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Abstract: In this paper, we consider the uplink of a scalable cell-free massive MIMO (CF-M-MIMO)
system where user equipments (UEs) are served only by a subset of access points (APs). All APs
are physically divided into predetermined “real clusters”, which are linked to different cooperative
central processing units (CPUs). Based on the cooperative nature of the considered communications
framework, we assume that each UE is affiliated with a “virtual cluster”, which is associated with
some APs coming from different real clusters. Thanks to the degrees of cooperation among multiple
CPUs, the uplink spectral efficiencies (SEs) of four different levels are analyzed. To achieve system
scalability, the CF-M-MIMO system with multiple CPUs is introduced, which leads to lower SE. To
this end, we design a joint combining method based on statistical channel state informations (CSIs),
which not only has low complexity but also improves the SE of the system. Simulation results indicate
that the average rate of our proposed method can be improved by about 30%.

Keywords: cell-free massive MIMO; clustering; multiple CPUs; spectral efficiency; system scalability
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1. Introduction

The demand of user equipments (UEs) for high transmission rates and wide com-
munication coverage are boosting the evolution of wireless network architecture. The
distributed communication system [1] cooperates through multiple access points (APs)
to realize coherent combinations, reduce interference and supply macro diversity gain,
so as to obtain high spectral efficiency. Distributed antenna systems (DAS), coordinated
multipoint with joint transmission (CoMP-JT) and network multiple-input multiple-output
(Network MIMO) are suggested as some examples of cellular distributed systems with the
joint transmission of multiple APs [2–4]. Theoretically, the interference between cells can be
mitigated by designing the cooperation of adjacent clusters, in which the APs belonging to
different clusters jointly serve all UEs in the region. However, the cooperation requires per-
fect channel state informations (CSIs) to be exchanged, which is not scalable in practice [5].
In addition, the inter-cell or out-of-cluster interference caused by the cellular mode cannot
be suppressed, which also results in performance limitations. In fact, the standardization
of CoMP-JT in cellular networks has not been widely promoted.

Recently, massive MIMO has become the key technology of 5G. Massive MIMO
has the ability to improve the spectral efficiencie (SE) by about 10 times over small
cell networks [6,7], by improving the base station (BS) hardware instead of increasing
the number of BSs. The SE gain benefits from a lot of antennas in each BS, which are
applied for digital beamforming and, particularly, to spatially multiplex multiple UEs
on the same time-frequency resource [8,9]. With the development of massive MIMO
technology [10], the interest in distributed massive MIMO systems has been revived.
Distributed massive MIMO systems are equipped with many BSs, and each BS has an
array formed by a large number of antennas. Similar to CoMP-JT, distributed massive
MIMO systems can be designed for joint transmission [7,11] through multiple BSs, and
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are expected to achieve better performance than cellular systems. Therefore, many
different architectures based on massive MIMO have been proposed.

A recent system architecture, referred to as cell-free massive MIMO (CF-M-MIMO),
was proposed in [12–15]. The basic idea is that a large number of APs are distributed in
a wide area to serve a small number of UEs. A central processing unit (CPU) connects
to these APs, which can also be called an edge-cloud processor [16] or cloud radio access
network (C-RAN) data center [17].

1.1. Related Work

Compared with traditional small cell systems, CF-M-MIMO systems have made
changes in the way of serving the UE. Unlike small cell systems in that each UE is served
by only one AP, CF-M-MIMO systems allow the CPU to connect multiple APs for digital
beamforming [11], which provides coordinated transmission for several UEs on the same
time-frequency resource. Early studies have shown that appropriate signal processing
methods, such as regularized zero-forcing (RZF) or minimum mean-squared error (MMSE)
precoding in the downlink, can be used separately at each CPU to suppress the interference
from other APs connected to the same CPU [18–20], rather than cooperate with other CPUs.

CF-M-MIMO combines the benefits of using time division duplex (TDD)
mode [10], distributed massive MIMO technology and user-centric transmission. The TDD
operation relies on channel reciprocity to obtain CSIs [21], which can reduce the fronthaul bur-
den. Thanks to the antennas with uniform amplitude distribution that can more effectively
combat shadow fading, the distributed massive MIMO systems can have greater coverage
than collocated massive MIMO systems [22]. In addition, the user-centric approach enables
CF-M-MIMO systems to mitigate the inter-cell interference [23]. Without cell boundaries, all
the UEs are considered to be surrounded by a large number of APs, thus the boundary effect
can be eliminated [13,23]. Although recent works have shown that CF-M-MIMO systems
have significant advantages in many aspects, there is still a big gap between theoretical
analysis and practical application. For example, the key assumption that all the APs are
controlled by a single CPU is hard to achieve scalability in CF-M-MIMO.

Actually, the implementation of the scalable CF-M-MIMO mainly faces two problems.

• Despite [18] having proved that excellent performance can be achieved when all the
APs are connected to a single CPU for joint transmission, it is difficult to let a single
CPU control all the APs when the number of APs is large. Moreover, joint transmission
requires a single CPU to centralize the signal processing, which puts high demands
on the CPU’s processing capacity.

• The traditional precoding and power control of CF-M-MIMO act on the overall APs
and UEs, which are difficult to realize in practice. Although a series of studies have
proved the superiority of the final results [18,24,25], the complexity of these algorithms
grows polynomially with the number of APs or UEs. Moreover, each AP needs to
transmit instantaneous CSIs to the CPU, which is also difficult to achieve scalability
when there are a large number of APs in the CF-M-MIMO systems.

The scalability of the power control or precoding algorithms has been considered
in [26–30]. The article [26] concentrated on the scalability of CF-M-MIMO with a single
CPU. If the CPU only controls a partial number of APs serving each UE, the complexity
of precoding or power control is not increased with the number of APs. The introduction
of the dynamic cooperation clustering (DCC) network makes the above method possible.
In papers [28,29], the authors proposed the power allocation strategies based on long-
term fading, which avoid a large amount of information exchanging among multiple
CPUs and APs. The local partial zero-forcing precoding and combining were considered
in [27,30], which depend on the large-scale fading and act on partial UEs and APs. These
papers provide feasible methods to achieve scalable implementations. However, these
papers mentioned above only focus on the first issue, but do not discuss the second one.

