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Abstract: One of the main problems in representing information in the form of nonsystematic logic is
the lack of flexibility, which leads to potential overfitting. Although nonsystematic logic improves the
representation of the conventional k Satisfiability, the formulations of the first, second, and third-order
logical structures are very predictable. This paper proposed a novel higher-order logical structure,
named G-Type Random k Satisfiability, by capitalizing the new random feature of the first, second, and
third-order clauses. The proposed logic was implemented into the Discrete Hopfield Neural Network
as a symbolic logical rule. The proposed logic in Discrete Hopfield Neural Networks was evaluated
using different parameter settings, such as different orders of clauses, different proportions between
positive and negative literals, relaxation, and differing numbers of learning trials. Each evaluation
utilized various performance metrics, such as learning error, testing error, weight error, energy
analysis, and similarity analysis. In addition, the flexibility of the proposed logic was compared with
current state-of-the-art logic rules. Based on the simulation, the proposed logic was reported to be
more flexible, and produced higher solution diversity.

Keywords: G-Type Random k Satisfiability; artificial neural network; Hopfield Neural Network;
flexibility; random dynamics

MSC: 68T07; 68T27; 68T20

1. Introduction

Artificial Intelligence (AI) is a field of modelling intelligence that integrates technical
science, theory development, mathematics, computer science, physics, and biology. AI has
many applications [1–5], which include Artificial Neural Networks (ANN). The conven-
tional ANN consists of interconnected neurons that divide input and output layers which
are connected by synaptic weight. Generally, the input neuron receives information in the
form of a problem or data, is processed by the intermediate layer, and generates the final
neuron state that corresponds to the solution of the problem. This feature makes ANNs a
great platform to solve and improve the solution of any given optimization problem.

In 1982, Hopfield [6] proposed the earliest variant of ANN, namely the Hopfield
Neural Network (HNN), that consists of a single-layer feedback neural network. In this
discussion, we only consider the application of the Discrete Hopfield Neural Network
(DHNN) in solving the optimization problem. The DHNN is a two-value nonlinear dy-
namic system that has multiple inputs, and the firing of the output is solely based on the
pre-defined threshold values. Structurally, the sufficient condition for the stability of the
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DHNN is that the weighted coefficient matrix is symmetric and has zero diagonal elements.
By capitalizing the coefficient matrix of the DHNN, the solution capacity creates associative
memory behavior which mimics actual human intelligence. The final neuron state of the
DHNN can be interpreted in terms of an energy function, where the absolute minimum
energy signifies the most optimal solution for any given optimization problem. Thus, the
correctness of the final energy function in a DHNN is highly dependent on the value of
the synaptic weight assigned by the network. One of the main weaknesses of the conven-
tional DHNN is the convergence issue resulting from the lack of capacity as the number
of neurons increases. This is because the conventional DHNN has no symbolic rule to
govern the modeling of the Discrete Hopfield Network (DHN), which causes the network
to reiterate the synaptic weight until the optimal synaptic weight can be reached. Without a
proper symbolic rule, the DHNN will forever iterate until the final neuron state achieves an
optimal state that corresponds to global minimum energy. In order to remedy the situation,
Abdullah [7] proposed a logical rule in ANN by mapping the connection of the neuron
with a valid (or near valid) interpretation. This is the earliest effort to introduce an effective
method to find the optimal synaptic weight that corresponds to the optimal final neuron
state. Interestingly, this is the first proposal of the term “Wan Abdullah method” where the
synaptic weight is obtained by comparing the final energy with the cost function of the logic.
This research direction was continued by Sathasivam [8], where she proposed the Horn
Satisfiability (HornSAT) logical rule in DHNNs. This proposed DHNN utilizes effective
neuron relaxation to ensure the final neuron state will not be trapped in the suboptimal
state. Note that this study was the first computer simulation of logic programming in
DHNNs, and the result shows that logical rules indeed can be embedded into DHNNs.
However, the impact of different logical rules in DHNNs is poorly understood because
HornSAT has limited usability in terms of structure. Thus, there is a need for a different
structure of logical rules where each variable inside the clause is not limited to only one
positive literal at most.

Kasihmuddin et al. [9] proposed the first systematic logical rule, namely 2 Satisfiability
(2SAT) in DHNNs. The proposed logical rule has two literals per clause, and all clauses are
connected by disjunction. This logical rule was embedded into DHNN by comparing the
cost function with the Lyapunov energy function. With the aid of a genetic algorithm, the
learning of 2SAT in DHNNs can be carried out effectively. Mansor et al. [10] extended the
order of the logical rule by proposing 3 Satisfiability in DHNNs. In this context, the third-
order Lyapunov energy function is compared to obtain the third-order synaptic weight. The
proposed study managed to obtain an optimal value for the global minima ratio, despite
the associative memory of the DHNN with 3SAT increasing exponentially. This research
was pivotal to the application of systematic SAT in ANNs. Alzaeemi et al. [11] proposed
2SAT in the Radial Basis Function Neural Network (RBFNN) by calculating the center and
width that corresponds to the output weight. The implementation of 2SAT in an RBFNN
was reported to yield a small iteration error during learning. Note that the proposed study
has been comprehensively compared with the state-of-the-art DHNN in [12], showing the
compatibility of systematic logical rules in various types of ANNs. In another development,
Kasihmuddin et al. [13] proposed the first non-satisfiability logical rule, namely Maximum
k Satisfiability in DHNN, by considering the nonzero cost function during the learning
phase. The proposed research was shown to achieve an optimal global minima ratio with
lower learning error. In another development, systematic logic has been applied to logic
mining that classifies various real-life problems. Despite successful implementation of
systematic logic in DHNNs, systematic logic lacks variety of clauses and produces less
neuron variation during the retrieval phase of DHNNs. Thus, there is an urgent proposal
for a logical rule that contains a clause with different orders to be embedded into a DHNN.

There is a great diversity of nonsystematic logical rules that were recently proposed.
Sathasivam et al. [14] proposed the first Random 2 Satisfiability (RAN2SAT) in DHNNs,
where the first and second-order clauses form the whole logical formulation. Interestingly, the
result of the experiment shows that the first-order clause creates more logical inconsistency
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compared to the second-order clause. This implies that as the number of first-order clauses
increases the DHNN is unable to complete the learning phase, resulting in a suboptimal
retrieval phase. This research was further extended by Karim et al. [15], where the higher-
order RANkSAT was proposed by adding third-order logic. This study has an interesting
insight because different variants of RAN3SAT, such as RAN1,3SAT and RAN2,3SAT were
proposed in DHNNs. In this paper, all the variants of RAN3SAT were compared with the
systematic logical rule to obtain the optimal global minima ratio. This is an interesting result
because we are able to validate that DHNNs can “behave” according to the nonsystematic
logical rule. In order to optimize RAN3SAT in DHNNs, Bazuhair et al. [16] intelligently
proposed Election Algorithm to optimize and improve both the learning and retrieval phases.
The proposed RAN3SAT is considered the best hybrid DHNN because the proposed method
has low learning error, high variation value, and a high global minima ratio. In another
development, Alway et al. [17] contributed to the development of nonsystematic logical rules
by proposing Major 2 Satisfiability (MAJ2SAT). The proposed logical rule capitalizes a high
proportion of second-order logic in comparison with other logical clauses. Based on the
result reported in this paper, MAJ2SAT creates more variation in terms of logical rules, and
has a very low similarity value compared to systematic logical rules. However, the existing
nonsystematic logical rule does not take into account the random occurrence of the clause
that makes the final formulation. In this context, nonsystematic logic must have the ability to
cover all the solution sets bounded by the higher-order logical clause.

