, which can make the linear controller very simpler.

4. Simulation and Analysis of Fractional Complex Networks

In the following, two complex dynamical networks with fractional-order nodes are
used as examples to illustrate how to use the synchronization method proposed in this
paper to analyze the projective synchronization for complex networks. For obtaining the
numerical solution of the fractional-order nonlinear system, we adopt the GMMP scheme
and the Newton–Raphson method, which is proposed in Section 2.1.

4.1. Synchronization of the Complex Networks with Eight Fractional-Order Nodes of a Chaotic
Liu System

Supposed that the fractional-order dynamical complex networks have eight nodes, and
each node can be described by the fractional-order chaotic Liu system [14,33] as follows:

Dβ
t xj1 = a(xj2 − xj1),

Dβ
t xj2 = bxj2 − xj1xj3, (68)

Dβ
t xj3 = cx2

j1 − dxj3,

where j = 1, 2, · · · , 8. When we chose the fractional-order β = 0.95 and the parameters
as a = 10, b = 40, c = 4, d = 2.5, the chaotic behavior of the fractional-order chaotic
system (68) is shown in Figure 1.

Figure 1. The three-dimensional phase orbits for fractional order chaotic Liu system with the
order β = 0.95.
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We choose the coupling configuration matrix and the inner matrix of the fractional-
order complex network as follows:

P = (pij)8×8 =



−2 0 0 1 1 0 0 0
0 −2 1 0 0 1 0 0
0 1 −3 0 0 1 0 1
1 0 0 −3 1 0 0 1
1 0 0 1 −3 0 1 0
0 1 1 0 0 −2 0 0
0 0 0 0 1 0 −2 1
0 0 1 1 0 0 1 −3


, A =

 1 0 0
0 1 0
0 0 1

.

The drive complex network is given as follows with eight nodes of the fractional-order
Liu chaotic system:

Dβ
t xj(t) = f (xj(t)) +

N

∑
k=1

pjk Axk(t), j = 1, 2, · · · , 8, (69)

which can be rewritten in the form (53):

Dβ
t xj(t) = Lxj(t) + h(xj(t)) +

N

∑
k=1

pjk Axk(t), j = 1, 2, · · · , 8, (70)

where

L =

 −a a 0
0 b 0
0 0 −d

, (71)

and
h(xj(t)) = (0,−xj1xj3, cx2

j1)
T . (72)

Adding the controller to the response complex network, the controlled complex net-
work can be written as:

Dq
t yj(t) = Lyj(t) + h(yj(t)) +

N

∑
k=1

pjk Ayk(t)− Kj(yj(t)− xj(t)), j = 1, 2, · · · , 8. (73)

According to complex networks (70) and (73), the controlled error system is obtained:

Dq
t ej(t) = Lej(t) + Bxj ,yj ej(t) +

N

∑
k=1

pjk Aek(t)− Kjej(t), j = 1, 2, · · · , 8, (74)

where Bxj ,yj(j = 1, 2, · · · , N) are bounded matrices with their elements depending on xj
and yj.

Since the fractional-order Liu system is chaotic, xj(t)(j = 1, 2, · · · , 8) and yj(t)(j =
1, 2, · · · , 8) are bounded. It can easily be obtained that eT

j (t)Bxj ,yj
ej(t) = −xj3ej1ej2 −

yj1ej2ej3 + c(xj1 + yj1)ej1ej3 ≤ 10eT
j (t)ej(t) by calculating the eigenvalue of maximum,

which implies m ≈ 10. According to Corollary 2, if the matrices Sj =
LT+L

2 + (m− k)I
(j = 1, 2, · · · , 8) are negative positive, the fractional error system (74) is asymptotically
stable, i.e., the complex networks (70) and (73) can achieve synchronization. Furthermore,
we can easily obtain that the maximal eigenvalue of matrix LT+L

2 is λmax ≈ 40. Hence, if
the control parameters kj(j = 1, 2, · · · , 8) satisfy the conditions of Theorem 1, the complex
dynamical networks (70) and (73) can achieve synchronization with eight fractional-order
nodes by the linear controllers.