In [31], the author considered the scenario of multiple CPUs and discussed the scalabil-
ity aspects of CF-M-MIMO. However, cooperation among multiple CPUs is less understood
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in the literature and still open for investigation. In order to enhance the competitiveness of
multiple CPUs systems, how to exchange the information for cooperation among multiple
CPUs is an essential problem. As the above considerations demonstrate, exchanging instan-
taneous CSIs for joint transmission achieves high performance gain [18,32,33]. However,
this method puts a great burden on the backhaul, thus it is unscalable. Since the statistical
CSIs remain unchanged for a long time, it is considered to be available in a scalable network.
In summary, how to use statistical CSIs for cooperative transmission is a key problem.
In [34], the authors did not fully exploit the potential performance of CF-M-MIMO with
multiple CPUs when statistical CSIs can be exchanged among multiple CPUs. In [34],
the estimation of signals from UEs was calculated by simply taking the average of all the
signals, which led to a large spectral efficiency (SE) loss. In addition, the authors did not
take into account the DCC network, which made it difficult for the network to achieve
scalability. All of these motivate the current work to focus on cooperation among multiple
CPUs with statistical CSIs. The contributions of this paper are summarized as follows:

1. We consider a taxonomy with four different implementations of CF-M-MIMO with
multiple CPUs, which are classified by different degrees of cooperation among the
CPUs. The four different levels of cooperation can be called centralized connectivity,
distributed connectivity and complex processing, distributed connectivity and simple
processing, and no connectivity, respectively. The difference of these levels is shown
in Table 1. We derive novel SE expressions for different levels of multiple CPUs
cooperation in the uplink transmission. In addition, unlike most scenarios that specify
the number of CPUs participating in the service, we consider a completely user-centric
way to select APs.

2. We propose a novel signal processing algorithm for cooperation among multiple
CPUs. Each CPU processes the local information from its APs, and then transmits
these signals to a CPU for final decoding. Based on the generalized Rayleigh quotient,
we use simple weighted processing to linearly combine received signals from multiple
CPUs with statistical CSIs.

3. We compare the performance of different cooperation levels. Monte Carlo simulation
results show that our proposed distributed connectivity scheme can achieve scalability
with lower backhual burden, and the performance loss is negligible compared to the
centralized connectivity scheme.

Table 1. Type of CSIs that needs to exchange among CPUs, and the comparison of different levels
of cooperation.

Type of CSIs Level of
Computational Complexity

Level 4 centralized connectivity instantaneous CSIs high

Level 3 distributed connectivity
and complex processing statistical CSIs medium

Level 2 distributed connectivity
and simple processing statistical CSIs low

Level 1 no connectivity − lowest

1.2. Paper Structure

The rest of this paper is organized as follows. Section 2 defines the uplink of CF-
M-MIMO system with multiple CPUs. Next, Section 3 presents the four levels of CPU
cooperation. Simulation results compare the performance of the four levels of CPUs
cooperation in Section 4. Finally, Section 5 concludes this paper.
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2. System Model

Notation: Boldface lowercase letters denote column vectors and boldface uppercase
letters denote matrices. The superscripts ()∗, ()T, and ()H indicate transpose, conjugate and
transpose. Since we cannot guarantee full rank of matrices, we use (·)† to denote the matrix
pseudoinverse. The n× n identity matrix stands for IN. The diag(h1, . . . , hn) is used to
denote a block-diagonal matrix. z ∼ CN

(
0, σ2) denotes a circularly symmetric complex

Gaussian random variable (RV) z with zero mean and variance σ2. |Z| is applied to denote
the cardinality of the set Z .

We consider a CF-M-MIMO system operating in TDD mode, which consists of K
single-antenna UEs, L single-antenna APs and U CPUs as shown in Figure 1. All of these
APs are divided into U predetermined real clusters (RCs). Each RC is connected to a
different CPU via error-free fronthaul links. The indexes of the APs belonging to the u-th
RC are included in the subsets Pu. All CPUs are interconnected through error-free backhual
links and can be cooperated with each other. The generic k-th UE is served by a subset of
the APs and the subset is termed virtual cluster (VC). We define by Zk the sets consisting
of AP indexes in the k-th VC. Although the RCs are non-overlapped, due to the connection
between different CPUs, the VCs can be overlapped so that CPUs can cooperate to serve
UEs in the network. In addition, Aku is used to define the set including the AP indexes
belonging to both the u-th RC and the k-th VC, i.e.,

Aku = {l ∈ Pu : l ∈ Zk}. (1)

If the set Aku, is not empty, i.e., at least one AP in Pu serves the k-th UE, then the u-th
CPU serves UE k.

AP

virtual cluster  
for UE k

CPU u

the u-th real 
cluster

fronthaul

backhaul

u
AP cluster  
for UE k

UE 2

UE k
UE 3

Figure 1. Example of virtual clusters in the CF-M-MIMO with multiple CPUs. The yellow area, red
area and blue area represent virtual cluster, real cluster and the intersection of virtual cluster and real
cluster, respectively.

The channel between AP l and UE k can be modeled as:

hkl = β1/2
kl gkl , (2)
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where βkl is the large-scale fading coefficient related to geometric path loss and shadow
fading and gmk is the small scale fading. The large-scale fading coefficient βkl changes
tardily, and thus, can be traced and acquired. We assume that gkl , l = 1, . . . , L, k = 1, . . . , K,
are independent and identically distributed (i.i.d.) CN (0, 1) RVs.