In this paper, we introduced G-Type Random 3 satisfiability (GRANkSAT) that cap-
italizes both higher-order systematic and nonsystematic logical rules in DHNNs. The
higher-order systematic logical rule provides storage capacity to GRAN3SAT, whereas the
higher-order nonsystematic logical rule provides a more diversified third-order logical
connection. This is the first attempt to leverage both logical rules into a DHNN which we
believe can represent all sets of logical rules that have been previously proposed. The main
contributions of this paper are as follows:

1. We propose a novel logical rule, namely G-Type Random 3 Satisfiability, or GRAN3SAT,
by randomly generating the first-order, second-order, and third-order satisfiability logical
rules. By incorporating a third-order clause, the capacity of the proposed logic increases.

2. We implement GRAN3SAT into a DHNN by minimizing the logical inconsistency of
the logical rule that corresponds to the zero-cost function. The derived cost function
that corresponds to GRAN3SAT will be capitalized to compute the synaptic weight of
the network.

3. We conduct various extensive analyses to examine the behavior of the proposed
GRAN3SAT. The final neuron state for various case studies will be evaluated based
on different initial neuron states, parameter perturbation, different trial runs, and
relaxation. Various performance metrics, such as learning error, synaptic weight error,
energy profile, test error, and similarity metric, will be reported to justify the behavior
of the proposed GRAN3SAT.

4. We compare the proposed GRAN3SAT with state-of-the-art systematic and nonsys-
tematic logical rules.

The organization of this paper is as follows. Section 2 provides an overview of the
structure of a novel GRANkSAT. Section 3 explains the implementation of GRANkSAT into
a DHNN. The experimental setup and performance evaluation metrics used throughout
the simulation are shown in Section 4. Section 5 discusses and analyzes the behavior
performance of a DHNN-GRANkSAT in different parameters and phases, and compares it
with several established logical structures. Finally, Section 6 presents the conclusions and
future work.

2. G-Type Random k Satisfiability

GRANkSAT is a nonsystematic logical structure expressed by conjunctive normal form
CNF. GRANkSAT consists of a series of clauses with random literals, and the numbers of
clauses and states of literals are randomly determined. In this case, GRAN3SAT mainly
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consists of k-SAT (k ≤ 3), where k-SAT is made up of a set of x literals and a set of y clauses.
Each literal value has the form of {1,−1} that represents TRUE or FALSE. The general
structure of GRAN3SAT (PGRAN3SAT) is given as follows:

(a) A set of x literals: A1, A2, A3, . . . , Ax

(b) A collection of clause numbers: U = {Nc1, Nc2, Nc3 . . . , Ncω}, whereby

Nci =
[

mi ni ki
]T ·i ∈ [1, ω] (1)

x = 3mi + 2ni + ki (2)

y = mi + ni + ki (3)

where mi is the number of the third-order clause, ni is the number of the second-order
clause, and ki is the number of the first-order clause.

(c) A random number j, where j ∈ [1, ω] and j ∈ N which corresponds to the set of
clauses Ncj.

(d) The third-order logic clause is as follows: C(3)
1 , C(3)

2 , C(3)
3 , . . . , C(3)

mj , where

C(3)
mj =

(
AO3 ∨ Ap3 ∨ Aq3

)
, O3, p3, q3 ∈ N (4)

(e) The second-order logic clause is defined as: C(2)
1 , C(2)

2 , C(2)
3 , . . . , C(2)

nj , where

C(2)
nj =

(
AO2 ∨ Ap2

)
, O2, p2 ∈ N (5)

(f) The first-order logic clause is stated as: C(1)
1 , C(1)

2 , C(1)
3 , . . . , C(1)

kj
, where

C(1)
kj

= AO1 , O1 ∈ N (6)

Thus, the general formulation for GRANkSAT, or PGRAN3SAT , based on the above
features is as follows:

PGRAN3SAT = ∧mj
i=1C(3)

i ∧
nj
i=1 C(2)

i ∧
kj
i=1 C(1)

i (7)

where mj > 0, nj ≥ 0, k j ≥ 0. Based on (4)–(6), the states of the literals are determined
randomly, where Ai ∈ {Ai,¬Ai}. The examples of PGRAN3SAT with different random
structures are as follows:

PGRAN3SAT = (A1 ∨ A2 ∨ A3) ∧ (A4 ∨ A5 ∨ A6) ∧ (A7 ∨ A8) ∧ A9 (8)

PGRAN3SAT = (A1 ∨ A2 ∨ A3) ∧ (A4 ∨ A5) ∧ (A6 ∨ A7) ∧ A8 ∧ A9 (9)

According to Equations (8) and (9), the equation is satisfied or PGRAN3SAT = 1 if all the
clauses in the formulation are fully satisfied. Another interesting point about Equation (7)
is the randomness in representing the clause for PGRAN3SAT . In this case, the clause is not
only limited to Equations (8) and (9), but it has infinitely many combinations with a fixed
total number of literals. Equation (7) is different from that of previous research proposed
by Karim et al. [15], which proposed RAN3SAT formulation. In RAN3SAT, the proportion
of the Equations (4)–(6) is pre-determined, although the state of the literal remains random.
Thus, the random feature of the formulation does not consider the proportion of the clause.
In this paper, we propose a higher-order logical rule of PGRAN3SAT by proposing a third-
order clause (refer Equation (4)), yet the occurrence for each clause remains random. In
other words, PGRAN3SAT is expected to provide more logical flexibility in terms of clauses
and literals. In this case, any information in a combinatorial problem (such as logic mining)
will be represented randomly in the form of a one-dimensional to three-dimensional system.
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This feature helps practitioners represent any combinatorial problem in a more flexible
formulation. Therefore, the proposed PGRAN3SAT is a breakthrough in modelling neurons
in ANN.

3. GRAN3SAT in the Discrete Hopfield Neural Network

The DHNN is another variant of ANNs that has no hidden layers [18]; it can be used to
solve various optimization problems. A DHNN consists of bipolar neurons where the state
is represented by {1,−1}. The conventional neuron update with a pre-defined tolerance is
as follows:

Si =


1,

n
∑
jk

WijkSjSk ≥ δi

−1,
n
∑
jk

WijkSjSk < δi

(10)

where Wijk is the synaptic weight between neuron i, neuron j, and neuron k. Si is the state
of neuron i, and δi is the threshold. It is the synaptic weight Wi that deserves attention, as it
refers to the degree of the connection between multiple neurons. The property of the synaptic
weights for the two neurons follows Wij = Wji, Wijk = Wjik = Wjki = Wikj = Wkij = Wkji,
and has no self-feedback connection Wii = Wjj = 0, Wiii = Wjjj = Wkkk = 0. When a
higher-order connection has been added to Equation (10), any two similar neuron connections
will result in zero value for synaptic weight. PGRAN3SAT can be implemented into the DHNN
(GRAN3SAT) by assigning each neuron with a variable. Collectively, the neurons will be
grouped randomly as clauses in Equations (4)–(6) until they satisfy the total number of
neurons. The cost function χPGRAN3SAT for the implementation of PGRAN3SAT into the DHNN
is as follows:

χPGRAN3SAT =
1
8

mi

∑
j=1

F(3)
j1

F(3)
j2

F(3)
j3

+
1
4

ni

∑
j=1

F(2)
j1

F(2)
j2

+
1
2

ki

∑
j=1

F(1)
j1

(11)

F( k=1,2,3)
j =

{
1 + SAj , i f Aj

1− SAj , i f¬Aj
(12)

To fully implement the modelling of PGRAN3SAT in the DHNN, the cost function
χPGRAN3SAT that is associated with PGRAN3SAT must be zero. In other words, the DHNN
must find at least one interpretation which corresponds to a zero cost function. By finding
at least one consistent interpretation, the optimal synaptic weight for GRAN3SAT via [19]
can be found. However, if χPGRAN3SAT 6= 0, the PGRAN3SAT is not considered satisfiable,
which results in nearly random synaptic weight. Since achieving χPGRAN3SAT = 0 is vital to
ensure the DHNN can retrieve the correct final neuron state, effective learning methods
must be employed during the learning phase of the DHNN. The probability of finding a
satisfactory interpretation for PGRAN3SAT is as follows:

θ(χPGRAN3SAT = 0) =
(

7
8

)mi
(

3
4

)ni
(

1
2

)ki

(13)

where θ is the probability value, and
(

1− 1
2k

)
is the probability of satisfying the k-order

clause. During the retrieval phase, the DHNN will implement the iterative update of
neurons from the initial state to the final state via the local field formula and activation
function. Equations (14) and (15) represent the local field formula and the formula of
update neuron states, respectively. Since Hyperbolic Tangent Activation Function (HTAF)
has non-linear properties, HTAF is widely used as the activation function in artificial
neural networks [20].

hi =
n

∑
k 6=i,j

n

∑
j 6=i

WijkSjSk +
n

∑
j 6=i

WijSj + Wi (14)
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S fi
=


1,

n
∑

k 6=i,j

n
∑
j 6=i

WijkSjSk +
n
∑
j 6=i

WijSj + Wi ≥ 0

−1,
n
∑

k 6=i,j

n
∑
j 6=i

WijkSjSk +
n
∑
j 6=i

WijSj + Wi i < 0
(15)

Si and S fi
represent the initial state and the updated state of neuron i, respectively. Wijk, Wij,

and Wi represent the synaptic weights of the third, second, and first-orders of the DHNN,
respectively. The main motivation of using PGRAN3SAT in GRAN3SAT is to obtain a more
final state that has various logical rules during the retrieval phase. For instance, by using
Equation (15), the final neuron state is connected in various types of clauses that have been
stated in Equations (4)–(6). Thus, the magnitude of the final neuron state can be evaluated
using the Lyapunov energy function LPGRAN3SAT , as shown as follows:

LPGRAN3SAT = −1
3

n

∑
i

n

∑
j 6=i

n

∑
k 6=i,j

WijkSiSjSk −
1
2

n

∑
i

n

∑
j 6=i

WijSiSj −
n

∑
i

WiSi (16)

Lmin
PGRAN3SAT

=
mi
8

+
ni
4
+

ki
2

(17)

Since each logical order provides a fixed energy value, we can obtain the absolute
minimum energy of the PGRAN3SAT by calculating Lmin

PGRAN3SAT
in Equation (17). Note that we

can obtain the optimal synaptic weight by comparing Equation (16) with Equation (11), as long
as the learning phase of GRAN3SAT obtained at least one interpretation that corresponds
to χPGRAN3SAT = 0. By iteratively updating the neuron state via Equations (14) and (15),
LPGRAN3SAT always converges to the nearest local minima solution. As a result of the random
nature of the proposed PGRAN3SAT, both LPGRAN3SAT and Lmin

PGRAN3SAT
will fluctuate and have

different proportions than the research of Karim et al. [15], where the absolute final energy
can be pre-determined. Despite having different clause arrangement compared to [15], the
choice of literal in PGRAN3SAT is similar with the research of [14] and [15] where random
literals are the building blocks of the clause in Equations (4)–(6). In order to separate between
the global minimum solution and the local minimum solution, the convergence property of
the proposed GRAN3SAT must satisfy the following condition:∣∣∣LPGRAN3SAT − Lmin

PGRAN3SAT

∣∣∣ ≤ Tol (18)

where Tol is a pre-determined tolerance value of GRAN3SAT. In this context, condition (18)
determines whether the final neuron state exhibits the behavior that satisfies PGRAN3SAT .

Figure 1 illustrates the schematic diagram of the implementation of PGRAN3SAT to the
DHNN (GRAN3SAT). Generally, the schematic diagram can be divided into the learning
phase and the retrieval phase. Before the learning phase, random clause arrangement for
PGRAN3SAT was determined and was converted into Boolean algebra. After assigning each
clause in PGRAN3SAT with a neuron, GRAN3SAT is required to assign the neuron state that
satisfies the cost function in Equation (11). Thus, the optimal neuron assignment will help
us compute the optimal synaptic weight that will be used in the retrieval phase.
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4. Experimental Setup

To further investigate the behavior of the proposed research, GRAN3SAT will be
evaluated based on different parameters and learning settings. Four different simulations,
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including different number of clauses, different proportions of literals (positive or negative),
different learning trials, and different numbers of iterations will be tested in this paper.
Each part will undergo three assessments, which are the learning phase, retrieval phase,
and similarity index. The details for each simulation are as follows:

• Different numbers of clauses. In this section, we evaluate and analyze the impact of
different order logics on GRAN3SAT by using performance metrics at each phase, and
determine the impact of parameter perturbation on GRAN3SAT.

• Different proportions of literals. In this section, we evaluate the impact of different pro-
portions of literals (positive or negative) on GRAN3SAT by using performance metrics
at each phase, and determine the impact of parameter perturbation on GRAN3SAT.

• Different learning trials. In this section, we evaluate the impact of different learning
trials on GRAN3SAT on the performance metrics of each phase. This simulation
provides a basis for efficiency improvement in the subsequent learning algorithm.

• Different numbers of iterations. In this section, we evaluate the impact of Sathasivam
relaxation on GRAN3SAT via performance metrics of each phase to obtain the most
optimal parameters.

• Flexibility analysis of the logic structure. In this section, we compare GRAN3SAT with
several established logical rules in terms of flexibility of the logical rule.

All the experiments will be simulated using MATLAB 2016a with the 64-bit Windows
10 operating system. Table 1 shows the parameters involved in each experiment.

Table 1. Parameters for the proposed GRAN3SAT.

Parameter Explanation Parameter Value

Number of neurons (NN ) 6 ≤ NN ≤ 150
Number of clauses (NC ) {Nc1, Nc2, Nc3 . . . , Ncω}

Number of neuron combinations (Ncombmax ) 100
Number of learning trials (Ntrial ) 100, 1000, 1000

Current number of learning trials (Nl ) Nl ≤ Ntrial
Initialization of neuron states in the learning phase Random

Threshold (δi ) 0 [9]
Relaxation rate (r) 1 ≤ r ≤ 5

Number of testing trials (Nt ) 100
Initialization of neuron states in the testing phase Random

Tolerance value (Tol ) 0.001
Activation function HTAF [20]

Type of selection Random search

Each simulation will be evaluated using six types of performance metrics. The metrics
are based on process evaluation in the learning phase (learning error analysis), outcome
evaluation in the learning phase (weight analysis), process evaluation in the retrieval phase
(energy analysis), outcome evaluation in the retrieval phase (global solution analysis),
similarity index evaluation (solution diversity analysis), and structural error metrics (logic
flexibility analysis). Tables 2–5 present a list of parameters involved in all performance
evaluation metrics.

Table 2. List of parameters in the learning phase.

Parameter Remarks

fNC Maximum fitness achieved
fi Current fitness achieved

WWA Synaptic weight obtained by Wan method
Wi Current synaptic weight
Nw Number of weights at a time
Nwc Nwc = Nw · Ncombmax
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Table 3. List of parameters in the retrieval phase.

Parameter Remarks

Lmin Minimum energy value
L f Final energy

NGLO Number of global minimum solutions
NLOC Number of local minimum solutions

Nt Number of testing trials
Ntc Ntc = Nt · Ncombmax

Table 4. Parameters involved in the similarity index.

Parameter Remarks

l Number of {Sideal
i = 1, S f i = 1}

m Number of {Sideal
i = 1, S f i = −1}

n Number of {Sideal
i = −1, S f i = 1}

Table 5. Parameters involved in structure evaluation.

