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Abstract: The component GARCH model (CGARCH) was among the first attempts to split the
conditional variance into a permanent and transitory component. With the application to economic
and finance data, it helps investigate the long- and short-run movements of volatility affecting
securities. Like all GARCH-type models, the innovation series of the CGARCH are usually assumed
to follow a Normal distribution, which cannot accommodate fat-tailed properties commonly present
in empirical data. The resulting estimates are not efficient when a Normal assumption is employed.
In this paper, we consider the tempered stable distribution, which has the attractive stability under
aggregation property missed in other popular fat-tailed distributions such as Student’s t-distribution
and General Error Distribution (GED). Through systematically designed simulation studies, our
results demonstrate that a CGARCH model with tempered stable distribution uniformly outperforms
those with Normal, Student’s t-distribution and GED. Our empirical study on the Shanghai Stock
Exchange index also leads to the same conclusions. Therefore, we argue that the CGARCH model
with tempered stable distribution could be widely used to model economic and financial data in
general contexts, focusing on both the long- and short-run volatility behaviours.

Keywords: GARCH; component GARCH; fat-tailed distribution; tempered stable distribution;
Chinese stock market

MSC: 37M05; 37M10

1. Introduction

Over the past few decades, the finance research related to volatility modelling has
produced a tremendous number of studies. Among numerous employed methodologies,
the GARCH model proposed in the seminal work of [1] has become one of the most
popular methods. Its popularity is largely due to the ability to capture characteristics of
financial time series such as time-varying heteroskedasticity and volatility clustering [2].
Various extensions have been developed and widely used to investigate different features
of finance time-series. In this research, we focus on the component GARCH (CGARCH)
model studied in Engle and Lee [3]. The CGARCH model constitutes a convenient
method of incorporating long-memory-like features into a short-memory model via fitting
a permanent and transitory component within the GARCH framework.

Originally, all GARCH-type models are constructed based on the assumption that
the financial time series follows a Normal (Gaussian) distribution. However, significant
evidence suggests that the financial time series is rarely Gaussian, but typically leptokurtic,
and exhibits heavy-tail behaviour [4–7]. Theoretically, GARCH model can accommodate for
fat-tailedness through its specification [8]. In practice, however, there is still excess kurtosis
left in the standardized residuals in most cases [9]. To solve this problem, a common
solution is to employ a fat-tailed distribution such as the Student’s t-distribution or
General Error Distribution (GED) [10–13]. Compared to the GARCH model with Normal

Mathematics 2022, 10, 1903. https://doi.org/10.3390/math10111903 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10111903
https://doi.org/10.3390/math10111903
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8049-5290
https://doi.org/10.3390/math10111903
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10111903?type=check_update&version=1


Mathematics 2022, 10, 1903 2 of 18

distribution, estimates of which are believed to be consistent even when the true distribution
is fat-tailed [8], a GARCH model with true distribution can lead to more efficient results [4].

Motivated by those studies, a CGARCH model with a fat-tailed distribution should
always be employed in practical finance research. This is particularly important in accurately
forecasting financial volatility, which is critical to portfolio risk-management such as
measuring risks with Value-at-Risk and/or Conditional-Tail-Expectation. However, a
recent study by Calzolari et al. [9] argues that the widely used Student’s t-distribution
and GED are problematic. Their most outstanding drawback is that those distributions
lack stability under aggregation, which is of particular importance in portfolio applications
and risk management. This leaves the following question still open for academics and
practitioners: which fat-tailed distribution should we use for the CGARCH model when
the true distribution is unknown? We aim to address this with simulation and empirical
evidence in the subsequent sections.

As a replacement of Student’s t and GED, the α-stable distribution is recommended
by Calzolari et al. [9], which has the stability-under-aggregation feature. Additionally,
they argue that similar to the Student’s t and GED, α-stable distribution can be easily
adapted to account for many properties of volatility such as asymmetry in the underlying
financial time-series. Unfortunately, since the second moment of α-stable distribution does
not exist in most cases, a GARCH model with this distribution will lead to problematic
interpretation. Hence, the sought-after alternative distribution would be of particular
interest for the application of a GARCH model.

The tempered stable distribution is a natural substitution of the α-stable, and its
effectiveness has been studied for various GARCH family models [14–16]. Firstly introduced
(In this case, the associated Levy processes are called “truncated Levy flights”,
the appropriateness of which for application in the GARCH model is also discussed in
Constantinides and Savel’ev [17]) in Koponen [18], tempered stable distribution covers
several well-known subclasses such as Variance Gamma distributions, bilateral Gamma
distributions and CGMY distributions [19]. The advantage of this distribution is that
it retains most of the attractive properties of the α-stable distribution and has a defined
second moment.

The application of tempered stable distribution in financial risk-management has
become an important topic in existing research. In their influential work, Kim et al. [20]
were among the first to employ tempered stable distribution within the GARCH modelling
framework. Other earlier attempts include the application of modified tempered stable
distribution [21], the discussion on tempered infinitely divisible GARCH model Kim
et al. [22], proposition of numerical method for estimation [23], and others. More recently,
tempered stable distribution has been systematically studied for influential extensions
of GARCH models, such as the Markov Regime-switching GARCH [24], Fractionally
Integrated GARCH Feng and Shi [16] and Asymmetric Power GARCH [25]. Over the
past few years, Kim et al. [26] investigated the case with time-varying exponential tails,
and Kurosaki and Kim [27] and Xia and Grabchak [28] focused on application of tempered
stable distribution on the multivariate GARCH models.

In this paper, we explore the feasibility of classical tempered stable distribution (also
known as the CTS distribution) for the CGARCH model and argue that it outperforms
both the Gaussian and commonly used fat-tailed distributions (Student’s t and GED).
To demonstrate this, we conduct a series of simulation studies to compare the performance
of GARCH model with different distributions. First, we set the true distribution as
Student’s t and GED, respectively. Via six combinations of different parameters and
sample size, CGARCH models with Gaussian and three distinct fat-tailed distributions are
systematically analysed. It is demonstrated that when the true distribution is Student’s t or
GED, the CGARCH model with tempered stable distribution generates very similar results
to that with true distribution. More importantly, it outperforms all the other competitors
in terms of consistency, efficiency and overall performance. Second, we let the tempered
stable be the true distribution. Six sets of simulations are further constructed, including



Mathematics 2022, 10, 1903 3 of 18

different choices of CGARCH and tempered stable distribution parameters. In this scenario,
none of the CGARCH models with Gaussian, Student’s t or GED distributions perform as
well as that with the tempered stable.

