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Abstract: The 12 leads of electrocardiogram (ECG) signals show the heart activities from different
angles of coronal and axial planes; hence, the signals of these 12 leads have functional dependence
on each other. This paper proposes a novel method for fusing the data of 12-lead ECG signals to
diagnose heart problems. In the first phase of the proposed method, the time-frequency transform
is employed to fuse the functional data of leads and extract the frequency data of ECG signals in
12 leads. After that, their dependence is evaluated through the correlation analysis. In the second
phase, a structural learning method is adopted to extract the structural data from these 12 leads.
Moreover, deep convolutional neural network (CNN) models are coded in this phase through genetic
programming. These trees are responsible for learning deep structural features from functional data
extracted from 12 leads. These trees are upgraded through the execution of the genetic programming
(GP) algorithm to extract the optimal features. These two phases are used together to fuse the leads
of ECG signals to diagnose various heart problems. According to the test results on ChapmanECG,
including the signals of 10,646 patients, the proposed method enjoys the mean accuracy of 97.60%
in the diagnosis of various types of arrhythmias in the Chapman dataset. It also outperformed the
state-of-the-art methods.

Keywords: ECG sensors fusion; heart defect detection; evolutionary deep features representation;
convolutional neural network

MSC: 68T07

1. Introduction

Electrocardiogram (ECG) sensors measure the electrical activities of cardiac muscles
in the supraventricular and ventricular areas. However, the functions of different muscles
might sometimes adversely be affected by various factors, such as high levels of blood
lipids, which causes arrhythmia in the electrical performance of the heart. For instance,
emergence of cardiac problems in the walls of ventricles is a factor of arrhythmia. Another
complication is the supraventricular problem in the upper walls of the ventricles called
atria, which leads to arrhythmia in the electrical signal of the heart [1,2]. In particular, there
are 11 types of arrhythmias in these two categories: sinus bradycardia, sinus rhythm, atrial
fibrillation, sinus tachycardia, atrial flutter, sinus irregularity, supraventricular tachycardia,
atrial tachycardia, atrioventricular node reentrant tachycardia, atrioventricular reentrant
tachycardia, and sinus atrium to atrial wandering rhythm. According to the statistics,
adults aged 35–90 years old experience nearly one-third of lethal factors, such as cardiac
complications [3]. Thus, researchers have tried to introduce efficient methods for the
early diagnosis and classification of irregularities in ECG signals by using smart computer
systems. The 12-lead ECG signals show the heart activities from different angles of coronal
and axial planes; hence, the signals of these 12 leads have functional dependence on each
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other. In addition, the simultaneous applications of these data between leads resulted in
the emergence of latent medical variables, which cannot be measured only through single
leads [4,5].

Fusion is a suitable approach for improving the performance of ECG-based detection
algorithms and generally takes place at the hardware and software levels [6,7]. At the
hardware level, fusion improves data measurement operations [8]. In ECG signals, heart
information is obtained from multiple equal leads instead of one. Fusing the information
obtained from these leads will provide a better assessment of heart function [9]. Generally,
there are chest leads and limb leads, and each lead views the heart from a particular
angle. At the software level, fusion improves the quality of the collected data. The
goal is a better knowledge-extraction process from data. The first category of software
fusions is feature-based fusion algorithms [10,11]. Algorithms, such as feature correlation,
ranking, and frequency conversions, are used to fuse different classes. Inter-class algorithms
fuse different features from different classes. In intra-class fusion, however, the features
belonging to one class are fused to extract knowledge. As mentioned in [12], traditional
fusion algorithms are for extracting suitable features from ECG signals (in both fiducial and
non-fiducial groups) to fuse a specialized engineering process which requires knowledge
about the signal. Therefore, hand craft feature generation eliminates the generalization
feature and does not help in designing an efficient system. Deep-learning models, such as
convolutional neural network (CNN) [5,13,14] and long short-term memory (LSTM) [15],
have recently been used for software fusion. Deep-learning methods, such as CNN, present
a hybrid view of raw data in multiple processing layers, which leads to automatic learning
from the data. Given CNN’s abilities, it has been used extensively in ECG detection and
has led to superior operations. Although CNN-based feature generation methods are very
accurate and have significantly improved biometric detection in ECG, the architectural
parameters of CNN models (as explained), including the number and type of layers, are
designed through trial and error. This solution is time-consuming and requires domain
knowledge, and the complexity of the designed model is directly correlated to its designer’s
knowledge [14,16–18]. In this paper, we propose a novel method for fusing the data of
12-lead ECG signals to diagnose heart problems.

