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Abstract: In this paper, the results of a quadruple coincidence point (QCP) are established for
commuting mapping in the setting of fuzzy metric spaces (FMSs) without using a partially ordered
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1. Introduction

Fixed-point (FP) theory has many applications, not only in nonlinear analysis and its
trends—including solutions of differential and integral equations, functional equations aris-
ing from dynamic programming, topologies, and dynamic systems—but also in economics,
game theory, biological sciences, computer sciences, chemistry, etc. [1–4].

There is no doubt that the study of fuzzy sets is extremely important for their many
applications, such as in the control of ill-defined, complex, and non-linear systems. It
is more common to find solutions for control problems that are difficult to solve with
the classical control theory. Fuzzy set theory is becoming an increasingly important tool,
especially in the rapidly evolving discipline of artificial intelligence, such as in expert
systems and neural networks. It creates completely new opportunities for the application
of fuzzy sets in chemical engineering [5–8].

The concept of fuzzy sets was initiated by Zadeh [9] in 1965. Many mathematicians
used these sets to introduce interesting concepts into the field of mathematics, such as fuzzy
logic, fuzzy differential equations, and fuzzy metric spaces. It is known that an FMS is
an important generalization of an ordinary metric space where the topological definitions
are extended, and there are possible applications in several areas. Many mathematicians
have considered this problem in many ways. For example, the authors of [10] modified
the concept of an FMS that was initiated by Kramosil and Michalek [11] and defined the
Hausdorff topology of an FMS. For more details about this idea, we advise the reader
to see [12–17].

In 2011, the coupled fixed-point (FP) [18] result was extended to a tripled FP in partially
ordered metric spaces by Berinde and Borcut [19]. Using these spaces, they introduced
exciting results of tripled FP theorems. For more details, see [20–24].
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In the setting of FMSs, coupled FP results were presented and some important theo-
rems were given by Zhu and Xiao [25] and Hu [26]. Elagan et al. [27] studied the existence
of an FP in a locally convex topology generated by fuzzy n−normed spaces.

Motivated by the results of the notions of coupled and tripled FPs in partially ordered
metric spaces, Karapinar [28] suggested the concept of a quadruple FP and proved some
related consequences of FPs in the same spaces.

Based on the last two paragraphs, in this publication, a QCP is considered, and some
new and relevant FP results in FMSs are reported. Our paper’s strength is determined
by two factors. First, we can adapt it to complete metric spaces (CMSs) so as to achieve
Karapinar’s results [28] (in non-fuzzy sets). So, our paper covers and unifies a large number
of outcomes in the same direction. Secondly, we can apply the theoretical conclusions to
Lipschitzian and integral quadruple systems in order to discover a unique solution. Finally,
non-trivial examples are mentioned and discussed.

2. Preliminaries

Hereafter, we will refer to ζ as a non-empty set, Ω(ρ, σ, τ, υ) as Ωρστυ, Ψ(ρ, σ, κ) as
Ψρσ(κ), and ω(ρ, σ) as ωρσ.

The usual metric space is a non-empty set ζ equipped with a function ω : ζ × ζ → R+

such that for all ρ, σ, τ ∈ ζ, the following conditions are true:

• ωρσ ≥ 0,
• ωρσ = 0 if ρ = σ,
• ωρσ ≤ ωρτ + ωτσ.

The pair (ζ, ω) is called an MS.
A mapping k : ζ → ζ on an MS (ζ, ω) is called Lipschitzian if there is v ≥ 0 such that

ωkρkσ ≤ vωρσ, ∀ρ, σ ∈ ζ.

The smallest constant v—denoted by vk—that satisfies the above inequality is called
the Lipschitz constant for k. It is clear that a Lipschitzian mapping (LM) is a contraction
with vk < 1.

Theorem 1 ([29]). Let (ζ, ω) be a complete MS and let Q : ζ → ζ be a contraction mapping, that
is, the following inequality is true:

ω(Qx, Qy) ≤ kω(Qx, Qy), for all x, y ∈ ζ,

where k ∈ [0, 1). Then, Q has a unique FP x∗ in ζ. Moreover, for x0 ∈ ζ, the sequence (Qnx0)n∈N
converges to x∗.

For examples on LMs, let ζ = R and let ki : ζ → ζ be defined by k1(ρ) = Λ,
k2(ρ) = µρ, k3(ρ) = cos ρ, k4(ρ) = 1

1+ρ , k5(ρ) = 1
(1+ρ)2 , and k6(ρ) = arcsin ρ, where

Λ, µ ∈ R.

Definition 1 ([30]). A mapping ? : [0, 1]2 → [0, 1] is called a κ-norm if it is nondecreasing in
both arguments, associative, commutative, and has 1 as identity. For all ` ∈ [0, 1], the sequence
{?m`}∞

m=1 is inductively defined by ?1` = `, ?m` =
(
?m−1`

)
? `. A triangular norm ? is of

Υ-type if {?m`}∞
m=1 is equicontinuous at ` = 1, that is, for each ε ∈ (0, 1), there is κ ∈ (0, 1)

such that if ` ∈ (1−κ, 1], then ?m` > 1− ε for each m ∈ N.

The most famous continuous κ-norm of the Υ-type is ? = min, which satisfies min(`1, `2) ≥
`1`2 for all `1, `2 ∈ [0, 1].

The results below include a wide range of κ-norms of the Υ-type.
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Lemma 1 ([30]). Assume that ? is a κ-norm and $ ∈ (0, 1] is a real number. Define ?$ by
ρ ?$ σ = ρ ? σ if max{ρ, σ} ≤ 1− $, and ρ ?$ σ = min{ρ, σ} if max{ρ, σ} > 1− $. Then, ?$

is a κ-norm of the Υ-type.

Definition 2 ([11]). Let ζ 6= ∅ be an arbitrary set, let ? be a continuous κ-norm, and let Ψ :
ζ × ζ × [0, ∞)→ [0, 1] be a fuzzy set. We say that (ζ, Ψ, ?) is an FMS if the function Ψ satisfies
the hypotheses below for each ρ, σ, τ ∈ ζ, and κ, µ > 0 :

(fms 1) Ψρσ(0) = 0;
(fms 2) Ψρσ(κ) = 1⇔ ρ = σ;
(fms 3) Ψρσ(κ) = Ψσρ(κ);
(fms 4) Ψρσ(.) : [0, ∞)→ [0, 1] is left continuous;
(fms 5) Ψρσ(κ) ? Ψστ(µ) ≤ Ψρτ(κ + µ).

Here, we also consider (ζ, Ψ) an FMS under ?, and we will only consider the FMS that verifies:

(D) lim
κ→∞

Ψρσ(κ) = 1, ∀ρ, σ ∈ ζ.

Lemma 2 ([12]). On the infinite set [0, ∞), Ψρσ(.) is a non-decreasing function.

Definition 3 ([10]). Assume that (ζ, Ψ) is an FMS under some κ-norm; a sequence {ρm} ⊂ ζ
is called:

• Convergent to ρ ∈ ζ, and we write lim
m→∞

ρm = ρ if, for every ε > 0, κ > 0, there is m0 ∈ N
such that Ψρmρ(κ) > 1− ε for all m ≥ m0.

• A Cauchy sequence if, for every ε > 0, κ > 0, there is m0 ∈ N such that Ψρmρj(κ) > 1− ε
for all m, j ≥ m0.

• An FMS is called complete if every Cauchy sequence is convergent.

Definition 4 ([11]). We say that a function k : ζ → ζ defined on an FMS is continuous at ρ0 ∈ ζ
if lim

m→∞
kρm = kρ0 for any {ρm} ∈ ζ such that lim

m→∞
ρm = ρ0. As is familiar, for ρ0 ∈ ζ, we will

denote k−1(ρ0) = {ρ ∈ ζ : kρ = ρ0}.

