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Abstract: Quantum Fourier transform (QFT) is an important part of many quantum algorithms.
However, there are few reports on quantum fractional Fourier transform (QFRFT). The main reason is
that the definitions of fractional Fourier transform (FRFT) are diverse, while some definitions do not
include unitarity, which leads to some studies pointing out that there is no QFRFT. In this paper, we
first present a reformulation of the weighted fractional Fourier transform (WFRFT) and prove its uni-
tarity, thereby proposing a quantum weighted fractional Fourier transform (QWFRFT). The proposal
of QWFRFT provides the possibility for many quantum implementations of signal processing.

Keywords: quantum weighted fractional Fourier transform; quantum Fourier transform; quantum
algorithm; quantum computing
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1. Introduction

Feynman was the first to present the idea of quantum computing, that is, to directly use
the state of microscopic particles to represent quantum information, which is considered to
be the early prototype of the concept of quantum computing [1]. Subsequently, Deutsch
formalized the concept of quantum computing, proposed the idea of a quantum Turing
machine, and designed the first quantum parallel algorithm, which exhibited excellent
performance beyond classical computing [2]. The proposal of Shor’s algorithm caused
researchers to realize that quantum computing had a natural parallel processing capability,
which could introduce many disruptive technological innovations. Shor’s algorithm states
that a large number can be decomposed into the product of two prime factors in polynomial
time. This greatly challenged the RSA (Rivest–Shamir–Adleman) encryption system, thus
indicating that the RSA encryption system had been cracked in theory [3,4]. Grover’s search
algorithm convinced researchers of the power of quantum computing. Compared with
the traditional search method, this algorithm can achieve the acceleration effect of square
level [5]. Therefore, many improved Grover search algorithms have been proposed [6–10].
Meanwhile, quantum-inspired algorithms have also been proposed that can be simulated
by classical computing [11–16]. Moreover, the quantum algorithm has been applied to
solve linear systems of equations, which introduced new ideas for solving linear equations.
This algorithm is also called the HHL algorithm [17]. The HHL algorithm has been widely
used, and its improved algorithms have been continuously proposed [18–20]. Recently,
quantum algorithms have been applied to solve differential equations [21–24]. A series
of quantum computing technologies, such as quantum Fourier transform [25], quantum
phase estimation [26], and the HHL algorithm, are called quantum basic linear algebra
assembly [27]. At present, quantum computing has been widely used in cryptography,
quantum simulation, machine learning, and other fields and shows a strong ability and
great potential.
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The Fourier transform plays an important role in the design of quantum algorithms,
but little is known about the quantum algorithms of the fractional Fourier transform (FRFT).
The initial definition of the FRFT was proposed in [28]. Its application provides a convenient
technique for solving certain classes of ordinary and partial differential equations, which
arise in quantum mechanics from classical quadratic Hamiltonians. The theoretical research
of the FRFT has developed rapidly, and various definitions have been proposed, such as
eigenvalue FRFT [29], weighted FRFT [30], and sampling FRFT [31]. These definitions are
widely used in various fields of signal processing. So far, little is known about the reports
and studies on the quantum fractional Fourier transform (QFRFT). The main reason is
that the design of quantum algorithms should satisfy unitarity, and some FRFTs do not
include unitarity. Thus, a quantum pseudo-fractional Fourier transform (QPFRFT) was
proposed [32], and the authors showed that there was no QFRFT. However, we present a
reformulation of the weighted fractional Fourier transform (WFRFT) and prove its unitarity,
whereupon a quantum weighted fractional Fourier transform (QWFRFT) is proposed.

The remainder of this paper is organized as follows. The preliminary knowledge is
described in Section 2. The unitarity of the WFRFT is proved in Section 3. Section 4 presents
the QWFRFT. Finally, the conclusions are presented in Section 5.

