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Abstract: In this paper, we propose a new family of distributions, by exponentiating the random
variables associated with the probability density functions of composite distributions. We also derive
some mathematical properties of this new family of distributions, including the moments and the
limited moments. Specifically, two special models in this family are discussed. Three real datasets
were chosen, to assess the performance of these two special exponentiated-composite models. When
fitting to these three datasets, these three special exponentiated-composite distributions demonstrate
significantly better performance, compared to the original composite distributions.
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1. Introduction

When dealing with right-skewed data, with a hump-shaped frequency distribution,
analysts, generally, begin with fitting to a commonly used right-skewed parametric distri-
bution. However, such a procedure, sometimes, fails to fit the data in a satisfactory way.
For example, lognormal distribution is a natural choice, when fitting to right-skewed data.
However, it does not provide satisfactory performance, when the upper tail is fairly large,
while Pareto distribution is more suitable in such situations. If Pareto distribution is chosen
instead, the lower tail features of the data cannot be captured, since the density of Pareto
distribution is, monotonically, decreasing. Thus, the concept of composite distribution has
arisen in the literature. The composite distributions are constructed, by combining two
parametric distributions at a specific threshold.

Such a concept is widely used in different areas, such as modeling insurance claim
size data [1–9], predicting the risk measures in insurance data analysis [4–7], fitting sur-
vival time data [10], and modeling precipitation data [11]. Such a concept demonstrates
impressive performances, when the data is characterized with a very heavy upper tail,
in which common distributions, such as normal or exponential distributions, cannot cap-
ture all of the data features. Due to the simplicity and the applicability of the concept,
the researchers developed a considerable number of composite distributions, including
Lognormal-Pareto [1], Weibull-Pareto [12], Weibull-Inverse Weibull [10], and so on.

The composite distributions seems proper, when modeling the data with heavy tails.
For example, both the one-parameter Inverse Gamma- Pareto (IG-Pareto) model [6] and
the one-parameter exponential-Pareto (exp-Pareto) model [13] were suggested as possible
models, for insurance data modeling. However, they still cannot provide a satisfactory
performance, when fitting to well-known insurance datasets, such as the Danish fire
insurance dataset. Thus, it is necessary to improve the model. In order to improve the
one-parameter IG-Pareto model, Liu and Ananda [8] proposed an exponentiated IG-Pareto
model, by exponentiating the random variable associated with the probability density
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function (pdf) of an Inverse Gamma-Pareto distribution. With different datasets, their
proposed model demonstrated significant improvement from the original model.

In fact, Liu and Ananda [8] suggested the idea of the exponentiated IG-Pareto model
can be generalized, to all the existing composite distributions. Thus, in this paper, we
propose a generalized family of exponentiated-composite distributions, with the derivation
of some mathematical properties of this family.

The rest of the paper is organized as follows. Section 2 provides the formulation
of the generalized exponentiated-composite distributions, as well as some of the math-
ematical properties of this new family of distributions. We, then, briefly, discuss two
special exponentiated-composite distributions (exponentiated IG-Pareto and exponentiated
exp-Pareto) in Section 3. In Section 4, we introduce a parameter-estimation method for
exponentiated-composite models. The simulation results for the estimation method are,
also, provided in Section 4. Three numerical examples are presented in Section 5. To
conclude, a discussion is provided in Section 6.

2. Proposed Model: A Generalized Family of Exponentiated Composite Distributions
2.1. Model Formulation

Suppose X is a random variable that takes on non-negative real numbers. Let fX(x) be
the probability density function (pdf) of X. A composite pdf fX(x) is defined [2] as follows:

fX(x|α1, α2, θ) =

{
c f1(x|α1, θ) if x ∈ [0, θ)

c f2(x|α2, θ) if x ∈ [θ, ∞)
, (1)

where c represents the normalizing constant, f1 is the pdf of X, if X takes a value that is
between 0 and θ, and α1 represents the parameters of f1; f2 is the pdf of X, if X takes a value
that is greater than θ, and α2 represents the parameters of f2. In real practice, we assume
both f1 and f2 are smooth functions on their supports. However, the definition in (1) does
not guarantee that fX(x) is a continuous differentiable function. To define a continuous
differentiable pdf for composite distributions, the continuity and differentiability conditions
are taken into account, as follows:{

limx→θ− fX(x|α1, α2, θ) = limx→θ+ fX(x|α1, α2, θ)

limx→θ−
d fX(x|α1,α2,θ)

dx = limx→θ+
d fX(x|α1,α2,θ)

dx .