2.1. Channel Estimation

We consider the uplink with τc channel use, which consists of τp channels for trans-
mitting pilots and τc − τp channels for payload data. In the pilot transmission phase, τp
mutually orthogonal τp-length pilot signals ϕ1, ϕ2...ϕτp

are applied for channel estimation,

where ‖ϕn‖2 = τp. The case of practical interest is a big network with τp< K, which means
that more than one UE is assigned to each pilot. This is so-called pilot contamination that
degrades the system performance. We suppose that tk ∈

{
1, . . . , τp

}
is the index of the

pilot assigned to UE k and Gk ⊂ {1, 2...K} denotes the subset of UEs which are assigned the
same pilot as UE k. When all UEs send their pilots, the received signal at AP l is:

ypilot
l =

K

∑
i=1

√
pihilϕ

H
tk
+ nl , (3)

where pi is the transmission power of UE i, nl ∈ Cτp×1 is the noise vector whose elements
are i.i.d. CN (0, σ2) RVs. According to the received signal ypilot

l , AP l places it on the project
with ϕ∗tk

to obtain ŷl , which is given by:

ŷl =
K

∑
i=1

√
pi√
τp

hilϕ
H
tk

ϕ∗tk
+

1
√

τp
nlϕ
∗
tk

= ∑
i∈Gk

√
piτphil +

1
√

τp
nlϕ
∗
tk

.
(4)

Applying standard formulas from paper [13], the minimum mean-squared error
(MMSE) estimate of hkl is expressed as:

ĥkl =
√

pkτpβklΨ
−1
tk l ŷl , (5)

where:

Ψtk l = E
{

ŷl ŷ
H
l

}
= ∑

i∈Gk

τp piβil + σ2. (6)

We define the estimation error as h̃kl = hkl − ĥkl , where ĥkl ∼ CN
(

0, pkτpβklΨ
−1
tk l βkl

)
and h̃kl ∼ CN (0, Ckl) with:

Ckl = βkl − pkτpβklΨ
−1
tk l βkl . (7)

The channel estimation error mainly caused by pilot contamination.

2.2. Uplink Payload Transmission

During the uplink transmission, all the UEs transmit signals to the APs. In the AP
cluster Aku, the signal received by AP l is:

yul
l =

K

∑
i=1

hilsi + nu,l , (8)

where si is information-bearing signal sent by UE i with E
(
|si|2

)
= 1 and nu,l ∼ CN (0, 1)

is additive noise at AP l.
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2.3. Dynamic Cooperation Clustering Network

The DCC network was considered in [20,26] to achieve scalability in CF-M-MIMO,
and we use it to set the VCs. It is obtained by stipulating a number dil , for i = 1, . . . , K and
l = 1, . . . , L, which set the subset of APs that serve UEs. More specifically, dil is 1 if AP l is
allowed to convey and decode signals from UE i and 0 otherwise. The DCC network does
not alter the received uplink signals since all the APs physically receive the signals from
all the UEs. However, only a subset of the APs is participating in signal detection. This is
equivalent to setting dil as:

dil =

{
1 if l ∈ Zi
0 if l /∈ Zi

. (9)

3. Multiple CPUs Cooperative Transmission

In order to obtain better performance, each VC appoints a Master CPU that possesses
high computational resources to receive information from other CPUs for joint processing.
Four different levels of cooperation are considered below.

3.1. Level 4: Centralized Connectivity

The highest level of multiple CPUs cooperation network is that all the CPUs share
their instantaneous CSIs with the Master CPU. Thus, the Master CPU can be capable of
designing an overall MMSE combining matrix. In other words, all the CPUs except the
Master CPU play as relays without processing signals from the APs and forward all signals
to the Master CPU [35]. In fact, it is equivalent to setting a large VC for each UE, where all
the APs in the large VC are managed by a single CPU. In the uplink transmission phase,
the received signal at the Master CPU is expressed as:

ŝk =
L

∑
l=1

vH
kl dklyul

l

= vH
k Dkhksk +

K

∑
i=1,i 6=k

vH
k Dkhisi + vH

k Dkn,

(10)

where Dk = diag[dk1, . . . , dkL] ∈ CL×L is a block diagonal matrix, n = [n1, . . . , nL]
H ∈ CL×1

denotes noise vector at the k-th VC and hk = [hk1, . . . , hkL]
H ∈ CL×1 is the collective channel

vector at the k-th VC.
Although the capacity of Level 4 with perfect CSIs is supposed to be known in some

cases [35], the ergodic capacity is usually unknown when taking into account imperfect
CSIs. Nevertheless, we can utilize the lower bounds of standard capacity to analyze the
performance [36], which can be used to achieve the following SE.

Proposition 1. At Level 4, an achievable SE for UE k is:

SE(4)
k =

(
1−

τp

τc

)
E
{

log2

(
1 + SINR(4)

k

)}
, (11)

and a lower bound of capacity to signal-to-interference-and-noise ratio (SINR) for UE k is given by:

SINR(4)
k =

pk

∣∣∣vH
k Dkĥk

∣∣∣2
K
∑

i=1,i 6=k
pi

∣∣∣vH
k Dkĥi

∣∣∣2 + vH
k Lkvk

(12)

with:

Lk = Dk

(
K

∑
i=1

piCi + σ2IL

)
Dk, (13)
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where Ci = diag[Ci1, . . . , CiL] ∈ CL×L.

Proof. This proof follows the same steps as the proof of [18] for CF-M-MIMO with a
single CPU.

The pre-log factor 1− τp
τc

in (11) denotes the fraction of channel uses which are

utilized for uplink data transmission. The term SINR(4)
k uses the form as effective instan-

taneous SINR [24]. The numerator is the desired signal power received over the estimated
channel, and the denominator is interference plus noise. We note that SINR(4)

k is in the
form of the generalized Rayleigh quotient. Hence, the MMSE combining can be achieved
to maximize (12).

Corollary 1. According to the generalized Rayleigh quotient [24], the SINR(4)
k (12) for UE k is

maximized by the MMSE combining:

vk = pk

(
K

∑
i=1

piDkĥiĥH
i Dk + Lk

)†

Dkĥk, (14)

which obtains the maximum value:

SINR(4)
k = pkDH

k ĥk

(
K

∑
i=1

piDkĥiĥH
i Dk + Lk

)†

Dkĥk. (15)

Proof. It follows from [24] (Lemma B.10), and note that (12) is a generalized Rayleigh
quotient with respect to vk.