This paper consists of the following sections. ECG data is described in detail in
Section 2. The proposed method is described thoroughly in detail in Section 3, whereas
the results are presented in Section 4 that also evaluates the parameters of the proposed
method in comparison with other techniques. Finally, Section 5 presents the discussion and
draws a conclusion.

2. ECG Data

The ECG dataset used in this article was collected by Chapman University and Shaox-
ing People’s Hospital (Chapman ECG in short) [19]. This dataset comprises eight types of
arrhythmia atrial flutter (AF) with 112 samples, Sinus bradycardia (SB) with 3889 samples,
supraventricular tachycardia (SVT) with 587 samples, sinus tachycardia (ST) with 1568 samples,
sinus rhythm (SR) with 1826 samples, atrial fibrillation (AFIB) with 1780 samples, and
sinus irregularity (SI) with 399 samples. The signals for each person were recorded within
several days and during different sessions by ECG sensors. In this dataset, the 12-lead ECG
signals were recorded from 10,646 people with a frequency higher than 500 Hz. Each ECG
signal in 12-lead is a 10-s strip. In addition, an initial pre-processing was applied to this
dataset to smooth the ECG signals using the Butterworth filter and the non-local means
technique. All samples of this dataset are classified into three sections, validation, train,
and test, bearing the shares of 70%, 15%, and 15%, respectively.

Figure 1 shows an ECG signal that has undergone the smoothing operation. Figure 1a
shows the raw ECG signal with the domain of −500 mV to 400 mV. Figure 1b shows the 3D
spectrogram of this raw signal. Figure 1c manifests the smoothed signal with a domain of
−300 mV to 300 mV. Additionally, Figure 1d shows the spectrogram of the smooth signal,
which revealed that the higher frequencies are decreased in it. The pre-processing will be
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quite effective in reducing the complexity of the model through the normalization of the
numbers.
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Figure 1. A sample of the signals of the Chapman ECG dataset, which has undergone noise reduction
operation: (a) ECG raw signal with 3000 samples; (b) spectrogram of the raw signal; (c) smoothed
ECG signal; (d) spectrogram of the smoothed signal.

3. The Proposed Method

This paper introduces an ECG signal detection system based on deep fusion. First,
genetic programming-based evolutionary programming was used to solve problems with
deep-learning fusion algorithms. In the proposed method, the CNN models used for
fusion are coded as genetic programming (GP) programs [18]. These programs are binary
trees whose nodes have embedded deep operators, such as convolution for fusion of ECG
leads. During the evolutionary process, these trees evolve and the best variants for fusing
ECG lead information are calculated at the software level. Finally, the best sample for
fusing leads is extracted. To create an ECG-based detection system, this thesis conducts
a full analysis of the ECG signal to maintain the system’s generalization. To this end,
the signal’s frequency information is obtained via wavelet frequency conversion, and the
similar information is calculated. Because CNN has a convolution filter, it is a model
made for images; thus, in this paper, a method for converting the raw ECG signal to an
image is presented. Then, signals are converted into images using a mixed conversion and
given to CNN trees as frequency information. The proposed system’s performance was
evaluated on a dataset of 10,000 arrhythmia patients (Chapman) [19]. This dataset includes
11 different types of arrhythmias, which are measured with a 500 Hz frequency.

Finally, the main contributions of this paper are as follows:

• Employing the approach of trajectory image creation at ECG signals instead of raw
signals to increment the integration of the proposed model;
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• Proposing a genetic programming-based model to learn deep features at ECG signals
and employing several genes at GP to fusion these features.