To empirically compare the CGARCH model with different distributions, we apply
them to the daily return of the Shanghai Stock Exchange index. The results suggest that the
CGARCH model with tempered stable outperforms all the other competing alternatives,
including a CGARCH model with Copula transformation, under various criteria. When
in- and out-of-sample forecasting performance is analysed, CGARCH model produces the
smallest forecasting error in both cases. Finally, comparing the fitted Value-at-Risk (VaR)
among all models, we find that the two-sided 95% VaR produced by CGARCH model with
tempered stable distribution is the least biased statistic.

The contributions of this paper are threefold. First, consistent with existing literature,
our simulation evidence systematically demonstrates that the CGARCH model with the
Gaussian distribution is consistent but not efficient, when the true distribution is not
Normal. Second, if fitted incorrectly, we show that CGARCH model with the widely
employed Student’s t and GED may introduce considerable biases. In contrast, the
CGARCH model with tempered stable distribution can generate desirable results. Therefore,
for a financial time-series with an unknown fat-tailed underlying distribution, the tempered
stable should always be employed within a CGARCH framework. This finding satisfactorily
answers our research question and significantly contributes to the existing literature. Finally,
as evidenced by our empirical study, the CGARCH model with tempered stable distribution
consistently outperforms all other competitors. For financial practitioners, our result
implies that using the tempered stable distribution may largely increase the accuracy of
their risk measures with the CGARCH model. This can further benefit their portfolio
management and other enterprise risk-management issues, where accurate risk measure is
the major concern.

The remainder of this paper proceeds as follows. Section 2 describes the specification
of the CGARCH model. Section 3 explains how the Student’s t, GED and tempered stable
distributions can be applied to the CGARCH model. We conduct three independent
simulation studies in Section 4. The empirical results are discussed in Section 5. Section 6
concludes the paper.

2. CGARCH Model

The GARCH model is proposed in the seminal work of Bollerslev [1]. Because of its
capability to capture some important characteristics of financial time-series (for example,
time-varying heteroskedasticity and volatility clustering), extensions of the GARCH model
have become a standard way of studying financial volatility [2]. In particular, the component
GARCH (CGARCH) model developed by Engle and Lee [3] decomposes the conditional
variance into a permanent and transitory component. This allows the investigation of the
long- and short-run movements of volatility affecting securities in finance research. For the
CGARCH(1,1) specification, we have that

rt = µ + εt where εt = ηt
√

ht

ht = qt + st

st = (α + β)st−1 + α(ε2
t−1 − ht−1)

qt = ω + ρqt−1 + φ(ε2
t−1 − ht−1)

(1)

where εt is the error at time t. ηt is an identical and independent innovation sequence
following a certain distribution, with zero mean and unit standard deviation. ht is the
conditional variance of rt at time t, which is composed of a transitory component st
and a permanent component qt. α + β and ρ measure the autoregressive persistence of
the transitory and permanent components, respectively. α and φ stand for the immediate
impacts of volatility shocks (ε2

t−1 − ht−1) on the short- and long-run components,
respectively. It is constrained (α + β) < ρ to distinguish between the two components.



Mathematics 2022, 10, 1903 4 of 18

In other words, the persistence of qt should be stronger than that of st. Similarly, we let
α ≥ φ, so that immediate impact of volatility shocks of the long-run component is smaller
than that of the short-run component.

The stationarity and non-negative conditional variance conditions of the CGARCH
model are straightforward. According to Engle and Lee [3], a CGARCH(1,1) process is
stationary with non-negative ht if 1 > ρ > (α + β) > 0, β > φ > 0, α > φ > 0 and ω > 0.
Under such conditions, ht will converge to ω/(1− ρ) in the long run.

In order to estimate the parameters of the CGARCH model, Maximum Likelihood
Estimation (MLE) is employed. Therefore, the series ηt needs to follow a specific distribution.
Originally, the CGARCH model is developed based on the Standard Normal (Gaussian)
distribution. In other words, ηt = εt/

√
ht ∼ N(0, 1) (Since the mean of εt is 0, ηt is

sometimes named as standardized residual). Hence, the conditional density of εt can be
constructed as follows.

Ωt−1 = {εt−1, εt−2, . . . ε1,}
θ = (µ, ω, α, β, ρ, φ)′

f (εt|θ, Ωt−1) =
1√

2πht
e−

ε2
t

2ht

(2)

Then, the log-likelihood function corresponding to Equation (2) is:

L(θ|ε) =
T

∑
t=1

ln f (εt|θ, Ωt−1) where ε = (ε1, ε2, . . . , εT)
′, (3)

and MLE estimator θ̂ is obtained by maximising Equation (3). Additionally, standard
deviation of θ̂ is acquired by taking the square root of diagonal terms of the inversed Fisher
information (As suggested in Engle and Lee [3], the CGARCH(1,1) model is a special case
of the GARCH(2,2) model. Hence, the asymptotic properties and conditions of the ML
estimator follow those discussed in Bollerslev [1]).

3. Alternative Distributions for the Innovation Sequence

Significant evidence suggests that the financial time series is rarely Gaussian but
typically leptokurtic and heavy-tailed (see, for example, Bollerslev [4]). Although Gaussian-
based Quasi-Maximum Likelihood Estimation (QMLE) may still produce a consistent
estimator, it is commonly known that QML estimator is less efficient that ML estimator
based on the true distribution.

3.1. Student’s t-Distribution and General Error Distribution (GED)

Among the existing literature, Student’s t-distribution and General Error Distribution
(GED) are two widely used alternatives in finance research [11–13]. Both of those two
distributions can capture leptokurtic and heavy-tail behaviours. When they are applied to
the CGARCH model, the corresponding density functions of εt are described below.

Student’s t: f (εst ,t|st = j, θ, Ωt−1) =
Γ( v+1

2 )

Γ( v
2 )
√

π(v− 2)σ2
ε

[
1 +

ε2
j,t

(v− 2)σ2
ε

] v+1
2

GED: f (εst ,t|st = j, θ, Ωt−1) =
ve−

1
2

∣∣∣ ε j,t
λσε

∣∣∣v
λ2(v+1)/vΓ(1/v)

where λ =

[
2(−2/v)Γ(1/v)

Γ(3/v)

] 1
2

(4)

and v is the degrees of freedom. Then, the ML estimator θ̂ can be obtained in the same way
as described in Section 2.
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3.2. Tempered Stable Distribution

Despite their attractive properties, such as capturing excess kurtosis and fat tails,
existing literature argues that Student’s t and GED still have unsolved problems.
Calzolari et al. [9] suggest that the Student’s t-distribution and GED lack the stability-under-
addition property (defined below). Since stability is desirable in portfolio applications and
risk management, a distribution that could overcome this issue is of particular importance.