The control parameters are chosen as follows when we obtain the numerical sim-
ulation with software: the control matrix K j = kI(j = 1, 2, · · · , 8), k = 50 and the
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initial values xj(0) = (1 + 0.1 ∗ j, 2 + 0.1 ∗ j, 3 + 0.1 ∗ j)T , yj(0) = (0.1 + 0.1 ∗ j, 0.2 +

0.1 ∗ j, 0.3 + 0.1 ∗ j)T(1 ≤ j ≤ 8). The total synchronization error can be obtained by

E(t) =
√

∑N
j=1(e

2
j1 + e2

j2 + e2
j3)/N. The results of numerical simulation are demonstrated as

Figures 2–5, which show the trajectories of synchronization errors ej1, ej2, ej3, and E(t) for
the complex networks with eight fractional-order nodes wtih time variance. It follows from
the simulation results and figures that the fractional-order error system is driven to the
original point, i.e, the complex dynamical networks (70) and (73) with eight fractional-order
nodes can achieve synchronization by the linear controller.
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Figure 2. Trajectories of synchronization errors ej1(1 ≤ j ≤ 8) for the complex networks (70) and (73)
with eight fractional order nodes with time variance.
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Figure 3. Trajectories of synchronization errors ej2(1 ≤ j ≤ 8) for the complex networks (70) and (73)
with eight fractional order nodes with time variance.
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Figure 4. Trajectories of synchronization errors ej3(1 ≤ j ≤ 8) for the complex networks (70) and (73)
with eight fractional order nodes with time variance.
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Figure 5. Trajectories of total synchronization errors E(t) for the complex networks (70) and (73) with
eight fractional order nodes with time variance.

4.2. Synchronization of the Complex Dynamical Networks with 10 Fractional Order Nodes of teh
Chaotic Lü System

Let us consider the complex networks be with 10 fractional-order nodes of chaotic Lü
system [14,26,34]:

Dβ
t xj1 = a(xj2 − xj1),

Dβ
t xj2 = bxj2 − xj1xj3, (75)

Dβ
t xj3 = xj1xj2 − cxj3,

where j = 1, 2, · · · , 10. If the fractional-order and the parameters are chosen as a = 36,
b = 20, c = 3, and β = 0.95, respectively, the three-dimensional phase orbits of the
fractional-order Lü chaotic system (75) is illustrated in Figure 5.

In the complex networks, we choose the coupling configuration matrix and the inner
matrix of the complex dynamical networks with 10 fractional-order nodes of Lü chaotic
system as follows:
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p = (pij)10×10 =



−4 0 1 0 0 1 0 1 0 1
0 −2 0 0 1 1 0 0 0 0
1 0 −5 1 1 0 1 0 1 0
0 0 1 −2 0 0 0 1 0 0
0 1 1 0 −5 0 1 0 1 1
1 1 0 0 0 −4 0 1 0 1
0 0 1 0 1 0 −3 0 0 1
1 0 0 1 0 1 0 −5 1 1
0 0 1 0 1 0 0 1 −3 0
1 0 0 0 1 1 1 1 0 −5


, A =

 1 0 0
0 1 0
0 0 1

.

The drive complex dyanmical networks with 10 fractional-order nodes of the Lü
system are given as follows:

Dβ
t xj(t) = f (xj(t)) +

N

∑
k=1

pjk Axk(t), j = 1, 2, · · · , 10. (76)

which can be rewritten in the form (53):

Dβ
t xj(t) = Lxj(t) + h(xj(t)) +

N

∑
k=1

pjk Axk(t), j = 1, 2, · · · , 10, (77)

where

L =

 −a a 0
0 b 0
0 0 c

, (78)

and
h(xj(t)) = (0,−xj1xj3, xj1xj2)

T . (79)

Adding the linear controller to the response complex networks with 10 fractional-order
nodes of Lü system, we can obtain the following networks:

Dq
t yj(t) = Lyj(t) + h(yj(t)) +

N

∑
k=1

pjk Ayk(t)− Kj(yj(t)− xj(t)), j = 1, 2, · · · , 10. (80)

According to complex dynamical networks (77) and (80) with 10 fractional-order
nodes, the controlled fractional error system is obtained as follows:

Dq
t ej(t) = Lej(t) + Bxj ,yj ej(t) +

N

∑
k=1

pjk Aek(t)− Kjej(t), j = 1, 2, · · · , 10, (81)

where Bxj ,yj(j = 1, 2, · · · , 10) are bounded matrices with their elements depending on xj
and yj.