The flowchart of the proposed method is shown in Figure 2. The innovation of the
proposed method to diagnosis arrhythmia using the ECG signal of individuals is based
on drawing a trajectory as a figure for each 12-ECG signal leads. Since the ECG signal
is periodic, frequency analysis on it can give useful information about this signal. For
this, frequency analysis was performed using the wavelet packet transform on each of
the 12-ECG signal leads. Then, cross-correlation was calculated between leads 1 to 12 to
describe relations between various leads. To extract the ECG signal trajectory, a repetitive
pre-processing was calculated on 12 cross-correlation signals, and their spectrogram was
extracted. Finally, a trajectory was drawn for these 12 signals, and the output of the
trajectory was saved as a figure. These figures are used to produce features as input to the
CNN tree. The CNN tree is then developed based on the GP paradigm.
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defect detection.

For this purpose, a set of the initial population is first randomly formed. Every sample
of this population is a CNN tree (Section 3.4). The CNN hierarchical tree samples are used
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in each generation of the GP algorithm to extract features from dataset records. Samples
from the CNN tree are used in each generation of the GP algorithm to extract features from
dataset records. The SVM model is then taught to calculate the fit of each tree using the
created features. Then, the SVM model classification error value is considered as the tree fit.
The trees keep evolving until the end of generations by repeating this process. Eventually,
the best sample in the population with the highest quality feature producer is selected
under the name CNN tree.

3.1. Wavelet Decomposition of ECG Signal

Here, a wavelet packet analysis was performed to extract details and approximate
the ECG signal. To decompose the ECG signal, a five-order wavelet of Daubechies type
was used in the decomposition of ECG signal wavelet. Given the fewer details in the ECG
signal, signal decomposition was performed only up to the first level of the tree. In this
equation, cDj and dAj are respective details and approximation signals. Figure 3 shows the
output of the frequency analysis of the ECG signal with the wavelet packet transform.

f (X) =
6

∑
j=2

(∣∣∣∣aDj
∣∣∣∣2 + ∣∣∣∣dAj

∣∣∣∣2) (1)
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Figure 3. Calculate cross-correlation between 12-lead ECG, (a) lead I signal, (b) lead I signal approxi-
mation, (c) lead II signal, (d) lead II signal approximation.

3.2. Calculate Cross-Correlation between 12-Lead ECG

Cross-correlation is one of the useful tools to describe the relations between various
leads of the ECG signal. Figure 4 shows the cross-correlation output between the approx-
imation signal of the leads I and II of the ECG signals. As illustrated, there is a regular
cross-correlation between these two leads due to the high similarity between signals of
various leads of the ECG signal, as stated in the previous sections.
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Figure 4. Cross-correlation output between the approximation signal of the leads I and II of the ECG
signals, (a) lead I and II signals, (b) cross correlation between lead I and II.

3.3. ECG Trajectory Image Presentation

To prepare input data of the CNN tree, we calculated the ECG trajectory in this section.
The output of the spectrogram display of an ECG signal is created as complex numbers. To
draw the trajectory of this spectrogram, its real and imaginary sections should be illustrated
as a two-dimensional function. Figure 5 shows the trajectory for cross-correlation between
leads I to II of the ECG signal.
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Figure 5. ECG trajectories in the frequency domain for 12-lead ECG signal, (a) the graphic display of
the calculation of correlation between lead I and lead III, (b) the obtained trajectory of the spectrogram
of lead I and lead III.

3.4. Feature Learning Using the Evolutionary CNN Tree

It was stated in the previous chapter that the f m
n gene, in the pm sample is a mapping

function in the form of a CNN tree, which is used to extract the structural features from xi
signal. The representation of the CNN tree encoded in the f m

n gene, as well as its functions
and terminals, will be explained here. The representation of the CNN model in the form
of GP trees is addressed in [20]. This article used a modified version of it per [20], which
utilizes the morphological convolutional functions in this tree, and it is appropriate for
QRS complex analysis in the ECG signal. Figure 6 shows an instance of the CNN tree.
As displayed in this figure, the surface of this tree comprises a variety of layers. There
is an input layer in the leaf nodes of this tree that receives the xi signal as the input.
Afterward, there is a morphological convolutional layer, which is normally followed by
a pooling layer. In this tree, a node can be a layer of the combination of morphological
convolutional/pooling. Before the root layer, there is a concatenation layer. Finally, there is
the root layer, which is the output layer. In this tree, the convolution layer carries out the
operation of extracting the structural features using the morphological operators, which is
fully explained in the next chapter. The pooling layer is used after the convolution layer to
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reduce the output dimensions of the convolution. Additionally, the concatenation layer
connects two input layers together. The output layer is the same as the flatten layer in the
CNN, which forms the feature diagram.