Essentially, the conditions can be summarized in a simpler way as: f1(θ) = f2(θ) and
f
′
1(θ) = f

′
2(θ).

We apply a power transformation to the random variable X, by letting Y = g(X) =
X1/η , where g is monotone increasing for any η > 0. The inverse function g−1(Y) = Yη

has continuous derivative on (0, ∞), for any η > 0. Then, the pdf of Y is given by:

fY(y|α1, α2, θ, η) =

c f1(yη |α1, θ)ηyη−1 if y ∈ [0, θ
1
η )

c f2(yη |α2, θ)ηyη−1 if y ∈ [θ
1
η , ∞).

(2)

We shall prove that the pdf of Y is, still, a continuous differentiable pdf of a
composite distribution.

Theorem 1. If X is a random variable associated with a continuous differentiable pdf of a composite

distribution, then Y = X
1
η , also, has a continuous differentiable pdf of a composite distribution for

all η > 0.

Proof of Theorem 1. Let u = θ
1
η .

We first show that limy→u− fY(y|α1, θ, η) = limy→u+ fY(y|α2, θ, η).
From (2), we have
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limy→u− fY(y|α1, θ, η) = c f1(uη |α1, θ)ηuη−1

= c f1(θ|α1, θ)ηuη−1

= c f2(θ|α2, θ)ηuη−1

= c f2(uη |α2, θ)ηuη−1

= limy→u+ fY(y|α2, θ, η).

Then, we want to show that limy→u−
d fY(y|α1,θ,η)

dy = limy→u+
d fY(y|α1,θ,η)

dy .
By the chain rules, we have:

limy→u−
d fY(y|α1, α2, θ, η)

dy
= c( f

′
1(u

η |α1, θ)ηuη−1 + f1(uη |α1, θ)(η − 1)uη−2)

= c( f
′
2(u

η |α2, θ)ηuη−1 + f2(uη |α2, θ)(η − 1)uη−2)

= limy→u+
d fY(y|α1, α2, θ, η)

dy
.

Thus, fY(y|α1, α2, θ, η) is a continuous differentiable pdf of a composite distribu-
tion.

Since fY(y) is still a composite distribution, we hereby name fY(y) as the exponentiated-
composite distribution induced by the parent composite distribution fX(x). Correspond-
ingly, we, also, name Y as the exponentiated-composite random variable induced by the
parent composite random variable X.

Property 1. If Y is a random variable associated with a pdf of an exponentiated-composite distri-
bution induced by X, where X is associated with a pdf of a continuous differentiable composite
distribution, then any exponetiated composite distribution induced by Y is induced by X.

Proof of Property 1. The proof is simple. Let U = Y
1
γ

Since Y is induced by X, there exists η > 0, such that Y = X
1
η .

Hence, U = Y
1
γ = (X

1
η )

1
γ
= X

1
ηγ . Therefore, U is induced by X.

Notice that property 1, essentially, gives us the general idea that if a random variable Y is
induced by X, where X is a random variable associated with a composite distribution, then
exponentiating Y, eventually, leads to a distribution of the same type as Y. For example, a
Weibull-Inverse Weibull composite [10] can be seen as a distribution induced by an Exponential-
Inverse Exponential composite. Hence, by exponentiating a Weibull-Inverse Weibull composite
random variable, we, still, obtain a Weibull-Inverse Weibull composite random variable.

2.2. Mathematical Properties

In this subsection, we derive the moments and the limited moments of Y, as an induced
exponentiated-composite random variable of the composite random variable X. Before any
derivations, we need to guarantee that Y has finite moments of all orders, if X has finite
moments of all orders.

Property 2. Suppose X is a composite random variable. If X has finite moments of all orders, then
the exponentiated-composite random variable Y induced by X, also, has finite moments of all orders.

Proof of Property 2. Suppose X has finite moments of all orders. Then, E(Xp) < ∞, for all

p ∈ R. Since, Y is induced by X, Y = X
1
η . Then, for any p ∈ R, E(Yp) = E(X

p
η ) < ∞. Thus,

Y has finite moments of all orders, if X has finite moments of all orders.