2. Preparation

For a unitary matrix U, assuming that it has an eigenvector |u〉 and the corresponding
eigenvalue e2πiϕ, U|u〉 = e2πiϕ|u〉 is satisfied. Therefore, we can calculate ϕ through the
phase estimation algorithm. The circuit of phase estimation is shown in Figure 1. It is not
difficult to find that the quantum Fourier transform (QFT) is the key to phase estimation,
and phase estimation is the key of many quantum algorithms.
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The importance of the QFT goes without saying. However, little is known about the
report of the QFRFT. In 2012, Parasa et al. proposed a QPFRFT using multiple-valued
logic [32]. The reason why researchers call it “pseudo” is that the FRFT used did not include
unitarity. The FRFT was proposed by Bailey et al. [33], and its definition is as follows:

Fα[k] =
N−1

∑
j=0

f [j]· exp
(

2πi· kj
N
·α
)

. (1)

Parasa et al. pointed out: “It must be noted that unlike the discrete Fourier transform,
the FRFT is not a unitary operation. More formally, this means that there exists no unitary
operator which can implement the following quantum computational operation”.

N−1

∑
j=0

f (j)|j〉 NOTPOSSLBLE→
N−1

∑
k=0

Fα(k)|k〉. (2)

Therefore, Parasa et al. explicitly state that it is not possible to define the QFRFT.
However, the definitions of the FRFT are diverse, and the definition of one class of WFRFT
includes unitarity. Hence, Parasa et al.’s statement that there is no QFRFT is not rigorous.
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In 1995, Shih proposed the definition of a WFRFT [30]. The alpha-order FRFT of the
function f (t) can be expressed as

Fα[ f (t)] =
3

∑
l=0

Al(α) fl(t). (3)

Here, f0(t) = f (t), f1(t) = F[ f0(t)], f2(t) = F[ f1(t)], and f3(t) = F[ f2(t)] (F denotes
Fourier transform). The weighting coefficient Al(α) is expressed as

Al(α) = cos
(
(α− l)π

4

)
cos
(

2(α− l)π
4

)
exp

(
3(α− l)iπ

4

)
, (4)

where l = 0, 1, 2, 3.

3. Unitarity of Weighted Fractional Fourier Transform

A complex matrix U satisfies

UUH = UHU = I, (5)

where H denotes the conjugate transpose, and I is the identity matrix. Then, matrix U is
called a unitary matrix.

The discrete form of the WFRFT (Equation (3)) can be expressed as

DWFRFT = A0(α)·I + A1(α)·DFT + A2(α)·DFT2 + A3(α)·DFT3, (6)

where Al(α) is Equation (4), and DFT is the discrete Fourier transform. It is not easy to
prove the unitarity of Equation (6). Therefore, we present the reformulation of the WFRFT
and prove its unitarity. First, Equation (4) can be written as

Al(α) = cos
(
(α−l)π

4

)
cos
(

2(α−l)π
4

)
exp

(
3(α−l)iπ

4

)
= 1

2 ×
[
exp

(
(α−l)πi

4

)
+ exp

(
−(α−l)πi

4

)]
× 1

2 ×
[
exp

(
2(α−l)πi

4

)
+ exp

(
−2(α−l)πi

4

)]
× exp

(
3(α−l)iπ

4

)
= 1

4

(
1 + exp

(
2(α−l)πi

4

)
+ exp

(
4(α−l)πi

4

)
+ exp

(
6(α−l)πi

4

))
= 1

4

3
∑

k=0
exp

(
2πi

4 (α− l)k
)

= 1
4

3
∑

k=0
exp

(
2πiαk

4

)
exp

(
−2πilk

4

)
.

(7)

Let Bα
k = exp

(
2πikα

4

)
; k = 0, 1, 2, 3; then, Equation (7) can be expressed as


Aα

0
Aα

1
Aα

2
Aα

3

 =
1
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




Bα
0

Bα
1

Bα
2

Bα
3

. (8)

We write Equation (6) as Equation (9).