Since the fractional-order Lü system is chaotic, xj(t)(j = 1, 2, · · · , 10) and yj(t)(j =
1, 2, · · · , 10) are bounded. It can easily be obtained that eT

j (t)Bxj ,yj
ej(t) = −xj3ej1ej2 +

xj2ej1ej3 ≤ 30eT
j (t)ej(t) by calculating the eigenvalue of maximum, which implies m ≈ 30.

According to Corollary 2, if the matrices Sj =
LT+L

2 + (m− k)I (j = 1, 2, · · · , 10) are all
negative positive matrices, the fractional-order error system (74) is asymptotically stable,
i.e., the complex networks (77) and (80) with 10 fractional order nodes of the Lü system
can achieve synchronization. The maximal eigenvalue of matrix LT+L

2 can be obtained
as λmax ≈ 25 easily. Hence, if the all control parameters kj(j = 1, 2, · · · , 10) satisfy the
conditions of Theorem 1, the complex dynamical networks (77) and (80) with 10 fractional-
order nodes of Lü system can achieve synchronization by the linear controllers.
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The control parameters are chosen as follows when we obtain the numerical simulation
with software: the control matrix is ωj = I(j = 1, 2, · · · , 10), kj = 60 ∗ I(j = 1, 2, · · · , 10),
and the initial values are xj(0) = (1− 0.1 ∗ j, 2− 0.1 ∗ j, 3− 0.1 ∗ j)T , yj(0) = (0.1 + 0.1 ∗
j, 0.2 + 0.1 ∗ j, 0.3 + 0.1 ∗ j)T(1 ≤ j ≤ 10). The results of the numerical simulation are
demonstrated in Figures 6–9, which show the trajectories of the errors ej1, ej2, ej3, and E(t)
for the complex networks with 10 fractional-order nodes with time variance. It follows
from the simulation results and figures that the fractional-order error system is driven to
original point, i.e., the complex networks (77) and (80) with 10 fractional-order nodes of the
Lü system can achieve synchronization by the linear controller.
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Figure 6. Trajectories of synchronization errors ej1(1 ≤ j ≤ 10) for the complex networks (77) and
(80) with 10 fractional order nodes with time variance.
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Figure 7. Trajectories of synchronization errors ej2(1 ≤ j ≤ 10) for the complex networks (77) and
(80) with 10 fractional order nodes with time variance.
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Figure 8. Trajectories of synchronization errors ej3(1 ≤ j ≤ 10) for the complex networks (77) and
(80) with 10 fractional order nodes with time variance.
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Figure 9. Trajectories of total synchronization error E(t) for the complex networks (77) and (80) with
10 fractional order nodes with time variance.

5. Conclusions

In conclusion, we proposed the synchronization of complex dynamical networks
with fractional-order chaotic nodes via a simple Lyapunov function. Some new sufficient
synchronization methods are proposed based on the Lyapunov stability theory and a
simple Lyapunov function. These methods can apply to arbitrary complex dynamics with
fractional-order nodes, which indicates that these methods are more general and effective
than others. The results of the numerical simulations for two complex networks with
fractional-order nodes demonstrate the universality and the effectiveness of the proposed
method. We have implemented and verified our method for fractional-order complex
networks with other chaotic systems [33,34,36,43,44], such as the fractional-order Newton–
Leipnik system [36], the fractional-order Chen system [33], the fractional-order modified
coupled dynamos system [43], the fractional-order Arneodo system [44], etc. The results of
numerical simulation show that the complex networks with fractional-order nodes of any
chaotic system can be achieved to synchronize effectively and fast by the proposed linear
controller. On the other hand, we study the synchronization of fractional-order complex
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networks with different number of nodes. In our laptop, the maximum of the nodes is about
50. It needs more time to give the numerical solution and achieve the synchronization.

In the future work, we will consider that how to extend our method to other complex
networks such as weighted networks and how to widen the method to the larger complex
networks. Finally, we will study how to apply our method to real complex networks.
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