3.2.1. α-Stable Distribution

As suggested by Calzolari et al. [9], the α-stable distribution (also known as stable
family of distributions) is a replacement of the traditionally used fat-tail distribution.
Its most outstanding characteristic is that α-stable distribution overcomes the stability
problem. Additionally, the α-stable distribution constitutes a generalization of the Gaussian
distribution by allowing for asymmetry and heavy tails. In general, a random variable x is
said to be stably distributed if and only if, for any positive numbers c1 and c2, there is a
positive number k and a real number d, such that

kx + d
d
= c1x1 + c2x2 (5)

where x1 and x2 are independent variables and have the same distribution as x. The notation
d
= indicates equality in distribution. The property described by Equation (5) is also known
as the stability-under-addition property [29]. In particular, if d = 0, x is said to be strictly
stable. According to Calzolari et al. [9], theoretical foundations of α-stable distribution
lie on the generalized central limit theorem, in which the condition of finite variance is
replaced by a much less restrictive one concerning regular behaviour of the tails.

Since α-stable distribution does not have a close form of density function, the best way
to describe it is by means of its characteristic function, which has the following form.

φ(t) = exp{iδt− σα|t|α(1− iβsign(t)Φ)} (6)

where Φ is −(2/π) log|t| when α = 1 and is tan(πα/2) when α 6= 1. α ∈ [0, 2] is the index
of stability or characteristic exponent that describes the tail-thickness of the distribution
(small values indicating thick tails). σ ∈ R+ is the scale parameter. δ ∈ R is the location
parameter. β describe its skewness. Calzolari et al. [9] only consider the symmetric α-
stable distribution (β = 0), which is then characterized by (α, σ, δ) and is denoted as
S(α, σ, δ). Therefore, the standardized symmetric version is S(α, 1, 0) with the following
characteristic function

φ(t) = exp{−|t|α} (7)

Despite its attractive properties, such as stability-under-addition, the second moment
of the α-stable distribution does not exist in most cases (The second moment of the α-stable
distribution only exists when α = 2. In this case, the symmetric α-stable distribution
collapses to a Gaussian distribution and cannot describe the fat fails). Consequently, the
application of this distribution to the GARCH-type model will cause serious problems.
For instance, the existence of σ2

ε is required for the asymptotic properties of the MLE
estimator to hold [1]. Therefore, the sought-after substitute of the α-stable distribution,
which has similar attractive properties and defined moments, would be of particular interest
and importance.

3.2.2. Tempered Stable Distribution

A natural candidate to address this issue is the tempered stable distribution. In this
study, we explore the classical tempered stable distribution, or the CTS. A general case of it
is characterized by six parameters and denoted as TS(α+, C+, λ+; α−, C−, λ−). The levy
measure of such random variable x is
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ν(x) =
c−

|x|1+α−
e−λ− |x|1x<0 +

c+

|x|1+α+
e−λ+ |x|1x>0 (8)

Thus, a tempered stable distribution with zero mean has the following characteristic
function [29].

φ(t) = exp
{

Γ(−α+)(λ+)α+C+

[
(1− it

λ+
)α+ − 1 +

itα+

λ+

]
+Γ(−α−)(λ−)α−C−

[
(1− it

λ−
)α− − 1 +

itα−

λ−

]} (9)

where α+, α− < 2 and C+, C−, λ+, λ− > 0. Its first four cumulants are hereby defined as:

κ1 =0

κ2 =Γ(2− α+)C+(λ+)α+−2 + Γ(2− α−)C−(λ−)α−−2

κ3 =Γ(3− α+)C+(λ+)α+−3 + Γ(3− α−)C−(λ−)α−−3

κ4 =Γ(4− α+)C+(λ+)α+−4 + Γ(4− α−)C−(λ−)α−−4

(10)

Hence, the first four moments of x can be found via the following relations:

m1 =κ1

m2 =κ2 + κ2
1

m3 =κ3 + 3κ2κ1 + κ3
1

m4 =κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ2

1 + κ4
1

(11)

Clearly, the tempered stable distribution has defined moments, which enables it to be
further employed to describe the innovation of the GARCH-type model.

Küchler and Tappe [19] suggest that sample paths of x can be classified as some well-
known processes, which mainly depend on values of α+ and α−. In particular, if α+ = α−, x
follows a classical tempered stable distribution. In addition, if we further require C+ = C−,
then x follows a CGMY distribution [30].

• For α+, α− < 0 we have ν(R) < ∞, and thus, x is a compound Poisson process.

• For α+, α− ∈ [0, 1) we have ν(R) = ∞, but
∫ 1
−1 |x|ν(dx) < ∞. Therefore, x is a finite-

variation process making infinitely many jumps in each interval of positive length,
which we can express as xt = ∑s≤t ∆xs.

• For α+, α− ∈ (1, 2) we have
∫ 1
−1 |x|ν(dx) = ∞. Thus, x has sample paths of infinite

variation.

3.2.3. CGARCH Model with Tempered Stable Distribution

To be compatible with the CGARCH model, we require its innovation sequence to be
standardized. In the case of the tempered stable distribution, Bianchi et al. [23] argues that
one way to achieve the standardization is letting

C+ =
p(λ+)2−α+

Γ(2− α+)
and C− =

(1− p)(λ−)2−α−

Γ(2− α−)
(12)

where p ∈ (0, 1), then x ∼ TS(α+, λ+, α−, λ−, p) has zero mean and unit variance.
Combining Equations (9) and (12), we now have a standardized tempered stable

distribution. This distribution is expected to retain all the attractive properties similar to
those of α-stable distribution and has defined moments. Therefore, when ηt in Equation (1)
follows TS(α+, λ+, α−, λ−, p), we name it a CGARCH model with tempered stable
distribution.
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In terms of estimation, the procedures of MLE as discussed in Section 2 can still be used.
Since the tempered stable distribution also does not have a closed form of density function,
a certain numerical algorithm is needed to compute it [20]. As argued by Mittnik et al. [31],
compared with other approximation methods, discrete Fourier transform is accurate and
efficient for estimating parameters of stable family distributions, especially when N = 213 or
above. Therefore, we employ the discrete Fourier transform method to obtain the estimated
f (εst ,t|st, θ, Ωt−1) via the following iteration steps suggested by Shi and Feng [24]:

1. Acquiring the minimum and maximum of ηt = εst ,t/σε as η1 and η2, respectively;
2. Calculating the values of φ(t) for the tempered stable distribution determined by

the estimates of α+, C+, λ+, α−, C− and λ− via Equation (9), where t evenly ranges
from η1−0.1 to η2+0.1 with size N = 215 (As discussed in Mittnik et al. [31], discrete
Fourier transform works most efficiently for N being expressed in terms of a power
of 2);

3. Using discrete Fourier transform to find the values of the corresponding density
function for t;

4. Employing the linear interpolation to ηt that fall between the pre-specified equally-
spaced density values of t.

Hence, the interpolated values will be the estimates of f (εt|θ, Ωt−1). By further
applying them to Equation (3), the required log-likelihood values can be obtained.