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 14 
 

 

tree. As displayed in this figure, the surface of this tree comprises a variety of layers. There 

is an input layer in the leaf nodes of this tree that receives the 𝑥𝑖 signal as the input. Af-

terward, there is a morphological convolutional layer, which is normally followed by a 

pooling layer. In this tree, a node can be a layer of the combination of morphological con-

volutional/pooling. Before the root layer, there is a concatenation layer. Finally, there is 

the root layer, which is the output layer. In this tree, the convolution layer carries out the 

operation of extracting the structural features using the morphological operators, which 

is fully explained in the next chapter. The pooling layer is used after the convolution layer 

to reduce the output dimensions of the convolution. Additionally, the concatenation layer 

connects two input layers together. The output layer is the same as the flatten layer in the 

CNN, which forms the feature diagram. 

 

Figure 6. An instance of CNN tree: the green nodes are the input layers, the blue nodes are the 

morphological convolutional layers, the red nodes are the pooling layers, the black nodes are the 

concatenation layers, and the gray node is the output layer. 

Table 1 shows the set of functions used in the CNN tree. First, the functions used to 

change the numerical space of the features include convolution (Conv), square root 

(SQRT), addition (ADD), rectified linear unit (ReLU), subtraction (Sub), and absolute 

(Abs), among which Conv is the most important function. This function is responsible for 

applying the morphological operators to the input ECG signals. On account of their spe-

cial geometrical characteristics, the morphological functions, such as dilation and erosion, 

are capable of perfectly analyzing the complexities of ECG signals, including QRS com-

plex. The morphological operators, such as erosion and dilation, are beneficial for analyz-

ing the shape-oriented signals due to their theoretical framework and lower computa-

tional complexity [21,22]. The morphological operators, i.e., erosion and dilation, are the 

restricted form of counter-harmonic mean morphology [23]. 

𝑠𝑢
𝑞

𝑥𝑖(𝑜) = 𝑔 ∈ 𝑢(𝑜) 𝑠𝑢𝑝 𝑠𝑢𝑝  𝑥𝑖(𝑔) = 𝛿𝑢𝑥𝑖(𝑜)  (2) 

𝑠𝑢
𝑞

 𝑥𝑖(𝑜) = 𝑔 ∈ 𝑢(𝑜) 𝑖𝑛𝑓 𝑖𝑛𝑓  𝑥𝑖(𝑔) = 𝜖𝑢𝑑(𝑥) (3) 

Figure 6. An instance of CNN tree: the green nodes are the input layers, the blue nodes are the
morphological convolutional layers, the red nodes are the pooling layers, the black nodes are the
concatenation layers, and the gray node is the output layer.

Table 1 shows the set of functions used in the CNN tree. First, the functions used
to change the numerical space of the features include convolution (Conv), square root
(SQRT), addition (ADD), rectified linear unit (ReLU), subtraction (Sub), and absolute
(Abs), among which Conv is the most important function. This function is responsible for
applying the morphological operators to the input ECG signals. On account of their special
geometrical characteristics, the morphological functions, such as dilation and erosion, are
capable of perfectly analyzing the complexities of ECG signals, including QRS complex.
The morphological operators, such as erosion and dilation, are beneficial for analyzing
the shape-oriented signals due to their theoretical framework and lower computational
complexity [21,22]. The morphological operators, i.e., erosion and dilation, are the restricted
form of counter-harmonic mean morphology [23].

sq
uxi(o) = g ∈ u(o)sup sup xi(g) = δuxi(o) (2)

sq
u xi(o) = g ∈ u(o)in f in f xi(g) = εud(x) (3)

If xi(o) is the input signal ( xi : Ω ⊂ Z2 → R ), o ∈ Ω shows the coordinates of an entry
inside it. sq

uxi(o) in Equations (2) and (3) is the counter-harmonic mean morphology filter
that is expanded as follows.

sq
uxi(o) =

(
xi

q+1 ∗ u
)
(o)

(xi
q ∗ u)(o)

=

∫
g∈u(o) xi

q+1(g) ∗ u(o− y)/dg∫
g∈u(o) xi

q(g) ∗ u(o− y)/dg
(4)

The ∗ equation indicates the convolution operations, and u(o) shows the kernel
function. The convolution operations are formulated in the Conv function as follows using
the counter-harmonic mean morphology filter.