Table 2 shows the number of complex scalars that the other CPUs send to the Master
CPU through the backhaul, in which AMCk ⊂ Zk includes the indexes of the APs that
serve UE k and are controlled by the Master CPU. In each coherence block, all the CPUs
except the Master CPU need to send τc

∣∣Zk

∣∣− τc|AMCk| complex scalars to the Master CPU.
In addition, the collective channel {Dkhk : k = 1, . . . , K} are supposedly available at the
Master CPU, which can be expressed as (K

∣∣Zk

∣∣)/2 complex scalars.

Table 2. Number of complex scalars that other CPUs send to the Master CPU through the backhaul,
either in each coherence block or for each realization of the UE locations/statistics.

Each Coherence Block Statistical Parameters

Level 4 τc
∣∣Zk

∣∣− τc|AMCk| (K
∣∣Zk

∣∣)/2

Level 3 K(τc − τp)(|Uk| − 1) K
∣∣Zk

∣∣+ (|Uk|
2K2 + K|Uk|)/2

Level 2 K(τc − τp)(|Uk| − 1) −

Level 1 − −

Although centralized processing can obtain the best performance in most cases, it
puts high demands on bandwidth and the delay of backhaul. This poses a difficulty in
achieving scalability in CF-M-MIMO. In addition, it is difficult for the Master CPU to handle
a large amount of instantaneous CSIs. Therefore, a more practical connection mode is
considered below.

3.2. Level 3: Distributed Connectivity and Complex Processing

This solution requires that statistical CSIs can be exchanged among multiple CPUs.
Instead of setting a large VC and sending all the signals to the Master CPU for unified
processing, we select a set of CPUs for each UE to reduce the pressure of backhaul. We
assume that the CPU in each RC can deal with its signals collected from APs, and then
these signals are transferred to the Master CPU for final decoding.
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Based on the neighborhood criterion, we suppose that the corresponding setting of
the DCC framework in the u-th RC is Dku = diag[bk1, . . . , bk|Pu |

] ∈ C|Pu |×|Pu |, where bkl can
be written as:

bkl =

{
1 if l ∈ Aku
0 if l /∈ Aku

. (16)

We assume by Uk the sets consisting of the CPU indexes in the k-th VC. Unlike Level 4,
each CPU can utilize the local channel estimation to design the combining. Let vku ∈ C|Pu |×1

be the local combining vector that CPU u determines for UE k. The local estimates at CPU
u is:

ŝku = vH
kuDkuhkusk +

K

∑
i=1,i 6=k

vH
kuDkuhiusi + vH

kuDkunku, (17)

where vku =
[
vk1, . . . , vk|Pu |

]H
∈ C|Pu |×1 denotes the local combining for UE k designd by

CPU u, hku =
[

hk1, . . . , hk|Pu |

]H
∈ C|Pu |×1 is the collective channel vector at CPU u and

nku =
[
n1, . . . , n|Pu |

]H
∈ C|Pu |×1 denotes the collective noise vector at CPU u.

Then, the local estimates
{

ŝku : u ∈ Uk
}

need to be sent to the Master CPU, and
the Master CPU is capable of using the weights

{
aku : u ∈ Uk

}
for linear combination to

obtain ŝk = ∑
u∈Uk

a∗ku ŝku. Let gki =
[
vH

k1Dk1hi1...vH
k|Uk |

Dk|Uk |
hi|Uk |

]H
∈ C|Uk |×1 be the |Uk|-

dimensional vector with the receive-combined channels between UE k and each of the
CPUs. Equation (17) can be written as:

ŝk = aH
k gkksk +

K

∑
i=1,i 6=k

aH
k gkisi + nk, (18)

where nk = ∑
u∈Uk

a∗kuvH
kunku, ak =

[
ak1, . . . , ak|Uk |

]H
∈ C|Uk |×1 denotes the weighting co-

efficient vector and
{

aH
k gki : i = 1, . . . , K

}
represents weighted signal. Using the same

combining as Level 4, vku is expressed as:

vku = pk

(
K

∑
i=1

piDkuĥiuĥH
iuDku + Lku

)†

Dkuĥku, (19)

where:

Lku = Dku

(
K

∑
i=1

piCi + σ2I|Pu |

)
Dku. (20)

Note that ak is optimized by the Master CPU through statistical CSIs to maximize the
SEs. This approach is similar to a continuation of the large-scale fading decoding (LSFD)
framework in [18,33,37,38]. We make it further developed to CF-M-MIMO with multiple
CPUs. Although the Master CPU does not know the effective channel aH

k gki, it can be

replaced by its average aH
k E{gki } . Note that aH

k E{gki } is non-zero. Hence, SINR(3)
k for UE

k can be achieved below.

Proposition 2. At Level 3, an achievable SE for UE k is:

SE(3)
k =

(
1−

τp

τc

)
E
{

log2

(
1 + SINR(3)

k

)}
, (21)

and the effective SINR(3)
k can be written as:
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SINR(3)
k =

pk
∣∣aH

k E{gkk}
∣∣2

K
∑

i=1
piE
{∣∣aH

k gki
∣∣2}− pk

∣∣aH
k E{gkk}

∣∣2 + σ2aH
k Nkak

, (22)

where Nk = diag
(
E
{∥∥vH

k1Dk1
∥∥2
}

, · · · ,E
{∥∥∥vH

k|Uk |
Dk|Uk |

∥∥∥2
})
∈ C|Uk |×|Uk |.

Proof. The proof is given in Appendix A.

Note that SINR(3)
k conforms to the generalized Rayleigh quotient [24] (Lemma B.10).

The deterministic weighting vector ak can be calculated to maximize SINR(3)
k .

Corollary 2. Weighting vector ak is expressed as:

ak =

(
K

∑
i=1

piE
{

gkig
H
ki

}
+ σ2Nk

)†

E{gkk}, (23)

which leads to the maximum result:

SINR(3)
k = pkE

{
gH

kk

}( K

∑
i=1

piE
{

gkig
H
ki

}
+ σ2Nk

−pkE{gkk}E
{

gH
kk

})†
E{gkk}.