Remark 1 ([11]). If `1 ≤ `2, then ρ`1 ≥ ρ`2 provided that ρ ∈ [0, 1] and `1, `2 ∈ (0, ∞). This fact
will be expressed here as follows: 0 < `1 ≤ `2 ≤ 1 implies that Ψρσ(κ)`1 ≥ Ψρσ(κ)`2 ≥ Ψρσ(κ).

For any κ-norm ?, it is obvious that ? ≤ min. So, if (ζ, Ψ) is an FMS via min, then
(ζ, Ψ) is an FMS under any κ-norm.

In the examples below, we only define Ψρσ(κ) for κ > 0 and ρ 6= σ.

Example 1 ([10]). For κ > 0 and ρ 6= σ, we define an FMS in different ways from an MS (ζ, ω)
as follows:

• Ψω
ρσ(κ) =

κ

κ + ωρσ
• Ψe

ρσ(κ) = e−
ωρσ

κ • Ψo
ρσ(κ) =

{
0, if κ ≤ ωρσ,
1, if κ > ωρσ.

It is obvious that, under the product ? = ., (ζ, Ψω) is an FMS, which is called the standard
FMS on (ζ, ω). In addition, (ζ, Ψω), (ζ, Ψe), and (ζ, Ψo) are FMSs under min. This is a standard
method for seeing the MS (ζ, ω) as an FMS, though it is not as well known.

Moreover, (ζ, ω) is a CMS iff (ζ, Ψω), (ζ, Ψe), or (ζ, Ψo) is a complete FMS.

3. Main Results

We begin this section with the following simple definition.

Definition 5. Assume that Ω : ζ4 → ζ and k : ζ → ζ are two mappings.

• We say that Ω and k are commuting if kΩρστυ = Ωkρkσkτkυ, ∀`, σ, ρ, υ ∈ ζ.
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• We say that (ρ, σ, τ, υ) ∈ ζ4 is a QCP of Ω and k if

Ωρστυ = kρ, Ωστυρ = kσ, Ωτυρσ = kτ and Ωυρστ = kυ.

Theorem 2. Assume that ? is a κ-norm of the Υ-type such that µ ? κ ≥ µκ for all µ, κ ∈ [0, 1].
Suppose that (ζ, Ψ, ?) is a complete FMS and Ω : ζ4 → ζ, k : ζ → ζ are two mappings such that

(a) Ω
(
ζ4) ⊆ k(ζ),

(b) k is continuous,
(c) k is commuting with Ω,
(d) for all ρ, σ, τ, υ, ρ̂, σ̂, τ̂, υ̂ ∈ ζ,

ΨΩρστυΩρ̂σ̂τ̂υ̂
(κv) ≥ Ψkρkρ̂(κ)

`1 ? Ψkσkσ̂(κ)
`2 ? Ψkτkτ̂(κ)

`3 ? Ψkυkυ̂(κ)
`4 , (1)

where v ∈ (0, 1) and `1, `2, `3, `4 are real numbers in [0, 1] such that `1 + `2 + `3 + `4 ≤ 1.
Then, the following conclusions hold.

(1) There is a unique ρ ∈ ζ such that ρ = kρ = Ωρρρρ. In particular,
(2) There is at least a QCP for the mappings k and Ω; moreover, in the case of Ω = ρ0, there

is a constant on ζ4. This holds only if the inverse of the mapping k exists and it satisfies
.k−1(ρ0) = {ρ0}; then, we have

(3) (ρ, ρ, ρ, ρ) is a unique QCP of k and Ω.

Note that, to avoid the unidentified quantity 00, we consider here Ψkρkρ̂(κ)
0 = 1 for

all κ > 0 and all ρ, ρ̂ ∈ ζ.

Proof. We divide the proof into two cases:
Case 1. When Ω ⊆ ζ is constant, that is, there is ρ0 ∈ ζ such that, for all ρ, σ, τ, υ ∈ ζ,

Ωρστυ = ρ0. Since Ω and k are commuting, one can write kρ0 = kΩρστυ = Ωkρkσkτkυ = ρ0.
Therefore, ρ0 = kρ0 = Ωρ0ρ0ρ0ρ0 and (ρ0, ρ0, ρ0, ρ0) is a QCP of Ω and k. On the other
hand, assume that k−1(ρ0) = {ρ0} and (ρ, σ, τ, υ) ∈ ζ4 is another QCP of Ω and k.
Then, kρ = Ωρστυ = ρ0, so ρ ∈ k−1(ρ0) = {ρ0}. In the same manner, we can write
ρ = σ = τ = υ = ρ0; hence, (ρ0, ρ0, ρ0, ρ0) is a unique QCP of Ω and k.

Case 2. Assume that Ω ∈ ζ is not constant; for this, let (`1, `2, `3, `4) 6= (0, 0, 0, 0). In
this case, we consider j and m to be non-negative integers and κ ∈ [0, ∞). This case is
divided into five steps.

St1. Deriving four sequences {ρm}, {σm}, {τm}, and {υm}: Suppose that ρ0, σ0, τ0, υ0
are arbitrary points in ζ. As Ω

(
ζ4) ⊆ k(ζ), we can select ρ1, σ1, τ1, υ1 ∈ ζ so that

kρ1 = Ωρ0σ0τ0υ0 , kσ1 = Ωσ0τ0υ0ρ0 , kτ1 = Ωτ0υ0ρ0σ0 and kυ1 = Ωυ0ρ0σ0τ0 . Again, with
Ω
(
ζ4) ⊆ k(ζ), we can select ρ2, σ2, τ2, υ2 ∈ ζ so that kρ2 = Ωρ1σ1τ1υ1 , kσ2 = Ωσ1τ1υ1ρ1 ,

kτ2 = Ωτ1υ1ρ1σ1 , and kυ2 = Ωυ1ρ1σ1τ1 . Continuing with the same scenario, we can construct
{ρm}, {σm}, {τm}, and {υm} so that for m ≥ 0, kρm+1 = Ωρmσmτmυm , kσm+1 = Ωσmτmυmρm ,
kτm+1 = Ωτmυmρmσm , and kυm+1 = Ωυmρmσmτm .

St2. {ρm}, {σm}, {τm}, and {υm} are Cauchy sequences. For m ≥ 0 and all κ > 0,
we define

Ξm(κ) = Ψkρmkρm+1(κ) ? Ψkσmkσm+1 ? Ψkτmkτm+1 ? Ψkυmkυm+1 .

Ξm is a non-decreasing function and κ − κv ≤ κ ≤ κ
v , so we get

Ξm(κ − κv) ≤ Ξm(κ) ≤ Ξm

( κ

v

)
, for all κ > 0 and m ≥ 0. (2)

It follows from (1) that, for all m ∈ N and all κ ≥ 0,

Ψkρmkρm+1(κ) = ΨΩρm−1 σm−1 τm−1 υm−1
Ωρm σm τm υm

(κ)

≥ Ψkρm−1kρm

(
κ
v

)`1 ? Ψkσm−1kσm

(
κ
v

)`2

?Ψkτm−1kτm

(
κ
v

)`3 ? Ψkυm−1kυm

(
κ
v

)`4 ;

(3)
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Ψkσmkσm+1(κ) = ΨΩσm−1 τm−1 υm−1 ρm−1
Ωσm τm υm ρm

(κ)

≥ Ψkσm−1kσm

(
κ
v

)`1 ? Ψkτm−1kτm

(
κ
v

)`2

?Ψkυm−1kυm

(
κ
v

)`3 ? Ψkρm−1kρm

(
κ
v

)`4 ;

(4)

Ψkτmkτm+1(κ) = ΨΩτm−1 υm−1 ρm−1 σm−1
Ωτm υm ρm σm

(κ)