Parameter Remarks

NNC Current number of clauses
Nmean_c Average number of clauses
Nnegative Current number of negative literals
Nmean_p Average number of negative literals

RMSE (root mean square error), MAE (mean absolute error) [21], and MAPE (mean
absolute percent error) [22] are statistical metrics that can be used as evaluation metrics for
machine learning [23]. RMSE has been used as a standard statistical metric to measure the
performance of models. In addition, MAE is one of the most direct measures of prediction
error; the smaller the MAE value, the better the model. MAPE measures the accuracy of
the proposed model by percentage value. Compared with MAE, RMSE is more sensitive to
outliers which have a greater impact on it.

In the learning phase, we measure the fitness of neuron states and examine the satisfied
clause which generates the optimal synaptic weights. Equations (19)–(21) will be used
to measure the fitness of the neuron, whereas the error in synaptic weight used will be
evaluated based on Equations (22) and (23). Table 2 shows the parameters used in synaptic
weight analysis.

MAElearn =
Nl

∑
i=1

| fNC − fi|
Nl

(19)

RMSElearn =
Nl

∑
i=1

√
( fNC − fi)

2

Nl
(20)

MAPElearn =
Nl

∑
i=1

1
Nc

| fNC − fi|
fNC

(21)

MAEweight =
∑

Nwc
i=1 |WWA −Wi|

Nwc

(22)

RMSEweight =

√
∑

Nwc
i=1 (WWA −Wi)

2

Nwc

(23)

In the retrieval phase, the energy analysis is used to determine the efficiency of
GRAN3SAT [24]. Equations (24) and (25) represents the formulation for RMSE and MAE
of the neuron during retrieval phase. The quality of GRAN3SAT solutions is evaluated,
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and the RMSE, MAE, and ZM formulas are used to evaluate the test errors that are de-
fined in Equations (26)–(28). In addition, Table 3 describes the parameters used in the
retrieval phase.

MAEenergy =
∑

Ntc
i=1

∣∣∣Lmin − L f

∣∣∣
Ntc

(24)

RMSEenergy =

√√√√∑
Ntc
i=1

(
Lmin − L f

)2

Ntc

(25)

MAEtest =
NLOC

Ntc

(26)

RMSEtest =

√
NLOC

2

Ntc

(27)

ZMtest =
NGLO

Ntc

(28)

The similarity index quantifies the relationship between the final state of the neuron
and the ideal neuron state during the retrieval phase of GRAN3SAT. The definition of the
Sideal

i is as follows:

Sideal
i =

{
1 i f A
−1 i f¬A

(29)

where A is the positive literal and ¬A is the negative literal existing in each clause of
PGRAN3SAT , and Sideal

i is the ideal neuron state. Note that Equation (29) will consider the
final neuron state that achieves global minimum energy. In this case, the Jaccard index
SJaccard [25] will be used to evaluate the quality of the final neuron state:

SJaccard =
l

l + m + n
(30)

where S f i is the current final neuron state. Note that a lower value of SJaccard is favored,
since it shows higher diversity of the final neuron state.

To evaluate the flexibility of the logic structure, this paper proposes Equations (31)–(34)
to quantify the degree of change in the logic structure from the perspectives of the number
of clauses and the literal state. Equations (31) and (32) represent the number of clauses that
fluctuate during the learning phase of GRAN3SAT, and Equations (33) and (34) represent
the error resulting from the number of negative literals. In addition, Table 5 represents the
parameters involved in evaluating the flexibility of the logic structure.

MAENC =
∑Ncombmax

i=1 |NNC − Nmean_c|
Ncombmax

(31)

RMSENC =

√
∑Ncombmax

i=1 (NNC − Nmean_c)
2

Ncombmax
(32)

MAEliteral =
∑Ncombmax

i=1

∣∣Nnegative − Nmean_p
∣∣

Ncombmax

(33)

RMSEliteral =

√
∑Ncombmax

i=1

(
Nnegative − Nmean_p

)2

Ncombmax
(34)

Figure 2 shows the overall implementation of the proposed GRAN3SAT. Figure 2 can
be divided into two parts. First, the implementation process represents the actual process
of the proposed GRAN3SAT from the learning phase to the retrieval phase. Second, the
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process line describes the phases of the parameter influence with different performance
evaluation metrics.
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5. Results and Discussion

To evaluate the effectiveness of the proposed model, GRAN3SAT will be evaluated
based on four perspectives: different orders of clauses, different proportions between
positive and negative literals, different numbers of iterations, and different numbers of
learning trials. These perspectives will be evaluated based on various performance metrics.
After finding the best setting from Sections 5.1–5.4, the proposed GRAN3SAT will be
compared with existing model stated in Section 4.

5.1. The Effect of Different Types of Clauses

The purpose of this section is to analyze the influence of the numbers of first-order
ki, second-order ni, and third-order logic mi clauses on the performance of the proposed
GRAN3SAT. Since (ki, ni, mi) are randomly generated, the proportions of the clauses will
be adjusted based on the proportion of third-order (α), second-order (β), and first-order
logicals (γ); the cases are shown in Table 6.

Table 6. Different cases for the GRAN3SAT model.

Case Model Proportion

Case I GRAN3SAT rand(mi, ni, ki)
Case II GRAN3SAT·α ≥ 0.5 α = mi

mi+ni+ki
≥ 0.5

Case III GRAN3SAT·β ≥ 0.5 β = ni
mi+ni+ki

≥ 0.5
Case IV GRAN3SAT·γ ≥ 0.5 γ = ki

mi+ni+ki
≥ 0.5

Figure 3 demonstrates the performance of different GRAN3SAT models in terms of
MAElearn, RMSElearn, MAPElearn, MAEweight, and RMSEweight during the learning phase
of the DHNN. In order to assess the actual capability of GRAN3SAT with different pro-
portions, Exhaustive Search Algorithm (ES) was implemented with all models during the
retrieval phase. This learning method was proposed by [26], where the algorithm capital-
izes trial and error to achieve a minimized cost function χPGRAN3SAT = 0. This causes the
values of MAElearn and RMSElearn for all GRAN3SAT models to increase as the number of
neurons increases. Based on Figure 3a,b, the GRAN3SAT that has the highest proportion of
α has the lowest values of MAElearn and RMSElearn. This shows that the third order clause
has the capability to reduce the learning error of the proposed GRAN3SAT. This pattern
was supported by the high error for the GRAN3SAT model that has a high value of β and
γ. Another interesting perspective is that as the number of first-order logics increased,
the performance of GRAN3SAT during the learning phase detriorated. This is due to the
difficulty of the ES to find the consistent interpretation that satisfies GRAN3SAT that has
more first-order logic. Despite the increase in error as the number of neurons increases,
the ratio of values for both MAElearn and RMSElearn are close to 1:1. This indicates the
absence of outliers that potentially influence neuron fitness [27]. Based on Figure 3c, when
NN ≥ 15, the value of MAPElearn is relatively stable, reflecting the proportion of the
number of unsatisfied clauses to the total number of clauses [24]. It is reported that Cases I,
II, III, and IV will stabilize at around 0.33, 0.210, 0.280, and 0.410, respectively. As reported
in Figure 3a,b, most of the clauses that are not satisfied are a result of high values of β
and γ. This also confirms that lower MAPElearn can be achieved by GRAN3SAT if more
third-order logic was generated in the formulation.
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Figure 3d,e demonstrate the MAEweight and RMSEweight for all GRAN3SAT models.
Note that this perspective is only for the restricted learning phase where the number of
learning trials is pre-determined. Based on the result obtained, the values of MAEweight and
RMSEweight were the lowest when higher α was generated in the formula. This shows that
the correct synaptic weight can be obtained when more third-order clauses are considered
in the GRAN3SAT logical rules. The lowest performance of the GRAN3SAT model is when
γ is the highest, since the DHNN requires more learning iterations to minimize the cost
function. When MAEweight was minimized, the DHNN is able to retrieve the optimal final
neuron state which corresponds to the behavior of the GRAN3SAT model.