Conv(xi, u, q)(o) =
(
xi

q+1 ∗ u
)
(o)

(xi
q ∗ u)(o)

(5)
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The types of the operations of this function are determined with respect to the amount
considered for q, (q = 0 linear, q < 0 pseudoerosion, q > 0 pseudodilation).

The Sub and Add functions carry out the weight addition and subtraction operations of
two signals based on the weights of n1 and n2. Two input ECG signals might have different
measurements. Thus, the ECG signal will be cut using the aforementioned function to
obtain two ECG signals of the same size. The Sqrt, ReLU, and Abs functions are used to
change the amount of ECG signal and change the numerical space of the respective sample.
In the new networks, the ReLU is preferred over the activating Sigmoid function for hidden
layers for two reasons.

Table 1. List of the CNN Tree Functions.

Description Method

Carrying out morphology convolution operations on S1 matrix with Kernel filter k Conv (S1, k)
Subtraction of matrices of S1 and S2, bearing weights of n1 and n2 Sub (S1 , S2, n1, n2)

Addition of matrices of S1 and n2, bearing weights of n1 and n2 Add (S1 , S2, n1, n2)
Return of max(0, x) for each x in S1 matrix ReLU (S1 )

Return of
√

x for each x in S1 matrix Sqrt (S1 )
Return of |x| for each x in S1 matrix Abs (S1 )

Applying max-pooling to S1 matrix using Kernel filter with a measurement of k1 and k2 MaxP (S1 , k1, k2)
Connecting two S1 and S2 matrices together as a diagram Concat2 (S1 , S2)
Connecting three S1 to S3 matrices together as a diagram Concat3 (S1 , S2, S3)
Connecting four S1 to S4 matrices together as a diagram Concat4 (S1 , S2, S3, S4)

First, it is simple and easy to use. Second, it does not cause a local minimum problem.
In this function, in the case the input amount is less than zero, the output will be the same
as the input, and in the case the input is less than or equal to zero, then the output will
be zero. The ReLU function has a fixed derivative for all inputs greater than zero. This
fixed derivative accelerates the network’s learning. The Concat1, Concat2, Concat3, and
Concat4 functions are used in the concatenation layer, which receives several ECG signals
as input and displays them as a diagram in the output. The MaxP function performs a
downsampling operation on the ECG input signal. This function can reduce the dimensions
of the received ECG signal.

Table 2 shows the list of the terminals and the range of the authorized amounts used
for them in the nodes of the leaves of the CNN tree. xi The ECG input signal is displayed
through the measurement of n× 1. The f ilter3×3, f ilter5×5, and f ilter7×7 terminals show
the convolution filter and the second input of Conv. Taking into account that the used
morphological filter is a matrix in the shapes of a diamond, disk, line, rectangle, square n1
and n2 are added to the Sub and Add functions as inputs, and their amounts range between
0.000 to 1.000. k1 and k2 are the same size as the MaxP kernel functions. Their amounts will
evolve randomly and during execution of the GP algorithm.

Table 2. List of the CNN Tree Terminals.

Description Value Range Terminal

The input matrix includes functional relativity information [−1,1] xi
Filter at the size of 3× 3 in MConv function {0,1} [24] f ilter3×3
Filter at the size of 5× 5 in MConv function {0,1} f ilter5×5
Filter at the size of 7× 7 in MConv function {0,1} f ilter7×7

Random numbers that are the inputs of Add and Sub functions. [0.000,1.000] n1, n2
The kernel measurement of MaxP function {2,4} k1, k2

4. Results

All implementations and evaluations were performed on a PC with Microsoft Win-
dows 10 OS, Intel i7-9750H processor, 64 GB of RAM, and Nvidia RTX 2060 GDDR6 SLI
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GPU with 6 GB memory. Besides that, the model’s weight parameters were trained and
adjusted by the Adam optimizer. For the experiments, all the networks trained 200 epochs,
the initial learning rate was set to 1 × 10−3 for the first half and then multiplied by 0.1 per
quarter [25].