≥ Ψkτm−1kτm

(
κ
v

)`1 ? Ψkυm−1kυm

(
κ
v

)`2

?Ψkρm−1kρm

(
κ
v

)`3 ? Ψkσm−1kσm

(
κ
v

)`4 ;

(5)

Ψυmkυm+1(κ) = ΨΩυm−1 ρm−1 σm−1 τm−1
Ωυm ρm σm τm

(κ)

≥ Ψkυm−1kυm

(
κ
v

)`1 ? Ψkρm−1kρm

(
κ
v

)`2

?Ψkσm−1kσm

(
κ
v

)`3 ? Ψkτm−1kτm

(
κ
v

)`4 ;

(6)

It follows from (3)–(6) and Remark 1 that

Ψkρmkρm+1(κ)

≥ Ψkρm−1kρm

( κ

v

)`1
? Ψkσm−1kσm

( κ

v

)`2
? Ψkρm−1kρm

( κ

v

)`3
? Ψkυm−1kυm

( κ

v

)`4

≥ Ψkρm−1kρm

( κ

v

)
? Ψkσm−1kσm

( κ

v

)
? Ψkρm−1kρm

( κ

v

)
? Ψkυm−1kυm

( κ

v

)
= Ξm−1(

κ

v
);

Ψkσmkσm+1(κ)

≥ Ψkσm−1kσm

( κ

v

)`1
? Ψkτm−1kτm

( κ

v

)`2
? Ψkυm−1kυm

( κ

v

)`3
? Ψkρm−1kρm

( κ

v

)`4

≥ Ψkσm−1kσm

( κ

v

)
? Ψkτm−1kτm

( κ

v

)
? Ψkυm−1kυm

( κ

v

)
? Ψkρm−1kρm

( κ

v

)
= Ξm−1(

κ

v
);

Ψkτmkτm+1(κ)

≥ Ψkτm−1kτm

( κ

v

)`1
? Ψkυm−1kυm

( κ

v

)`2
? Ψkρm−1kρm

( κ

v

)`3
? Ψkσm−1kσm

( κ

v

)`4

≥ Ψkτm−1kτm

( κ

v

)
? Ψkυm−1kυm

( κ

v

)
? Ψkρm−1kρm

( κ

v

)
? Ψkσm−1kσm

( κ

v

)
= Ξm−1(

κ

v
);

and

Ψυτmkυm+1(κ)

≥ Ψkυm−1kυm

( κ

v

)`1
? Ψkρm−1kρm

( κ

v

)`2
? Ψkσm−1kσm

( κ

v

)`3
? Ψkτm−1kτm

( κ

v

)`4

≥ Ψkυm−1kυm

( κ

v

)
? Ψkρm−1kρm

( κ

v

)
? Ψkσm−1kσm

( κ

v

)
? Ψkτm−1kτm

( κ

v

)
= Ξm−1(

κ

v
).

This proves that, for all κ > 0 and all m ≥ 0,

Ψkρmkρm+1(κ), Ψkσmkσm+1(κ), Ψkτmkτm+1(κ), Ψυτmkυm+1(κ) ≥ Ξm−1(
κ

v
) ≥ Ξm−1(κ). (7)

Putting κ −vκ instead of κ, we obtain, for all κ > 0 and all m ≥ 0, that
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Ψkρmkρm+1(κ −vκ), Ψkσmkσm+1(κ −vκ), Ψkτmkτm+1(κ −vκ), Ψυτmkυm+1(κ −vκ)
≥ Ξm−1(κ −vκ).

(8)

Since ? is commutative and ? ≥ ., using (3)–(6), we deduce that

Ξm(κ) = Ψkρmkρm+1(κ) ? Ψkσmkσm+1 ? Ψkτmkτm+1 ? Ψkυmkυm+1

≥
(

Ψkρm−1kρm

( κ

v

)`1
? Ψkσm−1kσm

( κ

v

)`2
? Ψkτm−1kτm

( κ

v

)`3
? Ψkυm−1kυm

( κ

v

)`4
)

?

(
Ψkρm−1kρm

( κ

v

)`2
? Ψkσm−1kσm

( κ

v

)`3
? Ψkτm−1kτm

( κ

v

)`4
? Ψkυm−1kυm

( κ

v

)`1
)

?

(
Ψkρm−1kρm

( κ

v

)`3
? Ψkσm−1kσm

( κ

v

)`4
? Ψkτm−1kτm

( κ

v

)`1
? Ψkυm−1kυm

( κ

v

)`2
)

?

(
Ψkρm−1kρm

( κ

v

)`4
? Ψkσm−1kσm

( κ

v

)`1
? Ψkτm−1kτm

( κ

v

)`2
? Ψkυm−1kυm

( κ

v

)`3
)

=

(
Ψkρm−1kρm

( κ

v

)`1
? Ψkρm−1kρm

( κ

v

)`2
? Ψkρm−1kρm

( κ

v

)`3
? Ψkρm−1kρm

( κ

v

)`4
)

?

(
Ψkσm−1kσm

( κ

v

)`2
? Ψkσm−1kσm

( κ

v

)`3
? Ψkσm−1kσm

( κ

v

)`4
? Ψkρm−1kρm

( κ

v

)`2
)

?

(
Ψkτm−1kτm

( κ

v

)`3
? Ψkτm−1kτm

( κ

v

)`4
? Ψkτm−1kτm

( κ

v

)`1
? Ψkτm−1kτm

( κ

v

)`2
)

?

(
Ψkυm−1kυm

( κ

v

)`4
? Ψkυm−1kυm

( κ

v

)`1
? Ψkυm−1kυm

( κ

v

)`2
? Ψkυm−1kυm

( κ

v

)`3
)

.

It follows that

Ξm(κ) ≥
(

Ψkρm−1kρm

( κ

v

)`1
.Ψkρm−1kρm

( κ

v

)`2
.Ψkρm−1kρm

( κ

v

)`3
.Ψkρm−1kρm

( κ

v

)`4
)

?

(
Ψkσm−1kσm

( κ

v

)`2
.Ψkσm−1kσm

( κ

v

)`3
.Ψkσm−1kσm

( κ

v

)`4
.Ψkρm−1kρm

( κ

v

)`2
)

?

(
Ψkτm−1kτm

( κ

v

)`3
.Ψkτm−1kτm

( κ

v

)`4
.Ψkτm−1kτm

( κ

v

)`1
.Ψkτm−1kτm

( κ

v

)`2
)

?

(
Ψkυm−1kυm

( κ

v

)`4
.Ψkυm−1kυm

( κ

v

)`1
.Ψkυm−1kυm

( κ

v

)`2
.Ψkυm−1kυm

( κ

v

)`3
)

= Ψkρm−1kρm

( κ

v

)`1+`2+`3+`4
? Ψkσm−1kσm

( κ

v

)`1+`2+`3+`4

?Ψkτm−1kτm

( κ

v

)`1+`2+`3+`4
? Ψkυm−1kυm

( κ

v

)`1+`2+`3+`4

≥ Ψkρm−1kρm

( κ

v

)
? Ψkσm−1kσm

( κ

v

)
? Ψkτm−1kτm

( κ

v

)
? Ψkυm−1kυm

( κ

v

)
= Ξm−1(

κ

v
)

By using (2), one can write

Ξm(κ) ≥ Ξm−1(
κ

v
) ≥ Ξm−1(κ) ≥ Ξm−1(κ − κv), ∀κ > 0, and m ≥ 1. (9)

By continuing in the same manner, we have

Ξm(κ) ≥ Ξm−1(
κ

v
) ≥ Ξm−2(

κ

v2 ) ≥ ... ≥ Ξ0(
κ

vm ), ∀κ > 0, and m ≥ 1,

which leads to find that for all κ > 0

lim
m→∞

Ξm(κ) ≥ lim
m→∞

Ξ0(
κ

vm ) = 1⇒ lim
m→∞

Ξm(κ) = 1. (10)