(24)

The above SINR(3)
k holds for any combining scheme and only requires statistical CSIs.

Although it can not approximate aH
k gki with its mean value aH

k E{gki } completely when the
number of antennas is small, it is still the best available capacity bound. The pseudo-code
for this algorithm is shown in Algorithm 1.

Algorithm 1 Optimization algorithm for Level 3

Input: Channel gain hkl , MMSE combining vku, noise variance σ2, DCC matrix Dku
Output: ak

1: Initialization: calculate Uk-dimensional vector gki =
[
vH

k1Dk1hi1, ..., vH
k|Uk |

Dk|Uk |hi|Uk |

]H

2: for u = 1:U do
3: for k = 1:K do
4: if Dku = 1 then

5: calculate diagonal matrix Nk = diag
(
E
{∥∥vH

k1Dk1
∥∥2
}

, · · · ,E
{∥∥∥vH

k|Uk |
Dk|Uk |

∥∥∥2
})

6: update gkk =
[
vH

k1Dk1hk1, ..., vH
k|Uk |

Dk|Uk |hk|Uk |

]H

7: calculate ak by (23).
8: end if
9: end for

10: end for

In each coherence block, all the CPUs except the Master CPU are required to send
K(τc − τp) to the Master CPU, which become K(τc − τp)(|Uk| − 1) totally. Moreover, the
computation of (23) demands for the knowledge of |Uk|-dimensional complex scalar gki,
of the |Uk| × |Uk| complex matrix E

{
gki gH

ki
}

and of the real-valued K×
∣∣Zk

∣∣ matrix Nk for
{k = 1, . . . , K}. Total K

∣∣Zk

∣∣+ (|Uk|
2K2 + K|Uk|)/2, as shown in Table 2.

Compared with Level 4, Level 3 has much milder requirements for backhaul overhead.
Owing to the large-scale information being constant for a long time, exchanging statistical
CSIs among multiple CPUs is a feasible method.
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3.3. Level 2: Distributed Connectivity and Simple Processing

Although Level 3 can achieve high SEs among schemes with local combining at each
CPU, it requires the knowledge of a great quantity of statistical parameters, which is also
a large number of expense. A large number of statistical parameters needs to be sent to
the CPU by APs and then exchanged among multiple CPUs. It may be difficult, especially
when there are a lot of CPUs in the network. To confront the challenge, the Master CPU
can calculate the estimation of signals ŝk by simply averaging the local estimates without
statistical parameters, as considered in early articles [13,32]. It can be written as:

ŝk =
1
|Uk|

∑
u∈Uk

ŝku, (25)

where ŝku is given by (17). This is equivalent to putting up ak = [1/|Uk|, . . . , 1/|Uk|]
H. The

achievable SE is shown as follows.

Proposition 3. At Level 2, an achievable SE for UE k is:

SE(2)
k =

(
1−

τp

τc

)
E
{

log2

(
1 + SINR(2)

k

)}
. (26)

The effective SINR(2)
k can be expressed as:

SINR(2)
k =

pk|E{gkk}|2
K
∑

i=1
piE
{
|gki|2

}
− pk|E{gkk}|2 + σ2Nk

, (27)

where gki =
[
vH

k1Dk1hi1, ..., vH
k|Uk |

Dk|Uk |
hi|Uk |

]H
∈ C|Uk |×1.

Proof. This proof follows the same steps as the proof of Proposition 3.

As for Proposition 3, the above SE can also be calculated by using statistical CSIs.
Actually, this method is similar to “weak connectivity” in paper [34].

The number of complex scalars that need to be exchanged among multiple CPUs is the
same as Level 3. The main difference between Levels 2 and 3 is that the Master CPU does
not need statistical parameters in Level 2. Thus, Level 2 further reduces data requirements
compared to Level 3, as shown in Table 2.

3.4. Level 1: No Connectivity

The lowest level is that exchanging the CSIs and signals is only performed between
APs and CPUs in each VC. In this case, there is no signal exchange among multiple CPUs.
In reality, this network is equivalent to arranging some RCs for UE k and selecting one of
them to serve UE k. Note that UE k is only served by a single CPU. This method is similar
to Level 4 but the VC contains fewer APs.

Proposition 4. At Level 1, we let the CPU providing the highest SINR to UE k be responsible for
supplying the signal. An achievable SE for UE k is:

SE(1)
k =

(
1−

τp

τc

)
max
u∈Uk

E
{

log2

(
1 + SINR(1)

ku

)}
. (28)

For CPU u, SINR(1)
ku can be expressed as:

SINR(1)
ku =

pk

∣∣∣vH
kuDkuĥku

∣∣∣2
K
∑

i=1,i 6=k
pi

∣∣∣vH
kuDkuĥiu

∣∣∣2 + vH
kuLkuvku

, (29)
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where Lku = Dku

(
∑K

i=1 piCi + σ2I|Pu |

)
Dku. The expected value is related to the channel estima-

tion value. Similar to (15), the maximum value of (29) is given by:

SINR(1)
ku = pkDH

kuĥku

(
K

∑
i=1

piDkuĥiuĥH
iuDku + Lku

)†

Dkuĥku, (30)

when vku = pk

(
K
∑

i=1
piDkuĥiuĥH

iuDku + Lku

)†

Dkuĥku obtained.

Proof. This proof follows the same steps as the proof of Proposition 1.

Table 3 shows the computational complexity of different level of cooperation per
coherence block. The proof follows [24] (Lemma B.1).

Table 3. Computational complexity of different level of cooperation per coherence block. Only
complex multiplications and complex divisions are considered, and additions/subtractions are
neglected.