4.1. Results Analysis Method

A confusion matrix is first determined for test samples to analyze the results. Table 3
demonstrates how to form the confusion matrix for arrhythmia with “true” and “predicted”
labels (cpredictedlabel,truelabel). The combination of eight “true” and “predicted” labels will
yield an 8 ∗ 8 confusion matrix. Table 3 reports the details regarding the layout of these
sublabels of arrhythmia. Based on the resultant confusion matrix, four evaluation criteria
(i.e., ACCFold, ACCcl , SENcl , and SPEcl) are employed to evaluate classification models.
The total accuracy (ACCFold) indicates the performance of the classification model for
all subclasses in a specific fold. This criterion is calculated by dividing the number of
correctly classified samples on all samples. It is easily obtained from the confusion matrix
by adding the main diagonal to the total samples of the matrix in the following way. In
addition to the criterion that evaluates all samples of the model in a general outlook,
some criteria are considered to analyze the model performance in a class-oriented way.
Particularly, these criteria analyze the model performance for the classification of samples
in a class cl as opposed to the other classes. This criterion converts the classification
from eight classes to a binary classification technique with two states in which the model
operates correctly and two other states in which the model operates wrongly. The two
correct states are called TP and TN, whereas the two wrong states are called FP and FN.
In this case, “positive” indicates that a sample belongs to the current class (cl), whereas
“negative” indicates that a sample belongs to the other classes. Equations (6)–(9) represent
the formula-based definitions of these criteria. In these equations, cl ∈ {Class set}, and
set = {A, F, PT, TA, DC, LC, MC, FC}. These definitions can be employed to formulate
three evaluation criteria of the model in a class-oriented way.

ACCcl =
TPcl + TNcl

TPcl + TNcl + FPcl + FNcl
(6)

PRECcl =
TPcl

TPcl + FPcl
(7)

SENcl =
TPcl

TPcl + FNcl
(8)

SPEcl =
TNcl

TNcl + FPcl
(9)

Table 3. The Confusion Matrix for Arrhythmia classes in Chapman Dataset.

Predicted Label

AF SB SVT ST SR AFIB SI

True Label

AF cAF,AF cAF,SB cAF,SVT cAF,ST cAF,SR cAF,AFIB cAF,SI
SB cSB,AF cSB,SB cSB,SVT cSB,ST cSB,SR cSB,AFIB cSB,SI

SVT cSVT,AF cSVT,SB cSVT,SVT cSVT,ST cSVT,SR cSVT,AFIB cSVT,SI
ST cST,AF cST,SB cST,SVT cST,ST cST,SR cST,AFIB cST,SI
SR cSR,AF cSR,SB cSR,SVT cSR,ST cSR,SR cSR,AFIB cSR,SI

AFIB cAFIB,AF cAFIB,SB cAFIB,SVT cAFIB,ST cAFIB,SR cAFIB,AFIB cAFIB,SI
SI cSI,AF cSI,SB cSI,SVT cSI,ST cSI,SR cSI,AFIB cSI,SI

4.2. Evaluating the Proposed Method through 12 Leads

This subsection presents a thorough evaluation of the proposed fusion algorithm that
fuses the data of leads through CNN trees. For this purpose, the proposed method was
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used through 12-ECG leads to diagnose various arrhythmia in the signals of all 12-ECG
leads in the Chapman dataset. Table 4 reports the results of this test for each class separately.
In these tests, the classification model was trained with all 12 leads: lead I, lead II, lead
III, lead aVR, lead aVL, lead aVF, lead V1, lead V2, lead V3, lead V4, lead V5, lead V6.
According to Table 4, the proposed method yielded PRECcl = 97.09%, SENcl = 96.88%,
SPEcl = 97.42%, and ACCcl = 97.60% on average for seven classes of arrythmia. According
to Table 4, it can be concluded that extracting functional data from ECG leads can be very
useful and efficient in diagnosing arrythmias. The quality of the proposed method can be
examined in the computational overload of its algorithm, where merely the correlation
between the leads is used in the proposed method that includes a smaller data volume
than the raw signal. In fact, their functional data were used simply as a number calculated
through correlation and features of the structure extracted from the CNN tree. Figure 7a,b
depict the confusion matrix and convergence diagram of the proposed fusion algorithm,
respectively. Generally, the confusion matrix indicates that the proposed fusion algorithm
had acceptable levels of dispersion for all classes and did not focus only on one class of
arrythmia.