We now consider the capability of GRAN3SAT during the retrieval phase. Figure 4
demonstrates the performance of different GRAN3SAT models in terms of MAEenergy,
RMSEenergy, MAEtest, RMSEtest, and ZMtest during the retrieval phase of the DHNN.
In terms of MAEenergy and RMSEenergy, the GRAN3SAT with the highest proportion of
α has the lowest values of MAEenergy and RMSEenergy. This shows that the difference
between final energy and the absolute minimum energy is minimized as more third-order
clauses are generated in GRAN3SAT. This is a result of the lower values of MAEweight and
RMSEweight that lead to optimal final neuron states. It is also reported that the MAEenergy
and RMSEenergy were obtained from lower-order clauses compared to third-order clauses.
These findings have good agreement with the research of [28], where the closer the energy
is towards the absolute minimum energy, the more stable the final neuron state becomes.
It can be seen from Figure 4 that as the NN increases, the final state that corresponds to
the global solution is difficult to obtain. Most of the solution is trapped as a local solution
which results in higher values of MAEenergy and RMSEenergy. Thus, the values of MAEtest
and RMSEtest will also increase (refer to Figure 3c,d). In order to fully understand the
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value of MAEtest obtained by GRAN3SAT, we report the specific values of MAEenergy and
RMSEenergy for MAEtest = 0.994 when all final states of the DHNN reach local minima
solutions in Table 7.
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Table 7. The values of MAEenergy and RMSEenergy for different NN when MAEtest = 0.994.

Symbol Case IV Case III Case II Case I

NN 30 57 83 69
MAEenergy 3.949 3.087 2.471 6.444

RMSEenergy 4.183 3.474 2.938 7.416

mean(NC3−SAT) 2.760 4.100 21.370 8.590
mean(NC2−SAT) 3.460 19.100 5.860 9.930
mean(NC1−SAT) 14.760 6.470 7.130 23.370

According to Table 7, the final neuron state failed to achieve the global minimum
solution in 2.471 ≤ MAEenergy ≤ 3.949 for Case II to Case IV, whereas MAEenergy = 6.444
and RMSEenergy = 7.416 for Case I. GRAN3SAT also reported higher MAEenergy and
RMSEenergy at the critical value since there are no final neuron states that achieve the global
minimum solution. This shows the importance of higher-order clauses to retrieve the best
behavior of GRAN3SAT. The ratio of MAEenergy and RMSEenergy is close to 1:1, indicating
that there is no outlier in the energy distribution.

Using linear fitting in MATLAB [29], the relationship between the average number
of k-order logic clauses and energy errors can be obtained (refer Table 8). It can be found
that the average energy error of a single higher-order logical clause is less than that of a
lower-order logical clause. This shows that the behavior of GRAN3SAT can be portrayed
by assigning higher values of α.
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Table 8. Average individual k-order logic clause and energy error linear fit coefficients.

Error Third-Order Clause Second-Order Clause First-Order Clause

MAEenergy 0.012 0.074 0.247
RMSEenergy 0.027 0.088 0.257

According to Figure 4e, GRAN3SAT with higher α was reported to produce higher
ZMtest compared to other proportions. The reason of the higher value of ZMtest is because
the lower values of MAElearn and RMSElearn in finding the consistent interpretation during
the learning phase. Thus, optimal synaptic weight drives the final neuron state to converge
to the global minimum solution. In this case, the local field in Equation (14) has a higher
chance to satisfy the condition in Equation (18). On the contrary, a higher value of γ will
reduce the probability of the DHNN to converge to the optimal final neuron state. This is
due to only one value of synaptic weight that contributes to the update of the neuron state.
Thus, the final neuron state is likely to be trapped in a local minimum solution.

While all the previous metrics focus on the evaluation of the number of GRAN3SAT
solutions, it is equally important to evaluate the quality of the neuron state. We conduct
similarity analysis to measure the similarity of the global solution for each GRAN3SAT
model. In this section, the SJaccard with the second-order fitting [30] are mainly applied to
evaluate the performance for each model. Figure 5 represents the relationship between the
SJaccard with the second-order fitting and the NN under different models. Note that the
bar chart reflects the fluctuation of the SJaccard for the final neuron state where the curve
represents the overall trend of the SJaccard with the number of NN. As shown in Figure 5,
the result for SJaccard can be explained in three intervals. At interval 6 ≤ NN ≤ 27 the
SJaccard for the GRAN3SAT model is Case IV > Case I I I > Case I > Case I I, where α has
a larger global solution space. Next, at interval 27 ≤ NN ≤ 36, Case III was reported to
outperform Case IV due to higher lower-order clauses (β,γ). This results from the greater
probability for this case to obtain random Wij and Wi during the learning phase of the
DHNN. Finally, the value of Case I declines steadily at NN > 36 compared with the other
cases. In this case, the global solution of GRAN3SAT at NN > 36 has stable and more
diversified final neuron states. This can be explained by referring to Equation (14) where
more synaptic weight was responsible for the neuron updates during the retrieval phase.
However, the ineffectiveness of the ES during the learning phase of the DHNN creates more
local minimum solutions which reduce the number of final neuron states that are different
from each other. This phenomenon is more obvious as the NN increases. Consequently,
the choice of GRAN3SAT that capitalizes higher-order clauses will increase the number of
global solutions that eventually reduce the value of SJaccard. The feature makes GRAN3SAT
with higher α more advantageous compared to other models.
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5.2. The Effect of Different Proportions of Literals (Positive or Negative)

The purpose of this section is to analyze the influence of different proportions of
literals (positive or negative) towards the performance of the GRAN3SAT model. Note
that although the initial neuron state is randomly generated (1 or −1), the effect of the
number of positive and negative literals can provide us insight on the behavior of our
proposed GRAN3SAT model. Table 9 shows the proportion of the negative literal, PN , of
the neurons based on different GRAN3SAT models. Using the information in Table 9, we
will investigate each GRAN3SAT model based on the effectiveness of the learning phase,
retrieval phase, and similarity analysis.

Table 9. Different literal proportions for GRAN3SAT models.

Cases Models Remarks

Case I GRAN3SAT Literals (positive or negative) are randomly selected according to the system default Settings
Case II GRAN3SAT·PN = 0.9 90% negative literals generated
Case III GRAN3SAT·PN = 0.7 70% negative literals generated
Case IV GRAN3SAT·PN = 0.5 50% negative literals generated
Case V GRAN3SAT·PN = 0.3 30% negative literals generated
Case VI GRAN3SAT·PN = 0.1 10% negative literals generated

Figure 6 demonstrates the performance of different GRAN3SAT models in terms of
MAElearn, RMSElearn, MAPElearn, MAEweight, and RMSEweight during the learning phase.
Note that MAElearn, RMSElearn, and MAPElearn analyze the fitness of the neuron with differ-
ent PN , whereas MAEweight and RMSEweight analyze the error as a result of incorrect synaptic
weights with different PN . As shown in Figure 6a–c, there is no obvious difference in terms
of MAElearn, RMSElearn, and MAPElearn for all cases. This indicates that the learning phase
of the GRAN3SAT model is not affected by different PN . In order to support this statement,
we illustrate the linear fittings of MAElearn and RMSElearn in Table 10. Based on the value
of the error, the slope of the fitting remains the same, which indicates that different PN do
not influence the learning capability of the GRAN3SAT model. We magnified our finding
by extracting the value of MAPElearn for three different NN (refer Table 11). The curve
remains stable at about 0.31–0.36 when NN ≥ 24, which indicates that the percentage of
neuron fitness does not change as the NN increases. Interestingly, the mixture of random
occurrence clauses for PGRAN3SAT as stated in Equations (4)–(6) with different PN does
not increase or decrease the performance of the ES in finding the consistent interpretation.
Similar observations were reported in MAEweight and RMSEweight in Figure 6d,e. Com-
pared to MAElearn, the values of MAEweight and RMSEweight increase in different ways. At
NN < 40, MAEweight and RMSEweight increase up to 0.23 and 0.48, respectively. After that,
the values become stable since the optimal synaptic weight can no longer be obtained. Thus,
GRAN3SAT is still able to perform stably, even with different PN .