4. Comparisons between Distributions: Simulation Studies

In this section, we will conduct three simulation studies to compare the performance
of the CGARCH models with Normal, Student’s t, GED and tempered stable distributions.
The data-generation process is CGARCH(1,1) in all cases. True distributions are therefore
Student’s t, GED and tempered stable, respectively. We examine two scenarios as follows
in each study:

Scenario 1: α = 0.2, β = 0.3 (α + β = 0.5) and ρ = 0.9;
Scenario 2: α = 0.2, β = 0.2 (α + β = 0.4) and ρ = 0.8.
Hence, the persistences in Scenario 2 is higher than those in Scenario 1. We also set

µ = 0 and ω = φ = 0.1 in all cases. Under each scenario, we further vary the sample size T
to be 3000, 4000 and 5000.

4.1. Simulation Study: Student’s t-Distribution

First, we set the true distribution as Student’s t with three degrees of freedom. Altogether,
six sets of simulations of the CGARCH(1,1) process with different true parameters and sample
sizes T, and the number of replicates for each set is 1000 in all cases. To avoid the starting
bias, 10,000 points are generated for each simulation, and then only the last 3000, 4000 or
5000 are kept. Moreover, to avoid simulation bias, 1500 such replicates are produced for each
combination, while the first 500 are discarded.

The simulated data are fitted into CGARCH model with Normal (CGARCH-N),
Student’s t (CGARCH-t), GED (CGARCH-G) and tempered stable (CGARCH-S)
distributions, respectively. In Table 1, the log-likelihood (LL), bias, standard error (SE)
and root-mean-square-error (RMSE) of α + β, ρ and φ are reported. The bias is the mean
difference between the true parameter and its estimate, SE is the standard error of the
estimates, and RMSE is the square root of the mean of squared difference between the true
parameter and its estimate. Since it is well known that RMSE is approximately equal to
square-root of the summation of squared bias and variance, RMSE is able to work as an
overall accuracy measure, considering both the central tendency and spread of an estimator.
Therefore, RMSE is employed as the key performance indicator while comparing results
across competing models.
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Table 1. Simulation results: Student’s t-distribution.

T Model Meanll Biasα+β SEα+β RMSEα+β Biasρ SEρ RMSEρ Biasφ SEφ RMSEφ

Panel A: Scenario 1
3000 Normal −3658 −0.0577 0.1755 0.1848 −0.0291 0.0934 0.0979 −0.0570 0.0471 0.0740

t −3149 −0.0164 0.1326 0.1336 −0.0016 0.0431 0.0432 −0.0365 0.0313 0.0481
GED −3195 −0.0360 0.1387 0.1433 −0.0215 0.0546 0.0587 −0.0483 0.0361 0.0603

TS −3145 −0.0222 0.1351 0.1369 −0.0067 0.0479 0.0484 −0.0472 0.0353 0.0589
4000 Normal −4928 −0.0781 0.1638 0.1814 −0.0355 0.1121 0.1176 −0.0550 0.0442 0.0706

t −4221 −0.0358 0.1328 0.1376 −0.0072 0.0370 0.0377 −0.0390 0.0261 0.0469
GED −4284 −0.0477 0.1454 0.1530 −0.0293 0.0531 0.0607 −0.0444 0.0301 0.0536

TS −4221 −0.0451 0.1335 0.1409 −0.0170 0.0420 0.0454 −0.0411 0.0295 0.0506
5000 Normal −6088 −0.0705 0.1573 0.1724 −0.0272 0.0776 0.0823 −0.0570 0.0433 0.0716

t −5235 −0.0343 0.1104 0.1156 −0.0083 0.0328 0.0339 −0.0359 0.0261 0.0444
GED −5311 −0.0659 0.1270 0.1430 −0.0257 0.0402 0.0477 −0.0439 0.0317 0.0542

TS −5236 −0.0517 0.1166 0.1276 −0.0161 0.0338 0.0374 −0.0438 0.0291 0.0526

Panel B: Scenario 2
3000 Normal −2786 −0.0498 0.1286 0.1379 −0.0469 0.1508 0.1579 −0.0487 0.0512 0.0706

t −2270 −0.0075 0.1135 0.1138 −0.0058 0.1150 0.1152 −0.0298 0.0327 0.0443
GED −2317 −0.0247 0.1236 0.1261 −0.0380 0.1297 0.1352 −0.0377 0.0396 0.0547

TS −2265 −0.0178 0.1138 0.1152 −0.0243 0.1271 0.1294 −0.0372 0.0367 0.0522
4000 Normal −3670 −0.0633 0.1204 0.1361 −0.0656 0.1608 0.1736 −0.0495 0.0413 0.0645

t −3007 −0.0215 0.1013 0.1036 −0.0094 0.0931 0.0936 −0.0347 0.0300 0.0459
GED −3067 −0.0357 0.1124 0.1179 −0.0411 0.1122 0.1195 −0.0401 0.0357 0.0537

TS −3006 −0.0322 0.1114 0.1160 −0.0257 0.1066 0.1097 −0.0390 0.0343 0.0519
5000 Normal −4647 −0.0365 0.1225 0.1278 −0.0481 0.1508 0.1583 −0.0541 0.0450 0.0703

t −777 −0.0009 0.1008 0.1008 −0.0174 0.0947 0.0962 −0.0336 0.0344 0.0481
GED −3857 −0.0147 0.1162 0.1172 −0.0342 0.1152 0.1202 −0.0433 0.0386 0.0581

TS −3782 −0.0047 0.1046 0.1047 −0.0300 0.0988 0.1032 −0.0411 0.0345 0.0537
Note: T is sample size; ll stands for log-likelihood; SE and RMSE are standard error and root of mean squared errors, respectively. Normal, t, GED and TS are statistics for CGARCH
with Normal, Student’s t, GED and tempered stable distribution, respectively.
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In the case of consistency comparison, all absolute biases are relatively small, suggesting
consistent estimates of all models. Some differences, however, are still distinct. For instance,
in Panel A of Table 1, when T = 3000, Biasρ is only −0.0016 and −0.0067 for CGARCH-N
and CGARCH-S, respectively. Their absolute values are smaller than those of CGARCH-N
(−0.0291) and CGARCH-G (−0.0215). Comparing numbers among different sample sizes,
however, no regular patterns can be concluded. In other words, biases do not necessarily
reduce with increasing sample sizes. This is consistent with the usual asymptotic properties,
as biasness is normally not affected by the sample size.