Mathematics 2022, 10, 1905 7 of 16

From (7) and (9), we have

Ψkρmkρm+1(κ), Ψkσmkσm+1(κ), Ψkτmkτm+1(κ), Ψυτmkυm+1(κ) ≥ Ξm(κ) ≥ Ξm−1(κ − κv). (11)

After that, we will prove that, for all κ > 0 and all m, r ≥ 1,

Ψkρmkρm+r (κ), Ψkσmkσm+r (κ), Ψkτmkτm+r (κ), Ψυτmkυm+r (κ) ≥ ?rΞm−1(κ − κv). (12)

We can show this by induction in r ≥ 1 as follows: Inequality (12) holds if r = 1 for all
m ≥ 1 and all κ > 0 by (11). Assume that (12) is true for all m ≥ 1 and all κ > 0 for some r.
Now, we prove the relation for r + 1. It follows from (1), the induction assumption, and
? ≥ . that

Ψkρm+1kρm+r+1(vκ)

= ΨΩρm σm τm υm Ωρm+r σm+r τm+r υm+r
(vκ)

≥ Ψkρmkρm+r
(κ)`1 ? Ψkσmkσm+r (κ)

`2 ? Ψkτmkτm+r
(κ)`3 ? Ψkυmkυm+r

(κ)`4

≥ (?rΞm−1(κ − κv))`1 ? (?rΞm−1(κ − κv))`2 ? (?rΞm−1(κ − κv))`3 ? (?rΞm−1(κ − κv))`4

≥ (?rΞm−1(κ − κv))`1 .(?rΞm−1(κ − κv))`2 .(?rΞm−1(κ − κv))`3 .(?rΞm−1(κ − κv))`4

= (?rΞm−1(κ − κv))`1+`2+`3+`4 ≥ ?rΞm−1(κ − κv).

Similarly, we arrive at(
Ψkρm+1kρm+r+1(vκ), Ψkσm+1kσm+r+1(vκ), Ψkτm+1kτm+r+1(vκ), Ψkυm+1kυm+r+1(vκ)

)
≥ ?rΞm−1(κ − κv).

From Definition 2 (fms 5), (8), and the induction assumption, we get

Ψkρm+1kρm+r+1(κ) = Ψkρm+1kρm+r+1(κ − κv + κv)

≥ Ψkρmkρm+1(κ − κv) ? Ψkρm+1kρm+r+1(κv)

≥ Ξm−1(κ − κv) ? (?rΞm−1(κ − κv))

= ?r+1Ξm−1(κ − κv).

In addition, the same result holds if we consider Ψkσm+1kσm+r+1(κ), Ψkτm+1kτm+r+1(κ),
and Ψkυm+1kυm+r+1(κ). This leads to (12) being true. This allows us to prove that {kρm} is
Cauchy. Assume that κ > 0 and ε ∈ (0, 1) are given. From this assumption, as ? is a κ-norm
of the Υ-type, there is ϕ ∈ (0, 1) such that ?r`1 > 1− ε for all `1 ∈ (1− ϕ, 1] and for all
r ≥ 1. From (10), limm→∞ Ξm(κ) = 1, so there is m0 ∈ N such that

Ξm(κ − κv) > 1− ϕ, ∀m ≥ m0.

Hence, by (12), we have

Ψkρmkρm+r (κ), Ψkσmkσm+r (κ), Ψkτmkτm+r (κ), Ψυτmkυm+r (κ) > 1− ε, ∀m ≥ m0 and r ≥ 1.

Thus, {kρm} is a Cauchy sequence. Similarly, {kσm}, {kτm}, and {kυm} are also
Cauchy sequences.

St3. Proving that Ω and k have a QCP: As ζ is complete, there are ρ, σ, τ, υ ∈ ζ
such that

lim
m→∞

kρm = ρ, lim
m→∞

kσm = σ, lim
m→∞

kτm = τ and lim
m→∞

kυm = υ.

The continuity of k implies that

lim
m→∞

kkρm = kρ, lim
m→∞

kkσm = kσ, lim
m→∞

kkτm = kτ, and lim
m→∞

kkυm = kυ.
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The commutativity of Ω and k leads to

kkρm+1 = kΩ(ρm, σm, τm, υm) = Ω(kρm,kσm,kτm,kυm).

By (1), we get

Ψkkρm+1Ωρστυ
(κv) = ΨΩkρmσmτmυm Ωρστυ(κv)

≥ Ψkkρmkρ(κ)
`1 ? Ψkkσmkσ(κ)

`2 ? Ψkkτmkτ(κ)
`3 ? Ψkkυmkυ(κ)

`4

≥ Ψkkρmkρ(κ) ? Ψkkσmkσ(κ) ? Ψkkτmkτ(κ) ? Ψkkυmkυ(κ).
(13)

As m→ ∞, in (13), we find that

lim
m→∞

kkρm+1 = Ωρστυ = kρ.

Similarly, we deduce that Ωστυρ = kσ, Ωτυρσ = kτ, Ωυρστ = kυ. This shows that
(ρ, σ, τ, υ) is a QCP of Ω and k.

kρ = Ωρστυ, kσ = Ωστυρ, kτ = Ωτυρσ, kυ = Ωυρστ . (14)

St4. Showing that ρ = Ωρστυ, σ = Ωστυρ, τ = Ωτυρσ, and υ = Ωυρστ : From
Stipulation (1), we get

Ψkρkσm+1(κv)
= ΨΩρστυΩσmτmυmρm

(κv)

≥ Ψkρkσm(κ)
`1 ? Ψkσkτm(κ)

`2 ? Ψkτkυm(κ)
`3 ? Ψkυkρm(κ)

`4 ;
(15)

Ψkσkτm+1(κv)
= ΨΩστυρΩτmυmρmσm

(κv)

≥ Ψkσkτm(κ)
`1 ? Ψkτkυm(κ)

`2 ? Ψkυkρm(κ)
`3 ? Ψkρkσm(κ)

`4 ;
(16)

Ψkτkυm+1(κv)
= ΨΩτυρσΩυmρmσmτm

(κv)

≥ Ψkτkυm(κ)
`1 ? Ψkυkρm(κ)

`2 ? Ψkρkσm(κ)
`3 ? Ψkσkτm(κ)

`4 ;
(17)

Ψkυkρm+1(κv)
= ΨΩυρστΩρmσmτmυm

(κv)

≥ Ψkυkρm(κ)
`1 ? Ψkρkσm(κ)

`2 ? Ψkσkτm(κ)
`3 ? Ψkτkυm(κ)

`4 .
(18)

We set∇m(κv) = Ψkρkσm(κv) ?Ψkσkτm(κv) ?Ψkτkυm(κv) ?Ψkυkρm(κv) for all κ > 0
and m ≥ 0. It follows from (15)–(18) that

∇m+1(κv) = Ψkρkσm+1(κv) ? Ψkσkτm+1(κv) ? Ψkτkυm+1(κv) ? Ψkτkυm+1(κv)

≥
(

Ψkρkσm(κ)
`1 ? Ψkσkτm(κ)

`2 ? Ψkτkυm(κ)
`3 ? Ψkυkρm(κ)

`4
)

?
(

Ψkσkτm(κ)
`1 ? Ψkτkυm(κ)

`2 ? Ψkυkρm(κ)
`3 ? Ψkρkσm(κ)

`4
)

?
(

Ψkτkυm(κ)
`1 ? Ψkυkρm(κ)

`2 ? Ψkρkσm(κ)
`3 ? Ψkσkτm(κ)

`4
)

?
(

Ψkυkρm(κ)
`1 ? Ψkρkσm(κ)

`2 ? Ψkσkτm(κ)
`3 ? Ψkτkυm(κ)

`4
)

=
(

Ψkρkσm(κ)
`1 ? Ψkρkσm(κ)