Table 10. The slopes of the straight-line fit of the error metrics.

Error Case I Case II Case III Case IV Case V Case VI

MAElearn 0.226 0.230 0.223 0.221 0.229 0.227
RMSElearn 0.247 0.251 0.243 0.240 0.249 0.248

Table 11. The values of MAPElearn for different NN.

NN Case I Case II Case III Case IV Case V Case VI

24 0.333 0.339 0.305 0.315 0.325 0.316
66 0.345 0.344 0.333 0.342 0.323 0.330
126 0.345 0.347 0.343 0.349 0.363 0.352
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Figure 7 presents the energy error distribution in terms of MAEenergy, RMSEenergy,
MAEtest, and ZMtest for different values of PN . Generally, the value of MAEenergy and
RMSEenergy fluctuate greatly as the NN increases. This is due to two contributing factors.
The first is that it is not always possible to obtain satisfactory synaptic weights in the
learning phase, thus that the energy function does not converge, resulting in a large
MAEenergy and RMSEenergy. The second factor is the random structure of PGRAN3SAT from
Equations (4)–(6). It is worth noting that the larger the proportion of PN , the easier it is to
form the two types of clauses ¬ Ai ∨ ¬ Aj and ¬ Ao ∨ ¬ Ap ∨ ¬ Aq, and these clauses are
more likely to produce larger final energy values. For instance, at PN = 0.9 for NN = 100
(refer to Table 12) forms an average of 15.41 all negative for second-order clauses and 8.04
all negative for third-order clauses. On the contrary, at PN = 0.1 for the same NN (refer
to Table 12) forms an average of 0.13 all negative for second-order clauses and 0.01 all
negative for third-order clauses. This shows that the behavior of the proposed GRAN3SAT
is easier to display when lower PN was employed. Next, MAEtest, RMSEtest, and ZMtest
in Figure 7c–e show the impact of the different PN towards the final neuron state. Based
on these figures, the smaller the value of PN , the higher the number of final states that
achieve global minimum energy. For example, at r = 2 when the state ¬ Ai ∨ ¬ Aj and
¬ Ao ∨ ¬ Ap ∨ ¬ Aq are {1, 1} and {1, 1, 1}, the proposed GRAN3SAT model was observed
to obtain local minimum solutions. This is because a larger proportion of negative literals
means that the polynomial coefficients of the energy function become more positive (100%
negative literals correspond to 100% positive coefficients of the energy function). In this case,
it is easier to produce larger final energy that results in local minimum energy. The trend
of MAEtest, RMSEtest, and ZMtest can be divided into two intervals. The first interval is
6 ≤ NN ≤ 60; the overall performance shows that the local minimum solution increases as
the NN increases. Moreover, as for second interval at NN > 60, it can be observed that the
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final state of all cases are basically local solutions. Consequently, GRAN3SAT can increase
the number of optimal final neuron states by increasing the number of positive literals.
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Table 12. The average NC when NN = 100.

Clause Case I Case II Case III Case IV Case V Case VI

−Ai ∨−Aj 4.080 15.410 6.700 4.070 1.480 0.130
−Ao ∨−Ap ∨−Aq 1.440 8.040 3.880 1.780 0.340 0.010

Figure 8 indicates the SJaccard of GRAN3SAT for different values of PN . Based on
Figure 8, the final state of GRAN3SAT varies significantly and fluctuates in a certain range.
In order to understand the actual performance of the final neuron state, the minimum
and maximum values of the SJaccard for GRAN3SAT are shown in Table 13. Since Case I
generates completely random literals, the final neuron state in regards to SJaccard shows the
highest differences in magnitude. This shows that more random literals in GRAN3SAT will
create different final neuron states. Another point to ponder is that high values of PN in
GRAN3SAT will increase the diversity of the final neuron state that achieved the global
minimum solution. According to Table 13, the value of SJaccard increased from 0.033 to 0.966
by just reducing the value of PN from 0.9 to 0.1, respectively. This is because the lower
the value of PN , the greater the probability for GRAN3SAT to produce Ao ∨ Ap ∨ Aq and
Ai ∨ Aj, which results in similar final neuron states. The main problem with producing the
mentioned clauses is that the synaptic weight obtained during the learning phase tends to
be monotonous in terms of vector and magnitude. As the proposed GRAN3SAT retrieves
the final neuron state using Equations (14) and (15), the HTAF will classify the final state
more towards a single type of neuron state; this will increase the value of SJaccard. Therefore,
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the proposed GRAN3SAT model will achieve an optimal final neuron state by reducing
positive literals in PGRAN3SAT formulation.
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Table 13. The ranges of the SJaccard values.

Case I Case II Case III Case IV Case V Case VI

MAX 0.666 0.288 0.528 0.679 0.82 0.966
MIN 0.292 0.033 0.217 0.278 0.362 0.448

From the above discussion, it can be concluded that different PN will affect the energy
error, test error, and especially the similarity index, but have no effect on clause satisfaction
and synaptic weight error. During the retrieval phase, the larger the value of PN , the higher
the energy error, and the fewer global solutions. In the similarity index, the larger the value
of PN , the smaller the value of SJaccard. This means that a larger proportion of PN will have
fewer solutions that satisfy Equation (18). In this case, the tradeoff between PN must be
determined to ensure the optimality of our proposed GRAN3SAT.

5.3. The Effect of Different Learning Trials

The purpose of this section is to analyze the effect of different learning trials, Ntrial ,
on the performance of the GRAN3SAT models. During the learning phase, the ES will be
given a set of trials to ensure the cost function of the DHNN is minimized. In this case, the
fitness of the neurons will be based on the number of satisfied clauses obtained from each
Ntrial . Note that the higher number of learning trials will assist the ES to explore a larger
search space for the highest fitness that corresponds to a GRAN3SAT model. The results
from this section will provide the theoretical support for improving the efficiency of the
learning algorithm of our proposed GRAN3SAT model.

Figure 9a–c show the effect of the Ntrial on the errors MAElearn, RMSElearn, and
MAPElearn for the GRAN3SAT model. As shown in Figure 9a–c, the MAElearn, RMSElearn,
and MAPElearn are similar despite having different values of Ntrial . During the learn-
ing phase of GRAN3SAT, the neuron fitness is dependent on the number of clauses in
PGRAN3SAT , although it has been reported in the research of [15] that higher values of Ntrial
will increase the probability of the ES to minimize the cost function. The random feature of
PGRAN3SAT in Equations (4)–(6) makes high values of Ntrial appear insignificant. When the
ES failed to achieve χPGRAN3SAT = 0, the difference between the current neuron fitness and
the desired neuron fitness will increase. This was supported by the increase in MAElearn,
RMSElearn, and MAPElearn as the number of NN increased.
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Figure 9d,e illustrate the effect of the Ntrial on the errors MAEweight and RMSEweight for
the GRAN3SAT model. At 6 ≤ NN ≤ 63, the value of MAEweight and RMSEweight are the
highest when Ntrial is the lowest. This is because although the cost function of the neuron in
GRAN3SAT is χPGRAN3SAT 6= 0, some fragment of the clause of PGRAN3SAT was satisfied and
obtained the optimal synaptic weight. In this case, more Ntrial will provide more solution
space for the ES to find near optimal neuron fitness. Therefore, MAEweight and RMSEweight
can be reduced. Based on Table 14, at NN > 63, the values of MAEweight and RMSEweight
gradually stabilize, and it is difficult to satisfy the clause in Equations (4)–(6). This shows
that the ES does not contribute to driving the neuron towards global maxima. It is worth
noting that simply increasing the number of Ntrial will increase both computational time
and capacity of the GRAN3SAT model. On the contrary, the effect of high Ntrial seems
obvious if GRAN3SAT became systematic SAT, except that the clause produced is only a
first-order clause. In order to remediate the situation, the learning options of GRAN3SAT
can be improved by combining other meta-heuristic algorithms, such as the Grey Wolf
Optimization (GWO) [31], Genetic algorithm (GA) [32], Election Algorithm (EA) [33], and
Particle Swarm Optimization (PSO) [34].