DWFRFT =
(

I, DFT, DFT2, DFT3
)

A0(α)
A1(α)
A2(α)
A3(α)

. (9)
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Equation (8) is substituted into Equation (9), and we obtain

DWFRFT =
1
4

(
I, DFT, DFT2, DFT3

)
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




Bα
0

Bα
1

Bα
2

Bα
3

. (10)

We let 
Y0 = I + DFT + DFT2 + DFT3

Y1 = I − i·DFT − DFT2 + i·DFT3

Y2 = I − DFT + DFT2 − DFT3

Y3 = I + i·DFT − DFT2 − i·DFT3

(11)

Definition 1. A reformulation of the DWFRFT.

DWFRFT = 1
4 (Y0, Y1, Y2, Y3)


Bα

0
Bα

1
Bα

2
Bα

3


= 1

4
(
Y0Bα

0 + Y1Bα
1 + Y2Bα

2 + Y3Bα
3
)

= 1
4

3
∑

k=0
YkBα

k .

(12)

where Bα
k = exp

(
2πikα

4

)
; k = 0, 1, 2, 3.

Proposition 1. Yk are real symmetric matrices.

Proof of Proposition 1. In Equation (11), I is the identity matrix, and DFT can be expressed
as

DFT =
1√
N
·


u0×0 u0×1 . . . u0×(n−1)

u1×0 u1×1 . . . u1×(n−1)

...
...

. . .
...

u(n−1)×0 u(n−1)×1 . . . u(n−1)×(n−1)

, (13)

where u = exp(−2πi/N). Here, DFT is a symmetric matrix, so that DFT2, DFT3, and
DFT4 are also symmetric matrices. We know that the result of adding symmetric matrices
is still a symmetric matrix. Therefore, Yk are symmetric matrices (Equation (11)).

Next, we prove that Yk are real matrices. The integer powers of the Fourier transform
are shown in Figure 2. Here, DFT2 and DFT4 are real matrices; the matrix of DFT2 is
shown in Equation (14), and DFT4 is the identity matrix DFT4 = DFT0 = I.

DFT2 =


1 0 . . . 0
0 0 . . . 1
...

... . . . ...
0 1 . . . 0

. (14)
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Obviously, I and DFT2 are real matrices. In Equation (13), each element of the DFT
can be expressed as

ulk = exp(−2πilk/N), (15)

where l = 0, 1, . . . , n− 1;k = 0, 1, . . . , n− 1. Therefore, DFT3 is an inverse Fourier transform,
and each element of its matrix can be expressed as

wlk = exp(2πilk/N), (16)

where l = 0, 1, . . . , n − 1; k = 0, 1, . . . , n − 1. Thus, the result of DFT + DFT3 is a real
number,

wlk + ulk = exp(−2πilk/N) + exp(2πilk/N)
= cos(2πlk/N)− i sin(2πlk/N) + cos(2πlk/N) + i sin(2πlk/N)
= 2 cos(2πlk/N).

(17)

The result for −iDFT + iDFT3 is

−iwlk + iulk = −i exp(−2πilk/N) + i exp(2πilk/N)
= −i cos(2πlk/N)− sin(2πlk/N) + i cos(2πlk/N)− sin(2πlk/N)
= −2 sin(2πlk/N).

(18)
The result for −DFT − DFT3 is

−wlk − ulk = − exp(−2πilk/N)− exp(2πilk/N)
= − cos(2πlk/N) + i sin(2πlk/N)− cos(2πlk/N)− i sin(2πlk/N)
= −2 cos(2πlk/N).

(19)

The result for iDFT − iDFT3 is

iwlk − iulk = i exp(−2πilk/N)− i exp(2πilk/N)
= i cos(2πlk/N) + sin(2πlk/N)− i cos(2πlk/N) + sin(2πlk/N)
= 2 sin(2πlk/N).

(20)

Therefore, for Equation (11), Yk are real symmetric matrices. �

Proposition 2. The weighted fractional Fourier transform is unitary.