Computing Combining Vectors Computing Weighted Vectors

Multiplications Divisions Multiplications Divisions

Level 4

(
3|Zk|

2
+|Zk|

)
K

2 +
|Zk|

3−|Zk|
3

+
∣∣Zk

∣∣τp
(
τp − K

) |Zk | − −

Level 3
∑

u∈Uk

(
(3|Pu |2+|Pu |)K

2 + |Pu |3−|Pu |
3

+|Pu|τp
(
τp − K

)
)

∑
u∈Uk

|Pu|

(
|Uk |

2+|Uk |
)

K
2 +

|Uk |
3−|Uk |
3

+|Uk |2
|Uk |

Level 2
∑

u∈Uk

(
(3|Pu |2+|Pu |)K

2 + |Pu |3−|Pu |
3

+|Pu|τp
(
τp − K

)
)

∑
u∈Uk

|Pu| − −

Level 1

(
3|AMCk|

2
+|AMCk|

)
K

2 +
|AMCk|

3−|AMCk|
3

+
∣∣AMCk

∣∣τp
(
τp − K

) |AMCk | − −

4. Simulation Results

In this section, we have made a series of comparisons on the uplink performance of
CF-M-MIMO with multiple CPUs, with different levels of multiple CPUs cooperation and
either using DCC or not, and power control. In addition, when the total number of APs
remains unchanged, the effect of the number of CPUs in the VCs on the SEs is investigated.

We consider a CF-M-MIMO network where 300 APs, 20 UEs, and 30 CPUs are ran-
domly distributed in a 2000× 2000 m square. Each CPU controls the 10 APs closest to it. By
using a wrap-around structure, we ensure that there are a large number of APs around each
UE. In addition, we assume each UE is served by 20 APs. We use the same propagation
model as in [26] with τc = 200, τp = 10, pi = 100 mW, and 20 MHz bandwidth.

4.1. Uplink Transmission

Figure 2 shows the cumulative distribution function (CDF) of the SEs at different
levels of multiple CPUs cooperation. Level 4 provides the highest SEs but it does not
have significant advantages at high possible SE points. The reason for this phenomenon
is that the interference between UEs is very large and cannot be completely eliminated
due to the few APs in the VCs. By contrast, although Level 3 also cannot completely
suppress interference, it can use weights to linearly combine the received information,
which achieves better performance. Since Level 2 does not have the above functions, it lags
behind Level 3 in performance. Level 1 did not cooperate with multiple CPUs, which leads
to the lowest SEs.
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Figure 2. Comparison of CF-M-MIMO with different levels of multiple CPUs cooperation in the case
that partial APs serve the UEs.

Figure 3 considers the same setup but all the APs serve all the UEs. It indicates that
Level 4 performs the best all the time. The reason is that there are enough APs provided
for Level 4 to suppress the interference. It shows that Level 4 relies on the cooperation of
multiple APs, thus it is more sensitive to the number of APs. Level 1 still performs the
worst in terms of SE. Levels 2 and 3 are roughly in the middle of Levels 1 and 4.

Figure 3. Comparison of CF-M-MIMO with different levels of multiple CPUs cooperation in the case
that all APs serve the UEs.
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4.2. Power Allocation

A power allocation scheme is considered in [29,39], which is carried out in the uplink
transmission phase and only related to statistical CSIs, so it is a feasible scheme for Level 3.
The power allocation algorithm can be expressed as:

pk =
η

∑
l∈Zk

βkl
pmax, (31)

where η = min
1≤i≤K

∑
l∈Zi

βkl and pmax denotes the maximum uplink power of each UE. This

algorithm is applied to Level 3 and the results are shown in Figure 4.
Figure 4 exposes that Level 3 with power allocation improves the 90%-likely through-

put. However, Level 3 with with full power can achieve higher SEs, which means the power
allocation algorithm can obtain better SEs of the worst UEs at the expense of total SE loss.

Figure 4. In the case that partial APs serve the UEs, the SE comparison of Level 3 between full power
and power allocation.

4.3. Varying Numbers of CPUs

Figure 5 plots the CDF of the SEs of Level 3 when varying numbers of CPUs in the
VCs. We assume that the total number of APs and CPUs serving for each UE is 24 and U,
respectively. To facilitate calculation, we specify that each CPU provides the same number
of APs in the VCs (i.e., when U = 3, 8 APs are selected from the RC of each CPU to associate
with the UE.) To satisfy fairness, we shrink the simulation area by 100 times to ensure that
each AP can provide the effective signals. The result shows that increasing the number of U
leads to decreasing the SEs generally, which are caused by reducing the degree of freedom
for suppressing the interference in each RC.
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Figure 5. When the total number of APs is fixed, the SE comparison of different number of CPUs.

4.4. Varying Numbers of UEs

Figure 6 demonstrates the CDF of the SEs of Level 3 under different numbers of UEs.
As can be shown in Figure 6, we can see that the performance of Level 3 only slightly
degrades as more UEs are served. It indicates that Level 3 can effectively suppress the
interference coming from more UEs.

Figure 6. The SE comparison of different number of UEs.

4.5. Varying the Uplink Transmit Power

Figure 7 plots the CDF of the SEs of Level 3 when varying the uplink transmit power
for pi = p. Although Level 3 can deal with the interference that comes from UEs, it is
greatly affected by the uplink transmit power. The result shows that the performance of
Level 3 decreases with the degrades in uplink transmit power.
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Figure 7. The SE comparison under different uplink transmit power.

5. Conclusions

This paper has studied a scalable and user-centric CF-M-MIMO with multiple CPUs.
All the APs were divided into several RCs linked to different CPUs and each UE was
affiliated with a VC. According to the different degrees of multiple CPUs cooperation,
we have derived SE expressions for four different levels of cooperation among multiple
CPUs. In particular, we have proposed a low complexity optimization algorithm based on
statistical CSI (i.e., Level 3). The results have shown that Level 3 can achieve scalability
with lower backhual burden, and the performance loss is negligible compared to Level 4.
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Appendix A

Proof of Proposition 2.
Since the Master CPU does not know the effective channel, it needs to treat the average

channel gain aH
kE{gki} as the true deterministic channel. Hence, the signal model can be

written as:

ŝk = aH
kE{gkk}sk + Ik, (A1)

which is a “deterministic” channel with the additive interference plus noise term:

Ik =
(
aH

k gkk − aH
kE{gkk}

)
sk +

K

∑
i=1,i 6=k

aH
k gkig

H
kiaksi + nk.