Table 4. The Confusion Matrix for Arrhythmia classes in Chapman Dataset.

Class Name PRECcl (%) SENcl (%) SPECcl (%) ACCcl (%)

AF 97.47 ± 0.5 97.93 ± 0.4 96.64 ± 0.2 97.25 ± 0.3
SB 97.83 ± 0.7 97.59 ± 0.6 96.26 ± 0.7 97.45 ± 0.7

SVT 97.58 ± 0.8 97.37 ± 0.6 96.44 ± 1.0 96.87 ± 1.0
ST 96.93 ± 0.0 97.93 ± 0.4 96.69 ± 0.6 96.36 ± 0.3
SR 97.60 ± 0.2 97.96 ± 1.1 97.69 ± 0.8 96.70 ± 1.0

AFIB 98.94 ± 0.7 96.79 ± 1.0 97.00 ± 1.1 97.56 ± 1.1
SI 96.88 ± 0.4 96.38 ± 0.7 97.47 ± 0.7 97.47 ± 0.7

Average 97.09 ± 0.7 96.88 ± 0.7 97.42 ± 0.7 97.60 ± 0.5
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It prevents the overfitting of the classification model. In this matrix, classification
mistakes are observed among the classes of arrhythmia, which do not cause any medical
problems. Figure 7b shows the convergence diagram of the fusion algorithm of the pro-
posed method; the proposed method has a proper convergence for classifications of various
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arrhythmia samples in the Chapman dataset. Even the convergence rate is improved in
comparison to Figure 7b, and it has rapidly obtained convergence.

The Table 5 shows the execution duration of the proposed method during the training
and testing phases. Table 5 demonstrates that the training section of the proposed method
had an execution duration of 15 min and 10 s. This time has no effect on the process of
executing the proposed method since the training phase is offline, which is crucial during
the development of the system. However, the most important time is the duration of the
testing. Accordingly, Table 5 shows that the execution duration of the proposed method is
31 s. It signifies that the proposed method can diagnose arrhythmia in a split second.

Table 5. Proposed Method Run Time (MM:SS:MS).

Training Phase Validation Phase Testing Phase

CPU Time 15:10:30 00:30:50 00:31:40

4.3. Comparing the Proposed Fusion Algorithm with the Other Deep-Learning Methods

This subsection draws a comparison between the proposed fusion algorithm and the
other state-of-the-art methods based on deep-learning models. First, Table 6 compares
the proposed fusion algorithm with the methods in which the inputs are based on the
single-lead ECG signals. The details include the number of patients, the number of ECG
records, the quantities of classes and rhythms diagnosed, and the methods used. The
performance results of the previous methods are reported with respect to certain criteria,
such as accuracy and F1-score. Various deep-learning models, such as CNN, LSTM, and
RNN, were used in these methods. Conventionally, a wide variety of these methods were
evaluated on MIT-BIH Arrhythmia belonging to PhysioNet. For instance, a deep CNN
model was used in [26] to classify 12 rhythms. Batch normalization and data augmentation
steps were used in this model. The results of this study reported F1: 83% for 53,549 patients.
In [27], a deep-learning model was used with the standard U-Net architecture to classify
five different types of arrhythmias in MIT-BIH Arrhythmia. In this paper, the accuracy was
reported as 97.32% for the classification of records collected from 47 patients. In [28], the
same dataset was used with a CNN model for data normalization. The CNN model had
five convolutional layers, three pooling layers, and one fully connected layer. According to
the evaluation results, ACC was reported as 98.54% on 47 patients in MIT-BIH Arrhythmia.
Recently, a hybrid CNN+LSTM model was introduced in [29] to classify ChapmanECG
through single-lead ECG signals. In this method, a CNN model was adopted to generate
deep spatial features from raw ECG signals. The CNN output was then given to the LSTM
model to generate deep temporal features. According to the evaluation results, ACC was
reported as 92.24% for 10,436 patients.