Proof of Proposition 2. By the proof of Proposition 1, we know that Yk are real symmetric
matrices; that is, (Yk)

H = Yk. Therefore, the conjugate transpose of the DWFRFT is

(DWFRFT)H = 1
4
(
Y0Bα

0 + Y1Bα
1 + Y2Bα

2 + Y3Bα
3
)H

= 1
4
(
Y0B−α

0 + Y1B−α
1 + Y2B−α

2 + Y3B−α
3
)
.

(21)
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Thus, we obtain

DWFRFT·(DWFRFT)H = 1
16

(
Y0Bα

0 + Y1Bα
1 + Y2Bα

2 + Y3Bα
3
)(

Y0B−α
0 + Y1B−α

1 + Y2B−α
2 + Y3B−α

3
)

= 1
16

3
∑

k=0

3
∑

l=0
YkYl Bα

k B−α
l .

(22)

Here,

YkYl =

{
0, k 6= l
Y2

k , k = l
(23)

Then, Equation (22) is written as

DWFRFT·(DWFRFT)H =
1
16

3

∑
k=0

Y2
k . (24)

After calculation, we know that Y2
k = 4Yk. Equation (25) is obtained.

DWFRFT·(DWFRFT)H =
1
4

3

∑
k=0

Yk =
1
4
(Y0 + Y1 + Y2 + Y3) = I. (25)

Thus, the unitarity of the WFRFT is proved. �

We can also implement the new reformulation with the help of fast Fourier transform
(FFT), and its implementation module is shown in Figure 3. The weighting coefficients are
readjusted Aα

l in Figure 3; so, the computational complexity is O(N log N).
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4. Quantum Weighted Fractional Fourier Transform

In this section, we will present the QWFRFT with the help of the QFT. The QFT is
an application of the classical Fourier transform to the amplitude of a quantum state. the
vector x is transformed into the vector y by the classical Fourier transform,

yk =
1√
N

N−1

∑
j=0

xjujk; k = 0, 1, 2, . . . , N − 1 (26)

where u = e−2πi/N and N is the signal length.

Similarly, QFT is applied to quantum state |x〉 =
N−1
∑

j=0
xj|j〉 to obtain quantum state

|y〉 =
N−1
∑

k=0
yk|k〉, and we have

yk =
1√
N

N−1

∑
j=0

xjw
jk
n , (27)

where k = 0, 1, 2, . . . , N − 1 and w = e2πi/N . We note that Equation (27) is the inverse of
the classical discrete Fourier transform; by convention, the QFT has the same effect as the
inverse discrete Fourier transform.

In case that |j〉 is a basis state, the QFT can also be expressed as the map

QFT : |j〉 7→ 1√
N

N−1

∑
k=0

wjk|k〉. (28)

Equivalently, the QFT can be viewed as a unitary matrix acting on quantum state
vectors, where the unitary matrix FN is given by

FN =
1√
N


w0×0 w0×1 . . . w0×(n−1)

w1×0 w1×1 . . . w1×(n−1)

...
...

. . .
...

w(n−1)×0 w(n−1)×1 . . . w(n−1)×(n−1)

. (29)

Sine N = 2n and w = e2πi/2n
. The electronic circuit of the QFT is shown in Figure 4.
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2
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Therefore, the QFT of the quantum state |j〉 = |j1 j2 . . . jn〉 can be expressed as

QFT(|j1 j2 . . . jn〉) =
1

2n/2

(
|0〉+ e2πi[0.jn ]|1〉

)
⊗
(
|0〉+ e2πi[0.jn−1 jn ]|1〉

)
⊗ . . .⊗

(
|0〉+ e2πi[0.j1 j2 ...jn ]|1〉

)
, (30)
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where the binary of decimals can be expressed as

[0.j1 j2 . . . jm] =
m

∑
k=1

jk2−k. (31)

For instance, [0.j1] = j1/2 and [0.j1 j2] = j1/2 + j2/22. Then, the QFT can be further
expressed as

QFT(|j1 j2 . . . jn〉) =
1

2n/2

(
|0〉+ w[jn ]

1 |1〉
)
⊗
(
|0〉+ w[jn−1 jn ]

2 |1〉
)
⊗ . . .⊗

(
|0〉+ w[j1 j2 ...jn ]

n |1〉
)

. (32)

Here, we use [0.j1 j2 . . . jm] = [j1 j2 . . . jn]/2m, and wm = w−2m = e2πi/2m
.