SE is widely used to measure the estimation efficiency. It is observed that SEs of
CGARCH-t, CGARCH-G and CGARCH-S are roughly on the same scale and all
comparatively smaller than those of CGARCH-N. For example, when T = 4000, SEφ

in Panel A are at around 0.03 for CGARCH-t, CGARCH-G and CGARCH-S, whereas that
of CGARCH-N is 0.0442. Hence, this result is consistent with the argument that QMLE of
GARCH-type model is not efficient. More specifically, in all cases, CGARCH-S generates
smaller SE than CGARCH-G and CGARCH-N for all α + β, ρ and φ, which are only
marginally larger than those of the true model CGARCH-t. In addition, we observe that for
each model, when T increases from 3000 to 5000, the resulting SE for all parameters reduce
to some degree. Thus, this is consistent with the asymptotic properties of ML estimators of
GARCH-type models, which suggest that efficiency increases with the sample size.

Further, RMSE is a combination of bias and SE, which is employed as the overall
performance indicator in many existing simulation studies. Consistent with the results of
SE, CGARCH-N has the largest RMSE in all cases. All RMSEs of the CGARCH-S model are
smaller than those of CGARCH-G across all parameters. When compared with RMSEs of
the CGARCH-t model, those of CGARCH-S are very similar. For instance, in Scenario 2
(Panel B of Table 1), when T = 5000, the resulting RMSEα+β are 0.1008 (CGARCH-t), 0.1046
(CGARCH-S), 0.1162 (CGARCH-G) and 0.1225 (CGARCH-N).

Turning to the average log-likelihood, not surprisingly, the CGARCH-N model has
the smallest values in all cases. The results of CGARCH-G are consistently smaller than
those of CGARCH-t. It is also worth noticing that CGARCH-S can yield slightly greater
log-likelihood compared to the true model CGARCH-t. Although the tempered stable
distribution has four more parameters than the Student’s t, the improvement of log-
likelihood still implies that CGARCH-S can lead to satisfied results even when the true
distribution is not tempered stable.

To sum up, when the true model is CGARCH-t, the CGARCH-S model almost
uniformly outperforms CGARCH-N and CGARCH-G in terms of consistency, efficiency
and overall performance of MLE. Nevertheless, it can produce similar results to CGARCH-t
in most cases.

4.2. Simulation Study: GED

Next, we set the true distribution as GED with one degree of freedom. Six sets
of simulations with the same combinations of parameters as those in Section 4.1 are
constructed. Replicates and each simulation are also truncated in the same manners
to avoid simulation bias. Simulation results are reported in Table 2.
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Table 2. Simulation results: GED.

T Model Meanll Biasα+β SEα+β RMSEα+β Biasρ SEρ RMSEρ Biasφ SEφ RMSEφ

Panel A: Scenario 1
3000 Normal −3948 −0.0661 0.1349 0.1502 −0.0195 0.0565 0.0598 −0.0398 0.0385 0.0554

t −3761 −0.0586 0.1319 0.1443 0.0162 0.0423 0.0453 −0.0377 0.0368 0.0527
GED −3734 −0.0074 0.0952 0.0955 −0.0099 0.0388 0.0401 −0.0257 0.0268 0.0372

TS −3729 −0.0485 0.1193 0.1288 −0.0131 0.0389 0.0410 −0.0319 0.0336 0.0463
4000 Normal −5255 −0.0382 0.1236 0.1294 0.0173 0.0479 0.0510 −0.0503 0.0321 0.0597

t −5001 0.0271 0.1156 0.1187 −0.0167 0.0449 0.0479 −0.0491 0.0297 0.0574
GED −4964 −0.0011 0.0990 0.0990 −0.0064 0.0393 0.0398 −0.0333 0.0239 0.0410

TS −4959 −0.0102 0.1128 0.1132 −0.0065 0.0422 0.0427 −0.0387 0.0269 0.0471
5000 Normal −6579 −0.0436 0.1176 0.1254 0.0209 0.0380 0.0434 −0.0498 0.0314 0.0589

t −6265 0.0282 0.1165 0.1199 −0.0137 0.0342 0.0368 −0.0482 0.0300 0.0568
GED −6218 −0.0157 0.1033 0.1045 −0.0028 0.0270 0.0271 −0.0373 0.0258 0.0453

TS −6213 −0.0172 0.1136 0.1149 −0.0073 0.0309 0.0317 −0.0409 0.0273 0.0492

Panel B: Scenario 2
3000 Normal −2971 −0.0313 0.1037 0.1083 −0.0548 0.1299 0.1410 −0.0335 0.0426 0.0542

t −2784 0.0216 0.0950 0.0975 −0.0334 0.1145 0.1193 −0.0323 0.0383 0.0501
GED −2757 −0.0157 0.0745 0.0761 −0.0095 0.0947 0.0952 −0.0148 0.0304 0.0338

TS −2751 −0.0214 0.0900 0.0925 −0.0310 0.1027 0.1073 −0.0252 0.0374 0.0452
4000 Normal −3969 −0.0274 0.0902 0.0943 −0.0384 0.1297 0.1353 −0.0372 0.0426 0.0565

t −3716 0.0263 0.0898 0.0936 −0.0315 0.1202 0.1243 −0.0350 0.0373 0.0512
GED −3680 −0.0217 0.0737 0.0768 0.0019 0.1002 0.1002 −0.0248 0.0313 0.0399

TS −3675 −0.0260 0.0847 0.0886 −0.0219 0.1034 0.1057 −0.0323 0.0368 0.0490
5000 Normal −4966 0.0302 0.0971 0.1017 −0.0580 0.1242 0.1371 −0.0419 0.0445 0.0611

t −4657 −0.0285 0.0960 0.1001 −0.0315 0.1058 0.1104 −0.0404 0.0361 0.0542
GED −4611 −0.0067 0.0792 0.0795 0.0036 0.0982 0.0983 −0.0232 0.0313 0.0389

TS −4606 −0.0129 0.0933 0.0942 −0.0179 0.1039 0.1055 −0.0286 0.0356 0.0456
Note: T is sample size; ll stands for log-likelihood; SE and RMSE are standard error and root of mean squared errors, respectively. Normal, t, GED and TS are statistics for CGARCH
with Normal, Student’s t, GED and tempered stable distribution, respectively.