The interference term Ik has zero mean and is uncorrelated with the signal term
in (A1) since:

E{aH
k gkk − aH

kE{gkk}}︸ ︷︷ ︸
=0

E{|sk|2} = 0. (A2)

Therefore, we can apply [24] (Cor. 1.3) to obtain the achievable SE in Proposition (2).

References
1. Dai, H.; Molisch, A.F.; Poor, H.V. Downlink capacity of interference-limited MIMO systems with joint detection. IEEE Trans.

Wirel. Commun. 2004, 3, 442–453. [CrossRef]
2. Choi, W.; Andrews, J.G. Downlink performance and capacity of distributed antenna systems in a multicell environment. IEEE

Trans. Wirel. Commun. 2007, 6, 69–73. [CrossRef]
3. Andrews, J.G.; Choi, W.; Heath, R.W. Overcoming interference in spatial multiplexing MIMO cellular networks. IEEE Wirel.

Commun. Mag. 2007, 14, 95–104. [CrossRef]
4. Irmer, R.; Droste, H.; Marsch, P.; Grieger, M.; Fettweis, G.; Brueck, S.; Mayer, H.P.; Thiele, L.; Jungnickel, V. Coordinated

multipoint: Concepts, performance, and field trial results. IEEE Commun. Mag. 2011, 49, 102–111. [CrossRef]
5. Lozano, A.; Heath, R.W.; Andrews, J.G. Fundamental limits of cooperation. IEEE Trans. Inf. Theory 2013, 59, 5213–5226. [CrossRef]
6. Björnson, E.; Kountouris, M.; Debbah, M. Massive MIMO and small cells: Improving energy efficiency by optimal soft-cel

coordination. In Proceedings of the 20th International Conference Telecommunication (ICT 2013), Casablanca, Morocco,
6–8 May 2013; pp. 1–5.

7. Truong, K.T.; Heath, R.W. The viability of distributed antennas for massive MIMO systems. In Proceedings of the 45nd Asilomar
Conference Signals, Systems and Computers, Pacific Grove, CA, USA, 3–6 November 2013; pp. 1318–1323.

8. Björnson, E.; Sanguinetti, L.; Hoydis, J.; Debbah, M. Optimal design of energy-efficient multi-user MIMO systems: Is massive
MIMO the answer. IEEE Trans. Wirel. Commun. 2015, 14, 3059–3075. [CrossRef]

9. Larsson, E.G.; Tufvesson, F.; Edfors, O.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag.
2014, 52, 186–195. [CrossRef]

10. Marzetta, T.L.; Ngo, H.Q. Fundamentals of Massive MIMO; Cambridge University Press: Cambridge, UK, 2016.
11. Björnson, E.; Larsson, E.G.; Debbah, M. Massive MIMO for maximal spectral efficiency: How many users and pilots should be

allocated? IEEE Trans. Wirel. Commun. 2015, 15, 1293–1308. [CrossRef]
12. Ngo, H.Q.; Ashikhmin, A.; Yang, H.; Larsson, E.G.; Marzetta, T.L. Cell-free massive MIMO: Uniformly great service for everyone.

In Proceedings of the 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), Stockholm, Sweden, 28 June–1 July 2015; pp. 201–205.

13. Ngo, H.Q.; Ashikhmin, A.; Yang, H.; Larsson, E.G.; Marzetta, T.L. Cell-free massive MIMO versus small cells. IEEE Trans. Wirel.
Commun. 2017, 16, 1834–1850. [CrossRef]

14. Interdonato, G.; Björnson, E.; Ngo, H.Q.; Frenger, P.; Larsson, E.G. Ubiquitous cell-free massive MIMO communications. EURASIP
J. Wirel. Commun. Netw. 2019, 2019, 197. [CrossRef]

15. Zhang, J.; Björnson, E.; Matthaiou, M.; Ng, D.W.K.; Yang, H.; Love, D.J. Prospective Multiple Antenna Technologies for Beyond
5G. IEEE J. Sel. Areas Commun. 2020, 38, 1637–1660. [CrossRef]

16. Burr, A.; Bashar, M.; Maryopi, D. Ultra-dense Radio Access Networks for Smart Cities: Cloud-RAN, Fog-RAN and cell-free
Massive MIMO. arXiv 2018, arXiv:1811.11077.

17. Li, S.; Tolbert, L.M.; Wang, F.; Peng, F.Z. Stray inductance reduction of commutation loop in the P-cell and N-cell-based IGBT
phase leg module. IEEE Trans. Power Electron. 2013, 29, 3616–3624. [CrossRef]

http://doi.org/10.1109/TWC.2003.821168
http://dx.doi.org/10.1109/TWC.2007.05207
http://dx.doi.org/10.1109/MWC.2007.4407232
http://dx.doi.org/10.1109/MCOM.2011.5706317
http://dx.doi.org/10.1109/TIT.2013.2253153
http://dx.doi.org/10.1109/TWC.2015.2400437
http://dx.doi.org/10.1109/MCOM.2014.6736761
http://dx.doi.org/10.1109/TWC.2015.2488634
http://dx.doi.org/10.1109/TWC.2017.2655515
http://dx.doi.org/10.1186/s13638-019-1507-0
http://dx.doi.org/10.1109/JSAC.2020.3000826
http://dx.doi.org/10.1109/TPEL.2013.2279258


Mathematics 2022, 10, 1900 17 of 17

18. Björnson, E.; Sanguinetti, L. Making cell-free massive MIMO competitive with MMSE processing and centralized implementation.
IEEE Trans. Wirel. Commun. 2019, 19, 77–90. [CrossRef]

19. Nguyen, L.D.; Duong, T.Q.; Ngo, H.Q.; Tourki, K. Energy efficiency in cell-free massive MIMO with zero-forcing precoding
design. IEEE Commun. Lett. 2017, 21, 1871–1874. [CrossRef]

20. Björnson, E.; Jorswieck, E. Optimal Resource Allocation in Coordinated Multi-Cell Systems; Now Publishers Inc.: Delft, The Netherlands,
2013.