In this paper, a fusion algorithm was proposed to classify single-lead ECG signals. Its
performance was then evaluated on the ChapmanECG dataset. According to Table 6, ACC
was reported as 97.60% by the proposed fusion algorithm for the records of 10,646 patients.
The proposed fusion algorithm used a large number of records for model development. The
fusion algorithm yielded a further accuracy of 5.36% compared to the method proposed
in [29] on ChapmanECG. Moreover, the same records were used in the training and test
datasets in most of the previous studies, which reduced the universality of methods and
attenuated their performance in response to unseen data. This problem was considered in
the method proposed in this paper.
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Table 6. Comparing the proposed fusion algorithm with the other state-of-the-art methods in
performance.

References #Subjects #Records #Rhythm Method Performance

Acharya et al. [30] 47 109,449 5 Class CNN Acc: 94.03

Xu et al. [31] 22 50,977 5 Class DNN Acc: 93.10

Gao et al. [32] - 93,371 8 Heartbeats LSTM Acc: 90.26

Hannun et al. [33] 53,549 91,232 12 Rhythm CNN F1: 83.00

Yildirim et al. [34] 45 1000 5 Heartbeats CNN Acc: 91.33

Shaker et al. [35] 44 102,098 12 Class CNN Acc: 94.30

Oh et al. [27] 47 16,499 5 Heartbeats UNet Acc: 93.10

Xiong et al. [36] 12,186 12,186 4 Class CNN + RNN F1: 82.00

Oh et al. [28] 170 150,268 3 Cardiac Disease CNN + LSTM Acc: 94.51

Mousavi et al. [37] - 750 5 Rhythm CNN + LSTM Acc: 93.75

Wu et al. [38] - 8528 4 Class Binarized CNN F1: 86.00

Fujita et al. [26] 47 109,449 4 Class Normalization + CNN Acc: 93.45

Salem et al. [39] 22 7000 4 Class STFT + CNN Acc: 94.23

Xia et al. [40] - - 2 Class SWT + CNN Acc: 95.63

Yildirim et al. [29] 10,436 10,436 7 Rhythm CNN + LSTM Acc: 92.24

Mehari et al. [41] 10,646 10,646 7 Rhythm Single Classifier Acc: 92.89

Rahul et al. [42] 10,646 10,646 7 Rhythm 1-D CNN Acc: 94.01

Kang et al. [43] 10,646 10,646 7 Rhythm RNN Acc: 96.21

Proposed Method 10,646 10,646 7 Rhythm 12 Lead Fusion + CNN Trees Acc: 97.60

5. Conclusions

This paper proposed a novel method for fusing the data of 12-lead ECG signals to
diagnose heart problems. In the first phase of the proposed method, the time-frequency
transform was employed to fuse the functional data of leads and extract the frequency
data of ECG signals in 12 leads. After that, their dependence was evaluated through the
correlation analysis. In the second phase, a structural-learning method was adopted to
extract the structural data from these 12 leads. Moreover, deep CNN models were coded
in this phase through genetic programming. These trees are responsible for learning deep
structural features from functional data extracted from 12 leads. These trees are upgraded
through the execution of the GP algorithm to extract the optimal features. These two phases
were used together to fuse the leads of ECG signals to diagnose various heart problems.
According to the test results on ChapmanECG, including the signals of 10,646 patients,
the proposed method was efficient in diagnosing heart problems. It also outperformed
the state-of-the-art methods. Lack of dependence on the raw ECG signal in the proposed
method is quite crucial, which demonstrated itself in the future and upon employing the
proposed method and is one of the implications of the proposed method. Increasing the
level of security is one of its significant features since, in the proposed method, merely a
trajectory of the image is created, and the raw signal is not required in the communications.
Finally, due to the computational complexity of the genetic algorithm, in the future we
want to reduce the number of features extracted by using optimization algorithms [44–46].
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