Mathematics 2022, 10, 1903 11 of 18

In the case of consistency comparison, the GARCH-S model still has smaller absolute
biases compared with CGARCH-N and CGARCH-t models, and this is robust across α + β,
ρ and φ. Additionally, biases of CGARCH-S are very close to those of the true model
CGARCH-G. As for the SE comparison, SEs of CGARCH-S are generally uniformly smaller
than those of CGARCH-N and CGARCH-t and are still similar to those of CGARCH-
G. Apart from that, most SEs also decrease with the increase in T in all cases. Finally,
the overall performance indicator RMSE suggests that CGARCH-N is the least-preferred
model, whereas the performance of CGARCH-S is close to that of CGARCH-G. Turning to
the log-likelihood, it is interesting to note that Meanll of CGARCH-S is the smallest in all of
the six sets.

To sum up, the CGARCH-S model outperforms CGARCH-N and CGARCH-t models
in terms of consistency, efficiency and overall performance in almost all cases. Additionally,
the results of the CGARCH-S model are very close to those of the true model CGARCH-G.

4.3. Simulation Study: Tempered Stable Distribution

In this section, we set the true distribution as the tempered stable with three sets of
different parameters (all the ps are set to 0.5), including one case of CGMY distribution
(when α+ = α− = 0.5 and λ+ = λ− = 1.0) and two general cases. Altogether, six sets of
simulations are constructed, where the combinations of CGARCH parameters are the same
as those in Sections 4.1 and 4.2. The sample size is set to 5000 in all cases. Replicates and
each simulation are further truncated in the same manners as in Sections 4.1 and 4.2 to
avoid simulation bias. The simulation results are reported in Table 3.

In the case of consistency comparison, CGARCH-N, CGARCH-t and CGARCH-G lead
to mixing results with a similar scale. For instance, for the CGMY set in Scenario 1, Biasα+β

are at around −0.04 for all the three models. Absolute values of those results, however,
are uniformly larger than those of the true value CGARCH-S. For example, many of the
biases displayed in Panel A of Table 3 are under 0.01 for CGARCH-S, whereas those of
the other competing models are over 0.06. For the efficiency comparison, CGARCH-S
is still the best performing model, as expected. In Panel B of Table 3, SEs of ρ are all
under 0.09 for CGARCH-S, and those of all other models are at least 0.01 (over 10%)
greater. Since RMSE accounts for the impact of both bias and SE, it is not surprising
that CGARCH-S consistently outperforms the other models. In both Panels A and B of
Table 3, almost all RMSEφ of CGARCH-S are under 0.04, whereas those of other tree models
are at least 0.05. Nevertheless, CGARCH-S produces the greatest log-likelihoods in all
cases. It is also interesting to notice that Meanll of CGARCH-t is the largest among the
three competing models for the CGMY distribution. For the other two tempered stable
distributions, CGARCH-G generates the larger average log-likelihood than CGARCH-N
and CGARCH-t.

We have the following conclusions for our findings of the simulation studies.
When the true distribution is Student’s t or GED, the CGARCH-S model uniformly
outperforms the competing models except for the true model. Additionally, the results of
CGARCH-S and those of the true model are very close in almost all cases. Nevertheless,
CGARCH-S can even generate larger log-likelihoods than the true model. When the true
distribution is tempered stable, none of the CGARCH-N, CGARCH-t and CGARCH-G
models can perform as well as the CGARCH-S model. All the above observations are
robust across different combinations of CGARCH parameters and sample sizes. Therefore,
we argue that for a given financial time-series with an unknown fat-tailed distribution, the
CGARCH-S model is an optimal candidate to study its short- and long-run second moment
properties simultaneously.
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Table 3. Simulation results: tempered stable distribution.

α+ α− λ+ λ− Model Meanll Biasα+β SEα+β RMSEα+β Biasρ SEρ RMSEρ Biasφ SEφ RMSEφ

Panel A: Scenario 1
0.5 0.5 1 1 Normal −6526 −0.0431 0.1184 0.1260 −0.0107 0.0432 0.0445 −0.0451 0.0279 0.0531

t −6166 −0.0415 0.1120 0.1194 0.0123 0.0316 0.0339 −0.0447 0.0335 0.0558
GED −6154 −0.0453 0.1141 0.1227 −0.0086 0.0320 0.0332 −0.0471 0.0280 0.0548

TS −6141 −0.0082 0.1117 0.1120 −0.0075 0.0295 0.0305 −0.0322 0.0278 0.0425
0.2 1.2 1.2 0.2 Normal −6256 −0.0491 0.1459 0.1540 −0.0235 0.0649 0.0690 −0.0407 0.0365 0.0547

t −5502 0.0486 0.1196 0.1291 0.0495 0.0376 0.0622 −0.0378 0.0414 0.0561
GED −5526 −0.0599 0.1269 0.1403 −0.0239 0.0469 0.0526 −0.0501 0.0319 0.0594

TS −5436 −0.0338 0.1187 0.1234 −0.0054 0.0315 0.0320 −0.0051 0.0285 0.0289
1.2 0.2 0.2 1.2 Normal −6236 −0.0604 0.1377 0.1504 −0.0259 0.0717 0.0763 −0.0466 0.0306 0.0558

t −5481 0.0613 0.1266 0.1407 0.0470 0.0342 0.0581 −0.0491 0.0356 0.0607
GED −5505 −0.0454 0.1223 0.1305 −0.0155 0.0412 0.0440 −0.0587 0.0254 0.0639

TS −5415 −0.0094 0.1180 0.1183 0.0023 0.0338 0.0339 −0.0167 0.0242 0.0294

Panel B: Scenario 2
0.5 0.5 1 1 Normal −4969 −0.0257 0.0943 0.0977 −0.0285 0.1133 0.1168 −0.0358 0.0365 0.0511

t −4603 −0.0306 0.0935 0.0984 −0.0316 0.0966 0.1017 −0.0359 0.0358 0.0507
GED −4588 −0.0317 0.0916 0.0970 −0.0283 0.1004 0.1043 −0.0385 0.0335 0.0510

TS −4576 0.0136 0.0897 0.0907 −0.0110 0.0883 0.0889 −0.0245 0.0332 0.0413
0.2 1.2 1.2 0.2 Normal −4709 −0.0257 0.1074 0.1104 −0.0243 0.1253 0.1277 −0.0373 0.0427 0.0567

t −3962 0.0980 0.1200 0.1549 0.0552 0.0969 0.1115 −0.0395 0.0427 0.0581
GED −3984 −0.0388 0.1032 0.1102 −0.0227 0.1074 0.1098 −0.0472 0.0338 0.0581