To implement the QWFRFT, we first present the integer powers (QFT0, QFT1, QFT2, QFT3)
of the QFT.

1. We know that QFT0 = I, and I is the identity matrix; obviously, this is a unitary
operator. Then, its operation can be expressed as

|α〉¯I¯|β0〉

2. The QFT is a unitary operator. The Fourier transform of a quantum state |α〉 can be
expressed as

|α〉¯QFT¯|β1〉

3. The quadratic power of the QFT can be expressed as

QFT2 =


1 0 . . . 0
0 0 . . . 1
...

... . . . ...
0 1 . . . 0


For the vector (α0, α1, . . . , αn−1), the transformation can be expressed as

(α0, α1, . . . , αn−1)


1 0 . . . 0
0 0 . . . 1
...

... . . . ...
0 1 . . . 0

 = (α0, αn−1, . . . , α1)

In order to realize the quantum circuit of the above matrix, multiple swap gates are
required. The swap gate of two quanta is shown in Figure 5.
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Thus, for QFT2, we provide quantum circuits of eight quantum states, as shown in
Figure 6.
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For a 2n × 2n dimensional identity matrix, we can obtain the QFT2 by row transforma-
tion, as shown in Figure 7.
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Thus, the QFT2 for quantum state |α〉 can be expressed as

|α〉¯QFT2¯|β2〉

1. The third power of the QFT, which is equivalent to the inverse operation of the QFT,
is also a unitary operator.

|α〉¯QFT3¯|β3〉

Therefore, the QWFRFT of the quantum state by Equation (10) can be expressed as

QWFRFT(|α〉) = 1
4

(
I(|α〉), QFT(|α〉), QFT2(|α〉), QFT3(|α〉)

)
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




Bα
0

Bα
1

Bα
2

Bα
3


= 1

4 (|β0〉, |β1〉, |β2〉, |β3〉)


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




Bα
0

Bα
1

Bα
2

Bα
3

.

(33)

Equation (33) can be further written as

QWFRFT(|α〉) = 1
4 (|β0〉, |β1〉, |β2〉, |β3〉)


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




Bα
0

Bα
1

Bα
2

Bα
3



= 1
4 (|β0〉, |β1〉, |β2〉, |β3〉)



exp
(
−2πi0×0

4

)
exp

(
−2πi0×1

4

)
exp

(
−2πi0×2

4

)
exp

(
−2πi0×3

4

)
exp

(
−2πi1×0

4

)
exp

(
−2πi1×1

4

)
exp

(
−2πi1×2

4

)
exp

(
−2πi1×3

4

)
exp

(
−2πi2×0

4

)
exp

(
−2πi2×1

4

)
exp

(
−2πi2×2

4

)
exp

(
−2πi2×3

4

)
exp

(
−2πi3×0

4

)
exp

(
−2πi3×1

4

)
exp

(
−2πi3×2

4

)
exp

(
−2πi3×3

4

)




Bα
0

Bα
1

Bα
2

Bα
3


(34)

where Bα
k = exp

(
2πikα

4

)
; k = 0, 1, 2, 3. Then, Equation (34) can be written again as

QWFRFT(|α〉) = 1
4

3
∑

l=0

3
∑

k=0
|βl〉 exp

(
−2πilk

4

)
Bα

k

= 1
4

3
∑

l=0

3
∑

k=0
|βl〉 exp

(
−2πilk

4

)
exp

(
2πikα

4

)
= 1

4

3
∑

l=0

3
∑

k=0
|βl〉 exp

(
2πik(α−l)

4

)
.