`4 ? Ψkρkσm(κ)
`3 ? Ψkρkσm(κ)

`2
)

?
(

Ψkσkτm(κ)
`2 ? Ψkσkτm(κ)

`1 ? Ψkσkτm(κ)
`4 ? Ψkσkτm(κ)

`3
)

?
(

Ψkτkυm(κ)
`3 ? Ψkτkυm(κ)

`2 ? Ψkτkυm(κ)
`1 ? Ψkτkυm(κ)

`4
)

?
(

Ψkυkρm(κ)
`4 ? Ψkυkρm(κ)

`3 ? Ψkυkρm(κ)
`2 ? Ψkυkρm(κ)

`1
)

,
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which implies that

∇m+1(κv) ≥
(

Ψkρkσm(κ)
`1 .Ψkρkσm(κ)

`4 .Ψkρkσm(κ)
`3 .Ψkρkσm(κ)

`2
)

?
(

Ψkσkτm(κ)
`2 .Ψkσkτm(κ)

`1 .Ψkσkτm(κ)
`4 .Ψkσkτm(κ)

`3
)

?
((

Ψkτkυm(κ)
`3 .Ψkτkυm(κ)

`2 .Ψkτkυm(κ)
`1 .Ψkτkυm(κ)

`4
))

?
(

Ψkυkρm(κ)
`4 .Ψkυkρm(κ)

`3 .Ψkυkρm(κ)
`2 .Ψkυkρm(κ)

`1
)

= Ψkρkσm(κ)
`1+`2+`3+`4 ? Ψkσkτm(κ)

`1+`2+`3+`4

?Ψkτkυm(κ)
`1+`2+`3+`4 ? Ψkυkρm(κ)

`1+`2+`3+`4

≥ Ψkρkσm(κ) ? Ψkσkτm(κ) ? Ψkτkυm(κ) ? Ψkυkρm(κ) = ∇m(κ).

This implies that∇m+1(κv) ≥ ∇m(κ) for all m ≥ 0 and all κ > 0. Repeating this process,

∇m(κ) ≥ ∇m−1(
κ

v
) ≥ ∇m−2(

κ

v2 ) ≥ ... ≥ ∇0(
κ

vm ), ∀κ > 0 and m ≥ 1. (19)

From (15)–(19), we conclude that

Ψkρkσm+1(κv) ≥ Ψkρkσm(κ)
`1 ? Ψkσkτm(κ)

`2 ? Ψkτkυm(κ)
`3 ? Ψkυkρm(κ)

`4

≥ ∇m(κ) ≥ ∇0(
κ

vm );
(20)

Ψkσkτm+1(κv) ≥ Ψkσkτm(κ)
`1 ? Ψkτkυm(κ)

`2 ? Ψkυkρm(κ)
`3 ? Ψkρkσm(κ)

`4

≥ ∇m(κ) ≥ ∇0(
κ

vm );
(21)

Ψkτkυm+1(κv) ≥ Ψkτkυm(κ)
`1 ? Ψkυkρm(κ)

`2 ? Ψkρkσm(κ)
`3 ? Ψkσkτm(κ)

`4

≥ ∇m(κ) ≥ ∇0(
κ

vm );
(22)

Ψkυkρm+1(κv) ≥ Ψkυkρm(κ)
`1 ? Ψkρkσm(κ)

`2 ? Ψkσkτm(κ)
`3 ? Ψkτkυm(κ)

`4

≥ ∇m(κ) ≥ ∇0(
κ

vm ).
(23)

Thus,

Ψkρkσm+1(κv), Ψkσkτm+1(κv), Ψkτkυm+1(κv), Ψkυkρm+1(κv) ≥ ∇0(
κ

vm ), ∀κ > 0 and m ≥ 1.

Taking the limit as m→ ∞ in (20)–(23) and using limm→∞∇0(
κ

vm ) = 1, for all κ > 0,
we get limm→∞ kρm = kυ, limm→∞ kσm = kρ, limm→∞ kτm = kσ, and limm→∞ kυm = kτ.
This shows, together with (14), that

Ωρστυ = kρ = lim
m→∞

kσm = σ, Ωστυρ = kσ = lim
m→∞

kτm = τ,

Ωτυρσ = kτ = lim
m→∞

kυm = υ, Ωυρστ = kυ = lim
m→∞

kρm = ρ.

St5. We shall prove that ρ = σ = τ = υ. We set Π(κ) = Ψρσ(κ) ? Ψστ(κ) ? Ψτυ(κ) ?
Ψυρ(κ) for all κ > 0. Then, according to (1), we can write

Ψρσ(κv) = ΨΩρστυΩστυρ(κv) ≥ Ψkρkσ(κ)
`1 ? Ψkσkτ(κ)

`2 ? Ψkτkυ(κ)
`3 ? Ψkυkρ(κ)

`4

= Ψστ(κ)
`1 ? Ψτυ(κ)

`2 ? Ψυρ(κ)
`3 ? Ψρσ(κ)

`4 ;
(24)

Ψστ(κv) = ΨΩστυρΩτυρσ (κv) ≥ Ψkσkτ(κ)
`1 ? Ψkτkυ(κ)

`2 ? Ψkυkρ(κ)
`3 ? Ψkρkσ(κ)

`4

= Ψτυ(κ)
`1 ? Ψυρ(κ)

`2 ? Ψρσ(κ)
`3 ? Ψστ(κ)

`4 ;
(25)

Ψτυ(κv) = ΨΩτυρσΩυρστ (κv) ≥ Ψkτkυ(κ)
`1 ? Ψkυkρ(κ)

`2 ? Ψkρkσ(κ)
`3 ? Ψkσkτ(κ)

`4

= Ψυρ(κ)
`1 ? Ψρσ(κ)

`2 ? Ψστ(κ)
`3 ? Ψτυ(κ)

`4 ;
(26)

Ψυρ(κv) = ΨΩυρστΩρστυ(κv) ≥ Ψkυkρ(κ)
`1 ? Ψkρkσ(κ)

`2 ? Ψkσkτ(κ)
`3 ? Ψkτkυ(κ)

`4

= Ψρσ(κ)
`1 ? Ψστ(κ)

`2 ? Ψτυ(κ)
`3 ? Ψυρ(κ)

`4 .
(27)
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Using the above four inequalities together, we have

Π(κv) = Ψρσ(κv) ? Ψστ(κv) ? Ψτυ(κv) ? Ψυρ(κv)

≥
(

Ψστ(κ)
`1 ? Ψτυ(κ)

`2 ? Ψυρ(κ)
`3 ? Ψρσ(κ)

`4
)

?
(

Ψτυ(κ)
`1 ? Ψυρ(κ)

`2 ? Ψρσ(κ)
`3 ? Ψστ(κ)

`4
)

?
(

Ψυρ(κ)
`1 ? Ψρσ(κ)

`2 ? Ψστ(κ)
`3 ? Ψτυ(κ)

`4
)

?
(

Ψρσ(κ)
`1 ? Ψστ(κ)

`2 ? Ψτυ(κ)
`3 ? Ψυρ(κ)

`4
)

=
(

Ψρσ(κ)
`4 ? Ψρσ(κ)

`3 ? Ψρσ(κ)
`2 ? Ψρσ(κ)

`1
)

?
(

Ψστ(κ)
`1 ? Ψστ(κ)

`4 ? Ψστ(κ)
`3 ? Ψστ(κ)

`2
)

?
(

Ψτυ(κ)
`2 ? Ψτυ(κ)

`1 ? Ψτυ(κ)
`4 ? Ψτυ(κ)

`3
)

?
(

Ψυρ(κ)
`3 ? Ψυρ(κ)

`2 ? Ψυρ(κ)
`1 ? Ψυρ(κ)

`4
)

≥
(

Ψρσ(κ)
`4 .Ψρσ(κ)

`3 .Ψρσ(κ)
`2 .Ψρσ(κ)

`1
)

?
(

Ψστ(κ)
`1 .Ψστ(κ)

`4 .Ψστ(κ)
`3 .Ψστ(κ)

`2
)

?
(

Ψτυ(κ)
`2 .Ψτυ(κ)

`1 .Ψτυ(κ)
`4 .Ψτυ(κ)

`3
)

?
(

Ψυρ(κ)
`3 .Ψυρ(κ)

`2 .Ψυρ(κ)
`1 .Ψυρ(κ)

`4
)

= Ψρσ(κ)
`1+`2+`3+`4 ? Ψστ(κ)

`1+`2+`3+`4

?Ψτυ(κ)
`1+`2+`3+`4 ? Ψυρ(κ)

`1+`2+`3+`4

≥ Ψρσ(κ) ? Ψστ(κ) ? Ψτυ(κ) ? Ψυρ(κ) = Π(κ).