Figure 10a,b illustrate the effect of the Ntrial on the MAEenergy and RMSEenergy for
the GRAN3SAT model. Based on these figures, there is a small difference in the energy
error between Lmin (minimum energy) and L f (final energy) as a whole, showing a trend of
decreasing energy error as the Ntrial value increases. This is closely related to the optimal
synaptic weights obtained by GRAN3SAT during the learning phase. We confirm our
findings by simulating the linear fitting of the MAEenergy with different values of Ntrial
(refer to Table 15). Overall, the MAEenergy and RMSEenergy show a steady upward trend
with the increase of NN. This is due to the increased numbers of third-order clauses and
second-order clauses, resulting in slow network convergence.
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Table 14. The values of MAElearn and MAEweight for GRAN3SAT.

NN 6 21 63 75 105

Learning error MAElearn MAElearn MAElearn MAElearn MAElearn

Ntrial = 102 0.640 4.061 14.595 16.417 21.321
Ntrial = 103 0.767 3.817 13.373 14.413 23.293
Ntrial = 104 0.741 4.220 13.596 16.239 25.710

Weight error MAEweight MAEweight MAEweight MAEweight MAEweight

Ntrial = 102 0 0.126 0.256 0.246 0.232
Ntrial = 103 0 0.067 0.217 0.225 0.243
Ntrial = 104 0 0.051 0.219 0.222 0.247
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Figure 10. Error performance for (a) MAEenergy, (b) RMSEenergy, (c) MAEtest, (d) RMSEtest, and
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Table 15. The slope of the linear fitting for MAEenergy .

Ntrial Ntrial = 102 Ntrial = 103 Ntrial = 104

The slope of MAEenergy 0.102 0.102 0.106

Figure 10c–e and Table 16 demonstrate the effect of Ntrial on the MAEtest , RMSEtest,
and ZMtest for the GRAN3SAT model. As the Ntrial increased from Ntrial = 102 to
Ntrial = 103, the sharp increase of MAEtest for 6 < NN < 63 to 6 < NN < 87 was
about 42%. On the other hand, as the Ntrial increased from Ntrial = 103 to Ntrial = 104,
the sharp increase of MAEtest for 6 < NN < 87 to 6 < NN < 93 was about 7%. This
indicates that the larger the value of Ntrial , the more likely for GRAN3SAT to obtain more
global minimum solutions. However, an extremely high value of Ntrial may increase the
number of global solutions, but at the expense of high computational complexity. Therefore,
although Ntrial = 10000 has the best performance in terms of the MAEtest , RMSEtest, and
ZMtest, it is not the best choice for GRAN3SAT efficiency.
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Table 16. The ranges of MAEtest for different Ntrial .

Trial Interval MAEtest Interval MAEtest

Ntrial = 102 6 < NN < 63 0.030–0.990 NN ≥ 63 0.990–1.000
Ntrial = 103 6 < NN < 87 0.028–0.982 NN ≥ 87 0.982–1.000
Ntrial = 104 6 < NN < 93 0.042–0.985 NN ≥ 93 0.985–1.000

Figure 11 demonstrates the SJaccard of the proposed GRAN3SAT model with different
values of Ntrial . Note that the bar graph represents the change of the SJaccard with the
NN, and that the curve represents the changing trend of the SJaccard with different Ntrial .
Figure 11 shows a downward trend of SJaccard because the number of final states that
achieved global minimum solutions reduced dramatically as the number of NN increased.
Interestingly, the final neuron state for the proposed GRAN3SAT model has the best
performance when Ntrial = 100. This further indicates that the increase in Ntrial does not
further improve the diversity of the final neuron state. Another interesting point of view
is the property of PGRAN3SAT that can be transformed into systematic logical rules. When
this transformation occurs, fewer Ntrial are required to obtain the lower SJaccard. This is an
obvious exception if and only if the PGRAN3SAT was transformed into a first-order clause, as
indicated in Equation (6). In this case, it will be very difficult for us to examine the behavior
of the GRAN3SAT model as a result of the absence of solutions that can achieve global
minima ratios.
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In summary, optimal GRAN3SAT can be obtained by increasing the number of Ntrial so
that the learning error can be further reduced. When the error remains low, the final neuron
state of the GRAN3SAT model will be optimized and will converge to a global minimum
solution. The increase in Ntrial must not be large until it increases the computational
complexity of the proposed GRAN3SAT. By optimizing the learning phase and the retrieval
phase of the GRAN3SAT model, diversity of the SJaccard can be increased. By considering
all the factors proposed in the previous results, Ntrial = 100 was chosen as an optimal value
for our proposed GRAN3SAT model. The use of several meta-heuristic algorithms, such as
those provided by [35,36], are crucial in constructing a more optimal GRAN3SAT model.

5.4. The Effect of Relaxation in GRAN3SAT

The purpose of this section is to explore the effect of DHNN relaxation on GRAN3SAT
performance. This analysis was inspired by the research of Sathasivam [8] where a relax-
ation phase during the retrieval phase is vital to ensure the DHNN will converge to an
optimal final neuron state. According to that paper, without appropriate relaxation, the
DHNN will not display the behavior of the logical rule due to some neurons becoming
trapped in local minima solutions. In this section, we will discuss the effect of the relaxation
towards GRAN3SAT according to various numbers of relaxations. Figure 12 illustrates the
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effectiveness of relaxation for 1 ≤ r ≤ 5 in terms of MAEenergy, RMSEenergy, MAEtest, and
RMSEtest in GRAN3SAT.
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As shown in Figure 12a,b, the values of MAEenergy and RMSEenergy were the highest
when a minimum number of relaxations (r = 1) was implemented. This is a result of
the poor convergence property toward global minimum energy, even if a short relaxation
was implemented. This is after considering the effect of the random weight (due to an
ineffective learning phase), and the structure of PGRAN3SAT formulation in the DHNN.
However, the MAEenergy and RMSEenergy improve as the number of r is increased because
the local field in Equations (14) and (15) will move the state of the neuron to the global
solution. Despite the final energy differences, the numbers of final states (Figure 12c,d)
that were trapped in local minimum solutions were almost the same for the case of r = 2
and r = 4. This shows that the energy distribution of the Lyapunov energy function for
GRAN3SAT is stable and optimal. Interestingly, the performance of the global minima
ratio (refer to Figure 12) is ZM(r = 2, 4) > ZM(r = 1, 3, 5). These data show that there is
a phenomenon of mutual conversion between the local solution and the global solution
during the retrieval phase of the DHNN. Since the DHNN requires more computational
iterations at r = 4, we can conclude that r = 2 is the optimal number of relaxations for
GRAN3SAT.