(35)

With the help of the quantum artificial neural network (QANN), we are inspired to de-
sign a QWFRFT. Here, we first introduce the QANN [34,35]. If we use {|e1〉, |e2〉, . . . , |eM〉}
to denote the canonical basis for CM, then the quantum artificial neural network above can
be rewritten as

Q(|x〉) =
M

∑
k=1

N

∑
j=1

(
α
(1)
j,k σk

(〈
w(1)

j,k

∣∣∣T|x〉+ θ
(1)
j,k

)
+ iα(2)j,k σk

(〈
w(2)

j,k

∣∣∣T|x〉+ θ
(2)
j,k

))
|ek〉. (36)

Put y(i)j,k = σk

(
n
∑

t=1

〈
w(i)

j,k (t)
∣∣∣T|xt〉+ θ

(i)
j,k

)
and

∣∣∣α(i)k

〉
=

N
∑

j=1
α
(i)
j,k y(i)j,k |ek〉. Then, a QANN

can be illustrated by Figures 9 and 10 below.
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Figure 9. The output ( )i
kα  of a QANN, where 1, 2i = ; 1,2, ,k M=  . Figure 9. The output

∣∣∣α(i)k

〉
of a QANN, where i = 1, 2; k = 1, 2, . . . , M.
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So far, we have completed the QWFRFT and circuit implementation. The work of this 
paper is a supplement to the work of Parasa et al. At one point, researchers pointed out 
that there is no quantum-weighted fractional Fourier transform [32]. However, our study 
illustrates the diversity of FRFT and proposes QWFRFT. Due to the characteristics of quan-
tum parallelism, we believe that the QWFRFT has a wider application space. 

At present, our method is only applicable to closed systems. The standard quantum 
theory has shown its limit to describe successfully experimental results. Counterintuitive 
results are obtained in different experiments [36,37]. The open system effects need to be 
further analyzed. 

5. Conclusions 
Unitarity is a prerequisite for the realization of quantum algorithms. In this paper, 

we proposed the reformulation of the WFRFT. The unitarity of the WFRFT was proved by 
means of the proposed reformulation. The QFT is an important part of the QWFRFT. Fur-
thermore, we presented the integer power operation and quantum circuit of the QFT, 
which lays the foundation for the QWFRFT. Finally, we designed the circuit of the 
QWFRFT with the help of a quantum artificial neural network and proposed the electronic 
circuit of the QWFRFT. The results of this paper show that there is a QFRFT algorithm, 
which lays the foundation for further research. 
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Figure 10. The output Q(|x〉) of a QANN.

Thus, we can present the circuit of the QWFRFT, as shown in Figure 11.
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Figure 11. A circuit for the QWFRFT.

So far, we have completed the QWFRFT and circuit implementation. The work of
this paper is a supplement to the work of Parasa et al. At one point, researchers pointed
out that there is no quantum-weighted fractional Fourier transform [32]. However, our
study illustrates the diversity of FRFT and proposes QWFRFT. Due to the characteristics of
quantum parallelism, we believe that the QWFRFT has a wider application space.

At present, our method is only applicable to closed systems. The standard quantum
theory has shown its limit to describe successfully experimental results. Counterintuitive
results are obtained in different experiments [36,37]. The open system effects need to be
further analyzed.

5. Conclusions

Unitarity is a prerequisite for the realization of quantum algorithms. In this paper,
we proposed the reformulation of the WFRFT. The unitarity of the WFRFT was proved
by means of the proposed reformulation. The QFT is an important part of the QWFRFT.
Furthermore, we presented the integer power operation and quantum circuit of the QFT,
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which lays the foundation for the QWFRFT. Finally, we designed the circuit of the QWFRFT
with the help of a quantum artificial neural network and proposed the electronic circuit of
the QWFRFT. The results of this paper show that there is a QFRFT algorithm, which lays
the foundation for further research.
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