Thus, Π(κv) ≥ Π(κ) leads to Π(κ) ≥ Π( κ
v ) ≥ Π( κ

v2 ) ≥ . . . ≥ Π( κ
vm ) for all κ > 0

and m ≥ 1. Applying (24)–(27), we get

Ψρσ(κv) ≥ Ψστ(κ)
`1 ? Ψτυ(κ)

`2 ? Ψυρ(κ)
`3 ? Ψρσ(κ)

`4

≥ Ψστ(κ) ? Ψτυ(κ) ? Ψυρ(κ) ? Ψρσ(κ) = Π(κ) ≥ Π(
κ

vm ),

Ψστ(κv) ≥ Ψτυ(κ)
`1 ? Ψυρ(κ)

`2 ? Ψρσ(κ)
`3 ? Ψστ(κ)

`4

≥ Ψτυ(κ) ? Ψυρ(κ) ? Ψρσ(κ) ? Ψστ(κ) = Π(κ) ≥ Π(
κ

vm ),

Ψτυ(κv) ≥ Ψυρ(κ)
`1 ? Ψρσ(κ)

`2 ? Ψστ(κ)
`3 ? Ψτυ(κ)

`4

≥ Ψυρ(κ) ? Ψρσ(κ) ? Ψστ(κ) ? Ψτυ(κ) = Π(κ) ≥ Π(
κ

vm ),

Ψυρ(κv) ≥ Ψρσ(κ)
`1 ? Ψστ(κ)

`2 ? Ψτυ(κ)
`3 ? Ψυρ(κ)

`4

≥ Ψρσ(κ) ? Ψστ(κ) ? Ψτυ(κ) ? Ψυρ(κ) = Π(κ) ≥ Π(
κ

vm ).

As m → ∞, we have limm→∞ Π( κ
vm ) = 1 for all m ≥ 1. This means that Ψρσ(κv) =

Ψστ(κv) = Ψτυ(κv) = Ψυρ(κv) = 1 for all κ > 0, that is, ρ = σ = τ = υ. The uniqueness
of ρ follows from (1).

Remark 2. In Theorem 2, the continuity of ? is only discussed at (1, 1), that is, if {ρm}, {σm} ⊂
[0, 1] are sequences such that {ρm} → 1 and {σm} → 1; therefore, {ρm ? σm} → 1, which holds
because {ρm ? σm} ≥ {ρm.σm} → 1× 1 = 1.
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Example 2. Assume that ζ = R and (R, Ψe) is defined as Example 1. Consider ℘, h̄ > 0 and
v ∈ (0, 1) are real numbers such that 8℘ ≤ h̄v, that is, ℘

v ≤
h̄
8 . For all ρ, σ, τ, υ ∈ R, we

define Ω : R4 → R and k : R → R by Ωρστυ = ℘
2 (ρ− σ) and k(ρ) = h̄

2 ρ. It is clear that k is
continuous, Ω and k are commuting, and Ω(R4) = R = k(R). Moreover, Ψe satisfies

Ψe
ΩρστυΩρ̂σ̂τ̂υ̂

(vκ) =
(

e|(ρ−ρ̂)+(σ−σ̂)|
)− ℘

2vκ ≥
(

e−
2 max{|(ρ−ρ̂)|,|(σ−σ̂)|}

2κ

) ℘
v

≥
(

e−
2 max{|(ρ−ρ̂)|,|(σ−σ̂)|}

2κ

) h̄
8
=
(

e−
h̄

8κ

)max{|(ρ−ρ̂)|,|(σ−σ̂)|}

= min
{

e−
h̄|(ρ−ρ̂)|

8κ , e−
h̄|(σ−σ̂)|

8κ

}
≥ min

{
e−

h̄|(ρ−ρ̂)|
8κ , e−

h̄|(σ−σ̂)|
8κ , e−

h̄|(τ−τ̂)|
8κ , e−

h̄|(υ−υ̂)|
8κ

}
= min

{
e−

h̄|(ρ−ρ̂)|
2(4κ) , e−

h̄|(σ−σ̂)|
2(4κ) , e−

h̄|(τ−τ̂)|
2(4κ) , e−

h̄|(υ−υ̂)|
2(4κ)

}
= min

{(
Ψe
kρkρ̂

(κ)
) 1

4 ,
(

Ψe
kσkσ̂

(κ)
) 1

4 ,
(

Ψe
kτkτ̂

(κ)
) 1

4 ,
(

Ψe
kυkυ̂

(κ)
) 1

4
}

.

Thus, through Theorem 2, we deduce that Ω and k have a QCP.

4. Some Related Results

In this section, the view of (ζ, ω) as a friable FMS (ζ, Ψo, min) is used. This tactic
permits us to deduce some results involved in the metric space from the corresponding
results in the fuzzy setting. Furthermore, without a partially ordered set, Theorem 3 is just
a QCP result, similar to that of Karapınar and Luong ([28], Corollary 12).

Theorem 3. Assume that (ζ, ω) is a CMS and that Ω : ζ4 → ζ and k : ζ → ζ are two mappings
such that:

• Ω
(
ζ4) ⊆ k(ζ);

• k is continuous;
• k is commuting with Ω.

If Ω and k satisfy some of the conditions below for ρ, σ, τ, υ, ρ̂, σ̂, τ̂, υ̂ ∈ ζ :

(i) for some 0 < v < 1,

ωΩρστυΩρ̂σ̂τ̂υ̂
≤ v max

{
ωkρkρ̂, ωkσkσ̂, ωkτkτ̂ , ωkυkυ̂

}
.

(ii) for some 0 < v < 1 and some ℘1,℘2,℘3,℘4 ∈ [0, 1
3 ],

ωΩρστυΩρ̂σ̂τ̂υ̂
≤ v

(
℘1ωkρkρ̂ + ℘2ωkσkσ̂ + ℘3ωkτkτ̂ + ℘4ωkυkυ̂

)
.

(iii) for some ℘1,℘2,℘3,℘4 ∈ [0, 1) with ℘1 + ℘2 + ℘3 + ℘4 < 1,

ωΩρστυΩρ̂σ̂τ̂υ̂
≤ ℘1ωkρkρ̂ + ℘2ωkσkσ̂ + ℘3ωkτkτ̂ + ℘4ωkυkυ̂.

Then, there is a unique point ρ ∈ ζ such that ρ = kρ = Ωρρρρ.