The following derivations are based on the assumption that X has finite moments of
all orders. Assume the k-th moment of X is µk.
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2.2.1. k-th Moment

Since we defined that Y = X
1
η , the k-th moment of Y can be simply derived as follows:

E(Yk) = E(X
k
η ) = µ k

η
. (3)

Essentially, the moment of Y is a real-valued fractional moment of X.

2.2.2. Limited k-th Moment

Limited moment is a widely used concept in the insurance industry. Suppose X
represents the loss value reported in a claim. Let b be the maximum value that an insurance
company can pay, under a specific insurance policy. That is, when the reported loss is
greater than b, the company will pay the amount b, instead of the actual reported loss [14].
Formally, the limited-loss random variable X ∧ b is defined, as follows, given b > 0:

X ∧ b =

{
x if x < b
b if x ≥ b.

Respectively, E[(X ∧ b)t], as the tth limited moment of a random variable X, can be
defined as:

E[(X ∧ b)t] =
∫ b

0
xt fX(x)dx +

∫ ∞

b
bt fX(x)dx.

It follows that if X is Lp integrable, then the t-th limited moment of X exists.
For any valid probability distribution, defined on R, the cumulative distribution

function (CDF) must exist. Thus, without loss of generality, let the CDF of X be FX(x) and
define the incomplete moment function as M(u; r) =

∫ u
0 xr fX(x)dx. Then, the t-th limited

moment of X can be rewritten, as follows:

E[(X ∧ b)t] = M(b; t) + bt[1− FX(b)].

Suppose Y = X
1
η . Then, the corresponding pdf of Y is fY(y) = fX(yη)ηyη−1. There-

fore, we can explicitly represent the t-th limited moment of Y as follows, with the incomplete
moment function of X and the CDF of X:

E[(Y ∧ b)t] =
∫ b

0
yt fY(y)dy +

∫ ∞

b
bt fY(y)dy

=
∫ b

0
yt fX(yη)ηyη−1dy +

∫ ∞

b
bt fX(yη)ηyη−1dy

=
∫ bη

0
x

t
η fX(x)dx +

∫ ∞

bη
bt fX(x)dx

= M(bη ;
t
η
) + bt[1− FX(bη)].

(4)

Moreover, assume that X is a random variable associated with a continuous differen-
tiable pdf, with a form in (1). Define the following:

M1(u; r) =
∫ u

0
xr f1(x)dx,

M2(u; r) =
∫ u

0
xr f2(x)dx,

F1(u) =
∫ u

0
f1(x)dx,

F2(u) =
∫ u

0
f2(x)dx.
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Then E[(X ∧ b)t] can be expressed, explicitly, with the above quantities, as follows:

E[(X ∧ b)t] =


cM1(b; t) + cbt[F1(θ)− F1(b)] + cbt(1− F2(θ)) if b ∈ (0, θ)

cM1(b; t) + cbt[1− F2(b)] if b = θ

cM1(θ; t) + cM2(b; t)− cM2(θ; t) + cbt[1− F2(b)] if b ∈ (θ, ∞),

Suppose Y is an exponentiated-composite random variable induced by X, where the
general form of Y is defined in (2). We can, also, explicitly, represent E[(Y ∧ b)t], as follows:

E[(Y ∧ b)t] =


cM1(bη ; t

η ) + cbt[F1(θ)− F1(bη)] + cbt[1− F2(θ)] if b ∈ (0, θ
1
η )

cM1(bη ; t
η ) + cbt[1− F2(θ)] if b = θ

1
η

cM1(θ; t
η ) + cM2(bη ; t

η )− cM2(θ; t
η ) + cbt[1− F2(bη)] if b ∈ (θ

1
η , ∞).

(5)

3. Special Distributions
3.1. Two-Parameter Exponentiated Inverse Gamma-Pareto Model

The one-parameter composite IG-Pareto model was introduced by Aminzadeh and
Deng [6]. Suppose a random variable X follows a one-parameter composite Inverse
Gamma-Pareto distribution, such that the pdf of X is as follows:

fX(x|θ) =

 c(kθ)αx−α−1e−
kθ
x

Γ(α) if x ∈ [0, θ)

c(α−k)θα−k

xα−k+1 if x ∈ [θ, ∞),

where c = 0.711384, k = 0.144351, α = 0.308298. The constants c, k, and α are obtained, by
imposing the continuity and differentiability conditions mentioned in Section 2.1.