TS −3897 −0.0026 0.0979 0.0979 −0.0113 0.0734 0.0743 −0.0166 0.0329 0.0368
1.2 0.2 0.2 1.2 Normal −4729 −0.0184 0.1062 0.1078 −0.0429 0.1314 0.1382 −0.0363 0.0419 0.0555

t −3974 0.0804 0.1051 0.1323 0.0556 0.0805 0.0978 −0.0411 0.0443 0.0604
GED −3999 −0.0381 0.0980 0.1051 −0.0242 0.0896 0.0928 −0.0506 0.0347 0.0614

TS −3906 −0.0132 0.0974 0.0983 −0.0044 0.0619 0.0621 −0.0134 0.0316 0.0344
Note: T is sample size; ll stands for log-likelihood; SE and RMSE are standard error and root of mean squared errors, respectively. Normal, t, GED and TS are statistics for CGARCH
with Normal, Student’s t, GED and tempered stable distribution, respectively.
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5. Empirical Results

To empirically compare CGARCH models with Normal, Student’s t, GED and tempered
stable distributions, we fit them for the daily Shanghai Stock Exchange Index (SSE).
The daily closing prices for SSE over the period from 1 January 2011 to 31 December
2018 are obtained from the Thomson Reuters Tick History (TRTH) database. Note that due
to major macro economic, social and political events (e.g., the US presidential election and
COVID-19), the data from 2019 and beyond may very possibly have structural changes,
which may not be well captured by a uni-regime CGARCH model. This is noted as a
limitation and a potential future research direction in the last section of this paper.

The corresponding return in the percentage series is defined as the logarithm of the
daily closing price differences times 100; that is, rt = 100× log(St/St−1).

The daily closing prices and returns of SSE are plotted in Figure 1. In the closing price
plot, SSEs generally have ranged between 2000 and 3500 over 2011–2018, except for a spike
from 2500 to 5000 in early-2015. This spike has led to large variations of return, as observed
in Figure 1b. Additionally, most daily returns vary in the [−4%,4%] range, with the largest
negative (positive) value below −7% (above 5%) in late-2015. After fitting a standard
GARCH(1,1) with Normal assumption, we find that the standardized residuals have a
kurtosis of 2.11, suggesting a non-Gaussian distribution. Thus, we perform the Kolmogorov–
Smirnov and Jarque–Bera normality tests, where the null hypotheses indicating normality
are rejected in both cases (p-values are 0.0000). As a result, CGARCH models with non-
Gaussian distributions are expected to outperform the CGARCH-N model.
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Figure 1. SSE Index. (a) Closing prices. (b) Returns.

The estimates of CGARCH(1,1) models with four different distributions are presented
in Table 4. In addition, we also consider the Gaussian copula transformation of the
CGARCH-t, the in-sample estimates of which will be identical to those of CGARCH-t
without transformation. Overall, estimates of those CGARCH models are close to each other.
More specifically, except for φ, all GARCH parameters are estimated to be significantly
different from zero at 5% significance level. Estimated β of CGARCH-t (0.9441) and
CGARCH-G (0.9452) are slightly greater than those of CGARCH-N (0.9051) and CGARCH-S
(0.8546). In contrast, the magnitudes of estimated φ of CGARCH-N (0.0019) and CGARCH-S
(0.0059) are greater than those of CGARCH-t (0.004) and CGARCH-G (0.0004).

Since the SSE returns are not Normally distributed, we focus on the results of the
three fat-tailed CGARCH models. Both transitory and permanent components are quite
persistent to their own shocks. Estimated α + β are at least 0.90, whereas estimated φ are
all over 0.99. Hence, we expect that shocks to both st and qt will not quickly die away [2].
As for the impacts of immediate volatility shocks, fitted results suggest the influence on the
permanent component is very much close to zero (all smaller than 0.01). Although such
influences on transitory component are all estimated to be significant, the magnitudes
are limited at around 0.05. To compare the three fat-tailed models, log-likelihood, Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) are presented. It can
be seen that CGARCH-S is the best performing model based on all criteria. Additionally,
CGARCH-G slightly outperforms CGARCH-t, both of which are preferred to CGARCH-N.
Hence, the results of the CGARCH-S model are more reliable, which suggest the volatility
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persistence of the transitory component (0.9029) is around 10% smaller than that of the
permanent component (0.9983). In contrast, both CGARCH-t and CGARCH-G suggest
those persistences are almost identical and close to one.

Table 4. Empirical results: SSE index.

Normal t GED TS

α 0.0546 0.0536 0.0496 0.0483
(0.0000) (0.0000) (0.0000) (0.0000)

β 0.9051 0.9441 0.9452 0.8546
(0.0000) (0.0000) (0.0000) (0.0000)

α + β 0.9598 0.9977 0.9948 0.9029
- - - -

ρ 0.9982 0.9978 0.9952 0.9983
(0.0000) (0.0000) (0.0000) (0.0000)

φ 0.0019 0.0004 0.0004 0.0059
(0.0388) (0.1254) (0.2431) (0.0013)

ν 4.4566 1.1397
(0.0000) (0.0000)

α+ −3.1633
(0.0000)

α+ 0.4105
(0.0000)

λ+ 5.4251
(0.0000)

λ− 1.0045
(0.0000)

p 0.4026
(0.0000)

Log Lik. −3024 −2943 −2937 −2920
AIC 6061 5900 5888 5862
BIC 6094 5939 5927 5923

Note: Normal, t, GED and TS are statistics for CGARCH with Normal, Student’s t, GED and tempered
stable distribution, respectively. Log Lik. stands for the log-likelihood. The values in the parentheses are
the corresponding p-values. AIC and BIC are Akaike and Bayesian Information Criterion, respectively.

To further explore the models, all the four estimated conditional volatility series (We
report conditional volatility here as the square root of ht, so that it has the same scale as
rt) are plotted in Figure 2. Despite their different model performances, the four estimated
conditional volatility series demonstrate shapes fairly close to each other. Consistent with
our previous observations, large variations are found over 2015–2016. Further, due to the
impact of large volatility persistences, influences of those shocks do not quickly die away
and cause clustering on the conditional volatility.