Figure 13 represents the SJaccard of the proposed GRAN3SAT model with different
numbers of neurons. Note that the bar graph represents the change of the SJaccard with
the NN, and that the curve represents the changing trend of the SJaccard when 1 ≤ r ≤ 5.
As shown in Figure 13, SJaccard was reported to obtain the highest value when r = 1.
Interestingly, at NN ≤ 54 the value of SJaccard for r = 2 and r = 4 is the same. This pattern
has been reported for r = 3 and r = 5 (refer to Table 17). Such a result is due to the
regular alternation or repetition of the neuron states in the clauses during the relaxation
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process. On the other hand, the regularity of the value for SJaccard is due to relaxation,
which is not obvious for 2 ≤ r ≤ 5 at 54 < NN < 102. This indicates that the final neuron
states of GRAN3SAT are consistently similar to each other. Unfortunately, the value of
SJaccard cannot be determined at NN > 102 since there is no final neuron state that achieves
global minima solutions. Thus, the trend of the second-order fitting curve of the SJaccard
has diverged. This is a result of an ineffective learning phase of GRAN3SAT which leads
to random generation of synaptic weight as the number of neurons increases. Thus, the
diversity of the global solution cannot be examined. In summary, the proposed GRAN3SAT
model obtained the most diversified final state when r = 2. The higher value of relaxation
r > 2 is not favored by GRAN3SAT due to the high computational iterations involved,
despite delivering the same value for SJaccard.
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Table 17. SJaccard under different relaxations and numbers of neurons (NN). “-“ represents all the
final states of the GRAN3SAT model trapped in local minimum solutions.

NN 6 18 30 42 54 66

r = 1 0.682 0.697 0.695 0.668 0.593 0.613
r = 2 0.625 0.652 0.644 0.627 0.531 0.558
r = 3 0.624 0.652 0.650 0.624 0.527 0.555
r = 4 0.625 0.652 0.644 0.627 0.531 0.558
r = 5 0.624 0.652 0.650 0.624 0.527 0.556

NN 78 90 102 114 126 138

r = 1 0.690 0.548 - - - 0.585
r = 2 0.635 0.485 - - - 0.530
r = 3 0.628 0.477 - - - 0.494
r = 4 0.635 0.489 - - 0.382 0.531
r = 5 0.630 0.477 - - - 0.510

5.5. Comparisons with the Existing Work

The purpose of this section is to analyze the flexibility of the proposed GRAN3SAT
model from the perspectives of the changes for both numbers of clauses and literals. The
flexibility of the proposed model will be compared with PRAN3SAT [15], P3SAT [20], and
P2SAT [9] in terms of error analysis. Since it is difficult for us to compare the effectiveness
of the GRAN3SAT model, we propose two perspectives of the error analysis. First, we will
evaluate the flexibility of the GRAN3SAT model from the perspective of clause. In this
case, higher values of error indicate greater flexibility of the clause. In this case, MAENC
and RMSENC are the chosen metrics to evaluate the error of the number of clauses and the
average numbers of clauses, respectively. Secondly, we will evaluate the flexibility of the
proposed GRAN3SAT model from the perspective of literals. In this case, higher values of
error indicate greater flexibility of the literals in the proposed logical rule compared to the
existing work.
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According to Figure 14a,b, the MAENC and RMSENC for GRAN3SAT are reported to
outperform all the existing networks. This shows that GRAN3SAT acquires good flexibility
in producing randomized clausal arrangements which interchangeably create first, second,
and third-order logic. On the other hand, PRAN3SAT shows a competitive flexibility resulting
from a property of the nonsystematic logical rule compared to systematic logic (P3SAT and
P2SAT). Although the PRAN3SAT shows absolute differences and high deviation from the
number of clauses, random arrangement of GRAN3SAT was shown to cover more solution
sets and possible logical interpretations. This is indicated by the highest values of MAENC
and RMSENC achieved by GRAN3SAT. Thus, GRAN3SAT is expected to provide more
possible synaptic weight compared to RAN3SAT. As expected, systematic logical rule
(P3SAT and P2SAT) has the lowest flexibility error due to the constant number of clauses for
all values of NN. In other words, interpretation from the systematic logical rule is more
rigid and will never produce different sets of logical formulation. We also observe that the
probability for our proposed GRAN3SAT model to be reduced to systematic logical rules,
such as P3SAT and P2SAT , will approach zero as the number of neurons increases. This shows
that GRAN3SAT has a higher tendency towards nonsystematic logical rules compared to
the other existing systematic logical rules. This behavior suggests that GRAN3SAT has
more possible sets of the synaptic weight which will make the proposed DHNN retrieve
more neuron states. As shown in Figure 14c,d, the values of MAEliteral and RMSEliteral
for GRAN3SAT are not significantly different compared to those of existing work. Since
the probability of obtaining positive and negative literals is similar for all types of logic,
GRAN3SAT shares the same characteristics as RAN3SAT in terms of literals. Thus, we
can conclude that the proposed GRAN3SAT model capitalizes the feature of the existing
nonsystematic logical rules despite having a totally random clausal arrangement.
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6. Conclusions

Creating DHNN with flexible final neuron state is imperative in the field of machine
learning. By formulating the most flexible logical rule, the neuron structure of the con-
ventional DHNN will exhibit larger storage capacity and has the ability to explore high
dimensional problem. In this paper, we propose a novel logical rule namely PGRAN3SAT ,
by randomly generating the first-order, second-order, and third-order clauses. By incor-
porating third-order clauses in the PGRAN3SAT , the potential diversity in the learning and
retrieval phases of the logic increased. The proposed PGRAN3SAT was implemented into
the DHNN (GRAN3SAT) by minimizing the cost function of the network. In that regard,
the minimized cost function will help us in computing the optimal synaptic weight of
the proposed GRAN3SAT. The efficiency and robustness of the proposed GRAN3SAT
model was verified by using four extensive simulations, such as different orders of clauses,
different proportions between positive and negative literals, and differing numbers of
iterations and learning trials. Based on the simulations, the optimal value for each parame-
ter in GRAN3SAT was reported. Next, the proposed GRAN3SAT model was compared
with state-of-the-art methods, such as RAN3SAT, 3SAT, and 2SAT. The simulation reported
greater flexibility of the proposed GRAN3SAT method compared with other existing works.

The flexible architecture of the proposed GRAN3SAT model provides an alternative
insightinto the possible random dynamics for the application of real-life bioinformatic
problems. For instance, the proposed GRAN3SAT model can be embedded into logic
mining, which extracts the best logical rule that classifies single nucleotide polymorphisms
(SNPs) inside known genes associated with Alzheimer’s disease. This can lead to the
discovery of the optimal logic mining incorporated with GRAN3SAT, which has the ability
to classify and predict.
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Abbreviations

Notation Explanation
AI Artificial Intelligence
ANN Artificial Neural Network
HNN Hopfield Neural Network
DHNN Discrete Hopfield Neural Network
SAT Satisfiability Problem
3SAT 3 Satisfiability
2SAT 2 Satisfiability
mean(NCk−SAT) Average number of k-order clauses
RANkSAT Random k Satisfiability
GRANkSAT G-Type Random k Satisfiability
RAN3SAT Random 3 Satisfiability
HTAF Hyperbolic Tangent Activation Function
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RMSE Root Mean Square Error
MAE Mean Absolute Error
MAPE Mean Absolute Percent Error
ZM Ratio of global minimum energy
GRAN3SAT G-Type Random 3 Satisfiability in DHNN
ES Exhaustive Search
PGRAN3SAT General formula GRAN3SAT
mi Number of the third-order logic clauses
ni Number of the second-order logic clauses
ki Number of the first-order logic clauses
Si State of neuron i
Wij Synaptic weight between i and j
Wijk Synaptic weight between three neurons
χPGRAN3SAT Cost function of the GRAN3SAT
NN Number of neurons
NC Number of clauses
Ntrial Number of learning trial
r Relaxation rate
rand(mi, ni, ki) Number of clauses generated randomly
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