21. Kaltenberger, F.; Jiang, H.; Guillaud, M.; Knopp, R. Relative channel reciprocity calibration in MIMO/TDD systems. In
Proceedings of the 2010 Future Network & Mobile Summit, Florence, Italy, 16–18 June 2010; pp. 1–10.

22. Zhou, S.; Zhao, M.; Xu, X.; Wang, J.; Yao, Y. Distributed wireless communication system: A new architecture for future public
wireless access. IEEE Commun. Mag. 2003, 41, 108–113. [CrossRef]

23. Buzzi, S.; D’Andrea, C. Cell-free massive MIMO: User-centric approach. IEEE Commun. Lett. 2017, 6, 706–709. [CrossRef]
24. Björnson, E.; Hoydis, J.; Sanguinetti, L. Massive MIMO networks: Spectral, energy, and hardware efficiency. Found. Trends Signal

Process. 2017, 11, 154–655. [CrossRef]
25. Sanguinetti, L.; Björnson, E.; Hoydis, J. Toward massive MIMO 2.0: Understanding spatial correlation, interference suppression,

and pilot contamination. IEEE Trans. Commun. 2019, 68, 232–257. [CrossRef]
26. Björnson, E.; Sanguinetti, L. Scalable cell-free massive MIMO systems. IEEE Trans. Commun. 2020, 68, 4247–4261. [CrossRef]
27. Zhang, J.; Zhang, J.; Björnson, E.; Ai, B. Local partial zero-forcing combining for cell-free massive MIMO systems. IEEE Trans.

Commun. 2021, 69, 8459–8473. [CrossRef]
28. Interdonato, G.; Buzzi, S. Conjugate beamforming with fractional-exponent normalization and scalable power control in cell-free

massive MIMO. In Proceedings of the 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), Lucca, Italy, 27–30 September 2021; pp. 396–400.

29. Nikbakht, R.; Mosayebi, R.; Lozano, A. Uplink fractional power control and downlink power allocation for cell-free networks.
IEEE Wirel. Commun. Lett. 2020, 9, 774–777. [CrossRef]

30. Interdonato, G.; Karlsson, M.; Björnson, E.; Larsson, E.G. Local partial zero-forcing precoding for cell-free massive MIMO. IEEE
Trans. Wirel. Commun. 2020, 19, 4758–4774. [CrossRef]

31. Interdonato, G.; Frenger, P.; Larsson, E.G. Scalability aspects of cell-free massive MIMO. In Proceedings of the ICC 2019—2019
IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6.

32. Nayebi, E.; Ashikhmin, A.; Marzetta, T.L.; Yang, H.; Rao, B.D. Precoding and power optimization in cell-free massive MIMO
systems. IEEE Trans. Wirel. Commun. 2017, 16, 4445–4459. [CrossRef]

33. Nayebi, E.; Ashikhmin, A.; Marzetta, T.L.; Rao, B.D. Performance of cell-free massive MIMO systems with MMSE and LSFD
receivers. In Proceedings of the 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA,
6–9 November 2016; pp. 203–207.

34. Riera-Palou, F.; Femenias, G. Decentralization issues in cell-free massive MIMO networks with zero-forcing precoding. In Proceed-
ings of the 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA,
24–27 September 2019; pp. 521–527.

35. Aguerri, I.E.; Zaidi, A.; Caire, G.; Shitz, S.S. On the capacity of cloud radio access networks with oblivious relaying. IEEE Trans.
Inf. Theory 2019, 65, 4575–4596. [CrossRef]

36. Biglieri, E.; Proakis, J.; Shamai, S. Fading channels: Information-theoretic and communications aspects. IEEE Trans. Inf. Theory
1998, 44, 2619–2692. [CrossRef]

37. Ngo, H.Q.; Tataria, H.; Matthaiou, M.; Jin, S.; Larsson, E.G. On the performance of cell-free massive MIMO in Ricean fading. In
Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018;
pp. 980–984.

38. Adhikary, A.; Ashikhmin, A.; Marzetta, T.L. Uplink interference reduction in large-scale antenna systems. IEEE Trans. Commun.
2017, 65, 2194–2206. [CrossRef]

39. Nikbakht, R.; Lozano, A. Uplink fractional power control for cell-free wireless networks. In Proceedings of the ICC 2019—2019
IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–5.

http://dx.doi.org/10.1109/TWC.2019.2941478
http://dx.doi.org/10.1109/LCOMM.2017.2694431
http://dx.doi.org/10.1109/MCOM.2003.1186553
http://dx.doi.org/10.1109/LWC.2017.2734893
http://dx.doi.org/10.1561/2000000093
http://dx.doi.org/10.1109/TCOMM.2019.2945792
http://dx.doi.org/10.1109/TCOMM.2020.2987311
http://dx.doi.org/10.1109/TCOMM.2021.3110214
http://dx.doi.org/10.1109/LWC.2020.2969404
http://dx.doi.org/10.1109/TWC.2020.2987027
http://dx.doi.org/10.1109/TWC.2017.2698449
http://dx.doi.org/10.1109/TIT.2019.2897564
http://dx.doi.org/10.1109/18.720551
http://dx.doi.org/10.1109/TCOMM.2017.2662023

	Introduction
	Related Work
	Paper Structure

	System Model
	Channel Estimation
	Uplink Payload Transmission
	Dynamic Cooperation Clustering Network

	Multiple CPUs Cooperative Transmission
	Level 4: Centralized Connectivity
	Level 3: Distributed Connectivity and Complex Processing
	Level 2: Distributed Connectivity and Simple Processing
	Level 1: No Connectivity

	Simulation Results
	Uplink Transmission
	Power Allocation
	Varying Numbers of CPUs
	Varying Numbers of UEs
	Varying the Uplink Transmit Power

	Conclusions
	
	References