Despite their similarities, the difference between the fitted conditional volatilities
can be described as the different in-sample forecasting performance of the fitted models.
To quantitatively compare this performance, we measure the prediction error for each
model by

∣∣∣√ĥt − |rt|
∣∣∣, where ĥt is the fitted ht for each model, and |rt| is employed

to proxy the true conditional volatility. The results are reported in Panel A of Table 5.
Moreover, to consider the out-of-sample forecasts, we use the last 100 observations as
the prediction sample and the others as the training sample. Then, we fit each model
for the training sample and calculate the one-step ahead forecast of ht. After that, we
include the first observation in the prediction sample and generate another one-step-
ahead forecast. We repeat this rolling-window approach until 100 such one-step-ahead
forecast

√
ĥt are produced. After that, we calculate the absolute difference between

them and the corresponding |rt|, which measures the out-of-sample forecasting errors.
The results are reported in Panel B of Table 5. It is observed that CGARCH-S leads to the
smallest average forecasting errors in both the in-sample and out-of-sample cases. This is
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confirmed by the RMSE, which is defined as
√

1
100 ∑100

h=1(ĥt+h − |rt+h|)2 and widely used
as an overall forecasting performance indicator. Additionally, CGARCH-S produces small
variations in the forecasting errors, which is the second smallest for in-sample forecasting
and the smallest for out-of-sample forecasting. In addition, when considering Q95, the 95th
percentile of the forecasting errors, CGARCH-S leads to the smallest extreme errors in both
cases. Nevertheless, it is worth mentioning that he copula-transformed CGARCH-t and the
original CGARCH-t result in much identical performance. Therefore, this copula model is
skipped in the following Value-at-Risk analysis.
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Figure 2. Fitted conditional variances of CGARCH Models. (a) Normal distribution. (b) Student’s t-
distribution. (c) GED. (d) Tempered stable distribution.

Table 5. Forecasting performance comparison.

Model RMSE Mean SE Q95

Panel A: In-sample performance
Normal 1.0245 0.3742 0.9540 1.6078

t 1.0147 0.3540 0.9512 1.5707
GED 1.0140 0.3538 0.9505 1.5639

TS 1.0076 0.3387 0.9492 1.5466
Copula 1.0140 0.3571 0.9533 1.5652

Panel B: Out-of-sample performance
Normal 1.0572 0.8647 0.6145 1.7625

t 1.0433 0.8471 0.6121 1.7222
GED 1.0373 0.8366 0.6163 1.7439

TS 1.0303 0.8293 0.6112 1.7112
Copula 1.0501 0.8519 0.6105 1.7258

Note: SE, RMSE and Q95 are standard error, root of mean squared error and 95th percentile, respectively. Normal,
t, GED and TS are statistics for CGARCH with Normal, Student’s t, GED and tempered stable distribution,
respectively. Copula is the results corresponding to Gaussian-copula transformation of the CGARCH-t model.

Finally, we consider an important practical application of the CGARCH model: the
Value-at-Risk (VaR) analysis. This is particularly useful when measuring the financial
risks, such as the investment risk of a portfolio. In this paper, we consider the two-
sided 95% VaR, which is constructed as the [µ̂ + Q̂2.5

√
ĥt,µ̂ + Q̂97.5

√
ĥt], where Q̂2.5 and
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Q̂97.5 are the 2.5th and 97.5th percentile of the fitted innovation distribution, respectively.
Using the estimated parameters reported in Table 4, it is straightforward to construct the
time-varying two-sided 95% VaR for each CGARCH model. The results are plotted in
Figure 3. Due to the similarities of ĥt as observed in Figure 2, those VaR are again not quite
visually distinct from each other. Despite this, it can be seen that both the negative and
positive VaR of CGARCH-S are generally smaller than those of the other CGARCH models.
Among the total 1944 observations, there are 40 positive (rt > positive VaR) and 48 negative
(rt < negative VaR) violations for CGARCH-S. Those are quite satisfactory results, standing
for 2.1% and 2.5% chances of violation, respectively, which are close to the 2.5% as designed.
For the rest, we find 39 positive (2.0%) and 66 negative (3.4%) violations for CGARCH-N,
35 positive (1.8%) and 62 negative (3.2%) violations for CGARCH-t, and 27 positive (1.4%)
and 58 negative (3.0%) violations for CGARCH-G. Such results are close to each other
and are not as good as those of CGARCH-S. The resulting VaR is clearly biased upwardly
for CGARCH-N, CGARCH-t and CGARCH-G models, leading to smaller positive and
larger negative violations than expected. The advantage of CGARCH-S on other competing
CGARCH models is largely due to the more flexible parametric structure of the tempered
stable distributions. In short, the five parameters allow different shapes at each tail and
in the middle. Thus, the fitted tempered stable distribution would accommodate more
features of the empirical data, such as leptokurtic kurtosis, asymmetric tails and skewness.
This leads to more accurate VaR analysis, which is critical for accurate risk-measurement
and other risk/portfolio management applications.
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Figure 3. Value-at-risk Analysis.

6. Concluding Remarks

The CGARCH model has enjoyed particular popularity in finance research for simultaneously
studying long- and short-run components. Despite its effectiveness, in practice, the CGARCH
model can produce more efficient estimates when appropriate fat-tailed distribution is employed.
This paper aimed to find an optimal distribution for disturbances of the CGARCH model, when
the underlying distribution was a fat-tailed but unknown type.

Inspired by Calzolari et al. [9], our paper investigated the applicability of the tempered
stable distribution within the CGARCH framework. Via systematically designed simulation
studies on the CGARCH(1,1) process, we contrasted the performance of CGARCH models
with Normal (CGARCH-N), Student’s t (CGARCH-t), GED (CGARCH-G) and tempered
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stable (CGARCH-S) distributions. The first two studies assumed that the true distributions
were the Student’s t and GED, respectively. In such cases, results of CGARCH-S are close
to those of the true models, and CGARCH-S uniformly outperforms the other competing
models in terms of consistency, efficiency and overall performance. We constructed different
combinations of the tempered stable distribution to simulate the CGARCH process in the
third study. Our results suggest that none of the CGARCH-N, CGARCH-t and CGARCH-G
can perform as well as the CGARCH-S model.

Empirical evidence is further provided to check the robustness of our simulation
results in practice. We fit the daily return of the Shanghai Stock Exchange (SSE) index
over 2011–2018 into the four CGARCH models, respectively. Our results indicate that
CGARCH-S is still preferred to the rest under different model performance criteria, in-
and out-of-sample forecasting comparison and Value-at-Risk (VaR) analysis. Nevertheless,
the limitations of this research are two-fold. First, we focused on the analysis of SSE
index, and more evidence on the feasibility of CGARCH-S model needs to be verified
for other financial equities. Second, the current CGARCH framework is limited to a uni-
regime model. To cope with empirical structural changes recently caused by major events
such as COVID-19, a regime-switching CGARCH model may be proposed and studied.
Addressing those limitations sheds light on systematic validation of the practical usefulness
of the CGARCH model in areas such as portfolio management and other enterprise risk-
management issues.
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