Proof. (i) Suppose that Ψo is defined as in Example 1. The completeness of (ζ, ω) leads
to (ζ, Ψo, min), which is a complete FMS. We fix ρ, σ, τ, υ, ρ̂, σ̂, τ̂, υ̂ ∈ ζ, and κ > 0, and
we will achieve (1) by taking ℘1 = ℘2 = ℘3 = ℘4 = 1

4 and ? = min. If Ψo
kρkρ̂(κ) = 0,

Ψo
kσkσ̂(κ) = 0, Ψo

kτkτ̂(κ) = 0, or Ψo
kυkυ̂(κ) = 0, then (1) is clear. Assume that Ψo

kσkσ̂(κ) = 1,
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Ψo
kρkρ̂(κ) = 1, Ψo

kτkτ̂(κ) = 1, and Ψo
kυkυ̂(κ) = 1. This implies that ωkρkρ̂ < κ, ωkσkσ̂ < κ,

ωkτkτ̂ < κ, and ωkυkυ̂ < κ. Therefore, κ > max
{

ωkρkρ̂, ωkσkσ̂, ωkτkτ̂ , ωkυkυ̂

}
, and

vκ > v max
{

ωkρkρ̂, ωkσkσ̂, ωkτkτ̂ , ωkυkυ̂

}
≥ ωΩρστυΩρ̂σ̂τ̂υ̂

.

Thus, Ψo
ΩρστυΩρ̂σ̂τ̂υ̂

(κv) = 1 and (1) holds.
(ii) Here,

ωΩρστυΩρ̂σ̂τ̂υ̂
≤ v

(
℘1ωkρkρ̂ + ℘2ωkσkσ̂ + ℘3ωkτkτ̂ + ℘4ωkυkυ̂

)
≤ v

(
1
4

ωkρkρ̂ +
1
4

ωkσkσ̂ +
1
4

ωkτkτ̂ +
1
4

ωkυkυ̂

)
=

v

4

(
ωkρkρ̂ + ωkσkσ̂ + ωkτkτ̂ + ωkυkυ̂

)
≤ v

4
× 4 max

{
ωkρkρ̂, ωkσkσ̂, ωkτkτ̂ , ωkυkυ̂

}
= v max

{
ωkρkρ̂, ωkσkσ̂, ωkτkτ̂ , ωkυkυ̂

}
.

(iii) If v = ℘1 + ℘2 + ℘3 + ℘4 < 1,

ωΩρστυΩρ̂σ̂τ̂υ̂
≤ ℘1ωkρkρ̂ + ℘2ωkσkσ̂ + ℘3ωkτkτ̂ + ℘4ωkυkυ̂

≤ ℘1 max
{

ωkρkρ̂, ωkσkσ̂, ωkτkτ̂ , ωkυkυ̂

}
+℘2 max

{
ωkρkρ̂, ωkσkσ̂, ωkτkτ̂ , ωkυkυ̂

}
+℘3 max

{
ωkρkρ̂, ωkσkσ̂, ωkτkτ̂ , ωkυkυ̂

}
+℘4 max

{
ωkρkρ̂, ωkσkσ̂, ωkτkτ̂ , ωkυkυ̂

}
= (℘1 + ℘2 + ℘3 + ℘4)max

{
ωkρkρ̂, ωkσkσ̂, ωkτkτ̂ , ωkυkυ̂

}
= v max

{
ωkρkρ̂, ωkσkσ̂, ωkτkτ̂ , ωkυkυ̂

}
.

Example 3. Consider ζ = R, ω(ρ, σ) = |ρ− σ| for all ρ, σ ∈ R and for all `1, `2, `3, `4, ξ, Ψ ∈ R
with Ψ > |`1|+ |`2|+ |`3|+ |`4|. We define the mappings Ω : R4 → R and k : R → R by
Ωρστυ = (`1ρ+σ`2+τ`3+υ`4+ξ)

Ψ and kρ = ρ for all ρ, σ, τ, υ ∈ R. It is easy to check that the two
mappings verify the hypothesis (iii) of Theorem 3, and (ρ0, ρ0, ρ0, ρ0) is a unique QCP of Ω and k,
where ρ0 = ξ

Ψ−`1−`2−`3−`4
and Ωρ0ρ0ρ0ρ0 = ρ0.

Now, we can generalize Theorem 1.7 [18] by obtaining a coupled coincidence point for
Ω : R2 → R and k. We only take `1 = `2 = 1

2 as follows.

Corollary 1. Assume that ? is a κ-norm of the Υ-type such that µ ? κ ≥ µκ for all µ, κ ∈ [0, 1].
Suppose that (ζ, Ψ, ?) is a complete FMS and Ω : ζ2 → ζ, k : ζ → ζ are two mappings such that

• Ω
(
ζ2) ⊆ k(ζ),

• k is continuous,
• k is commuting with Ω,
• for all ρ, σ, ρ̂, σ̂ ∈ ζ,

ΨΩρσΩρ̂σ̂
(κv) ≥ Ψkρkρ̂(κ)

`1 ? Ψkσkσ̂(κ)
`2 ,

where v ∈ (0, 1) and `1, `2 are real numbers in [0, 1] such that `1 + `2 ≤ 1.
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Then, there exists a unique ρ ∈ ζ such that ρ = kρ = Ωρρ.

Proof. Define `3 = `4 = 0 and Ω∗ : ζ4 → ζ as Ω∗ρστυ = Ωρσ for all ρ, σ, τ, υ ∈ ζ. Then,
Ω∗
(
ζ4) = Ω

(
ζ2) ⊆ k(ζ) and Ω∗ is commuting with k, that is, kΩ∗ρστυ = kΩρσ = Ωkρkσ =

Ω∗kρkσkτkυ. In addition, one can write

ΨΩ∗ρστυΩ∗
ρ̂σ̂τ̂υ̂

(κv) = ΨΩρσΩρ̂σ̂
(κv) ≥ Ψkρkρ̂(κ)

`1 ? Ψkσkσ̂(κ)
`2

= Ψkρkρ̂(κ)
`1 ? Ψkσkσ̂(κ)

`2 ? 1 ? 1

≥ Ψkρkρ̂(κ)
`1 ? Ψkσkσ̂(κ)

`2 ? Ψkτkτ̂(κ)
`3 ? Ψkυkυ̂(κ)

`4 .

Hence, by Theorem 2, there is ρ ∈ ζ such that kρ = Ω∗ρστυ. If σ ∈ ζ satisfies Ωσσ = kσ,
then kσ = Ωσσ = Ω∗σσσσ. Thus, σ = ρ.

The proof of the corollary below follows immediately from Theorem 3.

Corollary 2 ([18]). Assume that (ζ, ω) is a CMS and Ω : ζ2 → ζ, k : ζ → ζ are two mappings
such that:

• Ω
(
ζ2) ⊆ k(ζ);

• k is continuous;
• k is commuting with Ω.

If Ω and k satisfy some of the conditions below for ρ, σ, ρ̂, σ̂ ∈ ζ :

(i) for some 0 < v < 1,

ωΩρσΩρ̂σ̂
≤ v max

{
ωkρkρ̂, ωkσkσ̂

}
.

(ii) for some 0 < v < 1 and some ℘1,℘2 ∈ [0, 1
2 ],

ωΩρσΩρ̂σ̂
≤ v

(
℘1ωkρkρ̂ + ℘2ωkσkσ̂

)
.

(iii) for some ℘1,℘2 ∈ [0, 1) with ℘1 + ℘2 + ℘3 + ℘4 < 1,

ωΩρσΩρ̂σ̂
≤ ℘1ωkρkρ̂ + ℘2ωkσkσ̂.

Then, there is a unique point ρ ∈ ζ such that ρ = kρ = Ωρρ.

5. Supportive Applications

This section was specially prepared to highlight the importance of the theoretical
results and how to use them to find the existence of the solution to a Lipschitzian and
integral quadruple system.

5.1. Lipschitzian Quadruple Systems

Assume that Γ1, Γ2, Γ3, Γ4 : R → R are LMs and ℘1,℘2,℘3,℘4 ∈ R are real numbers.

Let f : R → R be defined by f(ρ) =
4
∑

i=1
℘iΓi(ρ) for all ρ ∈ R; then, f is also an LM and

vf ≤
4
∑

i=1
|℘i|vΓi . It is easy to see that if Λ =

4
∑

i=1
|℘i|vΓi < 1, then f is a contraction; thus,

there is a unique ρ0 ∈ R such that fρ0 = ρ0. Now, for all ρ, σ, τ, υ ∈ R, define Ω : ζ4 → ζ as

Ωρστυ = ℘1Γ1(ρ) + ℘2Γ2(σ) + ℘3Γ3(τ) + ℘4Γ4(υ).
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It is obvious that for all ρ ∈ R, Ωρρρρ = fρ. In addition, we have

ω
(
Ωρ1ρ2ρ3ρ4 , Ωσ1σ2σ3σ4

)
=

4

∑
i=1
|℘i||Γi(ρi)− Γi(σi)|

≤
4

∑
i=1
|℘i|vΓi |ρi − σi| ≤ Λ max

1≤j≤4
ω
(
ρj, σj

)
.

If Λ < 1, then Ω satisfies (1) with kρ = ρ for all ρ ∈ R.
According to the above results, we can state the corollary below.

Corollary 3. Assume that Γ1, Γ2, Γ3, Γ4 : R → R are LMs and ℘1,℘2,℘3,℘4 ∈ R such that
4
∑

i=1
|℘i|vΓi < 1; then, the system


ρ = ℘1Γ1(ρ) + ℘2Γ2(σ) + ℘3Γ3(τ) + ℘4Γ4(υ),
σ = ℘1Γ1(σ) + ℘2Γ2(τ) + ℘3Γ3(υ) + ℘4Γ4(ρ),
τ = ℘1Γ1(τ) + ℘2Γ2(υ) + ℘3Γ3(ρ) + ℘4Γ4(σ),
υ = ℘1Γ1(υ) + ℘2Γ2(ρ) + ℘3Γ3(σ) + ℘4Γ4(τ).

(28)

has a unique solution (ρ0, ρ0, ρ0, ρ0), where ρ0 is the only real solution of ρ =
4
∑

i=1
℘iΓi(ρ).

Example 4. Consider the system

24 cos ρ− 18
1+σ2 + 144 = 120ρ +

(
4

1+τ2

)2
− 15 arcsin υ,

24 cos σ− 18
1+τ2 + 144 = 120σ +

(
4

1+υ2

)2
− 15 arcsin ρ,

24 cos τ − 18
1+υ2 + 144 = 120τ +

(
4

1+ρ2

)2
− 15 arcsin σ,

24 cos υ− 18
1+ρ2 + 144 = 120ρ +

(
4

1+σ2

)2
− 15 arcsin τ,

(29)

If we select Γ1(ρ) = 6 + cos ρ, Γ2(ρ) = 1
1+ρ2 , Γ3(ρ) =

(
1

1+ρ2

)2
, and Γ4(ρ) = arcsin υ,

then Γ1, Γ2, Γ3, and Γ4 are LMs, and vΓ1 = vΓ4 = 1, vΓ2 = 3
√

3
8 , and vΓ3 = 27

64 . Let ℘1 = 1
5 ,

℘2 = − 3
20 , ℘3 = 2

15 , and ℘4 = 1
8 . Then,

4
∑

i=1
|℘i|vΓi = 0.479 < 1 because system (29) is a special

case of system (28). So, the problem (29) has a unique solution (ρ0, ρ0, ρ0, ρ0), where ρ0 represents
a unique solution of

24 cos ρ− 18
1 + ρ2 + 144 = 120ρ +

(
4

1 + ρ2

)2
− 15 arcsin ρ.

By programming in Matlab or Mathematica or by using the bisection method, we can approxi-
mate the value ρ0 = 1.26624.

5.2. An Integral Quadruple System

Assume that `1, `2 ∈ R with `1 < `2 and set ϕ = [`1, `2]. Let ζ = L1(ϕ) be equipped
with ω1(Γ,ℵ) =

∫
ϕ|Γ(κ),ℵ(κ)|ωκ, where

∫
is the Lebesgue integral. It is clear that(

L1(ϕ), ω1
)

is a CMS. Suppose that v,℘1,℘2,℘3,℘4 ∈ R are real numbers and i : R4 → R
is a mapping satisfying i(0, 0, 0, 0) = 0 and∣∣iρ1ρ2ρ3ρ4 −iσ1σ2σ3σ4

∣∣ ≤ v
4

∑
i=1

℘i|ρi − σi|, ∀(ρ1, ρ2, ρ3, ρ4, ), (σ1, σ2, σ3, σ4) ∈ R4.

If B ∈ R, we want to find the functions Γ1, Γ2, Γ3, Γ4 ∈ L1(ϕ) such that
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Γi(ρ) = B +
∫
[`1,ρ]

i(Γi(κ), Γi+1(κ), Γi+2(κ), Γi+3(κ))ωκ, (30)

is fulfilled for all ρ ∈ ϕ, i = 1, 2, 3, 4.
For Γ1, Γ2, Γ3, Γ4 ∈ L1(ϕ), and all ρ ∈ ϕ, define the mapping Ω by

ΩΓ1Γ2Γ3Γ4(ρ) = B +
∫
[`1,ρ]

i(Γ1(κ), Γ2(κ), Γ3(κ), Γ4(κ))ωκ. (31)

According to (30) and (31), we see that ΩΓ1Γ2Γ3Γ4 ∈ L1(ϕ); hence, Ω : L1(ϕ)4 → L1(ϕ)
is well defined.

In addition,

ω1
(
ΩΓ1Γ2Γ3Γ4 , Ωℵ1ℵ2ℵ3ℵ4

)
=

∫
ϕ

∣∣ΩΓ1Γ2Γ3Γ4(ρ)−Ωℵ1ℵ2ℵ3ℵ4(ρ)
∣∣ωρ

=
∫

ϕ

(∫
[`1,ρ]
|i(Γ1(κ), Γ2(κ), Γ3(κ), Γ4(κ))−i(ℵ1(κ),ℵ2(κ),ℵ3(κ),ℵ4(κ))|ωκ

)
ωρ

≤
∫

ϕ

(∫
[`1,ρ]

v
4

∑
i=1

℘i|Γi − ℵi|ωκ

)
ωρ

≤ v
4

∑
i=1

℘i

∫
ϕ

(∫
ϕ
|Γi − ℵi|ωκ

)
ωρ

= v
4

∑
i=1

℘i

∫
ϕ

ω1(Γi,ℵi)ωρ = v(`2 − `1)
4

∑
i=1

℘iω1(Γi,ℵi).

If we take v(`2 − `1)
4
∑

i=1
℘i = Λ < 1, then Ω justifies (1) with k(Γ) = Γ for all

Γ ∈ L1(ϕ). We conclude from the above results that system (30) has a unique solution
(Γ0, Γ0, Γ0, Γ0), where Γ0 is a unique solution of the equation

Γ0(ρ) = B +
∫
[`1,ρ]

i(Γ0(κ), Γ0(κ), Γ0(κ), Γ0(κ))ωκ,

for Γ0 ∈ L1(ϕ) and all ρ ∈ ϕ.

6. Conclusions

The study of fuzzy sets led to the fuzzification of a number of mathematical notions,
and it has applications in a variety of fields, including neural networking theory, im-
age processing, control theory, modeling theory, and many more. In fixed-point theory,
contraction-type mappings in FMSs are extremely important. So, in this manuscript, we
investigated QCP results for commuting mappings without assuming a partially ordered
set in the setting of FMSs. Furthermore, some new results are presented to generalize some
of the previous results on this topic. In addition, non-trivial examples are given. Moreover,
some applications for finding a unique solution for Lipschitzian and integral quadruple
systems are provided to support and strengthen our study. In our future paper, we intend to
establish a fixed-point theorem for cyclic φ−contractive mappings in an M−complete FMS.
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