By utilizing (2), Liu and Ananda [8] developed the two-parameter exponentiated
Inverse Gamma-Pareto model. The model has the pdf, as follows:

fY(y|θ, η) =


c(kθ)α(yη)−α−1e

− kθ
yη

Γ(α) ηyη−1 if y ∈ [0, θ
1
η )

c(α−k)θα−k

(yη)α−k+1 ηyη−1 if y ∈ [θ
1
η , ∞).

(6)

The t-th raw moment can be easily derived, as follows:

E(Yt) = c
[
(kθ)

t
η

Γ(α)
Γ(α− t

η
, k)− (α− k)θk−α+ t

η

k− α + t
η

]
, (7)

where Γ(., .) stands for an upper incomplete gamma function, Γ(α, x) =
∫ ∞

x tα−1e−tdt.
When k− α + t

η < 0, the t-th moment is finite. The t-th limited moment of Y was derived
by Liu and Ananda [8], as follows:

E[(Y∧ b)t] =



c
[

Γ(α− t
η , kθ

bη )(kθ)
t
η +btΓ(α,k)−btΓ(α, kθ

bη )

Γ(α) + bt
]

if b ∈ (0, θ1/η)

c
[

Γ(α− t
η ,k)(kθ)

t
η

Γ(α) + bt
]

if b = θ1/η

c
{

Γ(α− t
η ,k)(kθ)

t
η

Γ(α) + (α−k)[bt−η(α−k)θα−k−θ
t
η ]

k−α+ t
η

+ bt−(α−k)ηθα−k
}

if b ∈ (θ1/η , ∞).

Figure 1 is the plot of exponentiated IG-Pareto distributions, for different values of
η and θ. The extra-exponent parameter η introduces additional flexibility to the original
model. When η ≥ 1, the distribution is associated with a unimodal pdf.
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Figure 1. Plots of the exponentiated IG-Pareto density function, for some parameter values.

3.2. Two-Parameter Exponentiated Exp-Pareto Model

The one-parameter composite exp-Pareto model was introduced by Teodorescu [13].
Suppose a random variable X follows a one-parameter composite exp-Pareto distribution,
such that the pdf of X is as follows:

fX(x|θ) =
{

c( α+1
θ )e−

(α+1)x
θ if x ∈ [0, θ)

cα θα

xα+1 if x ∈ [θ, ∞),

where c = 0.574, α = 0.349976. The constants c and α are obtained, by imposing the
continuity and differentiability conditions mentioned in Section 2.1. By utilizing (2), the
corresponding two-parameter exponentiated exp-Pareto pdf is as follows:

fY(y|θ, η) =

c( α+1
θ )e−

(α+1)yη

θ ηyη−1 if y ∈ [0, θ
1
η )

cα θα

(yη)α+1 ηyη−1 if y ∈ [θ
1
η , ∞).

(8)

The t-th raw moment of the exponentiated exp-Pareto is derived, as follows:

E(Yt) = c(
θ

α + 1
)

t
η

[
Γ(

t
η
+ 1)− Γ(

t
η
+ 1, α + 1)

]
+

cαθ
t
η

α− t
η

, (9)

where Γ(α) represents a Gamma function and Γ(α) =
∫ ∞

0 tα−1e−tdt. When t
η < α, the t-th

moment is finite. The t-th limited moment of the exponentiated exp-Pareto is:

E[(Y ∧ b)t] =


c
{
( θ

α+1 )
t
η [Γ( t

η + 1)− Γ( t
η + 1, α+1

θ bη)] + bt(e−
α+1

θ bη − e−α−1) + bt} if b < θ1/η

c
{
( θ

α+1 )
t
η [Γ( t

η + 1)− Γ( t
η + 1, α + 1)] + bt} if b = θ1/η

c{( θ
α+1 )

t
η [Γ( t

η + 1)− Γ( t
η + 1, α + 1)] + cαθα

t
η−α

(bt− α
η − θ

t
η−α

) + bt} if b > θ1/η .
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Figure 2 is the plot of the exponentiated exp-Pareto distributions, for different values
of η and θ. When η > 1, the pdf is unimodal. For the case that η < 1, the pdf is,
monotonically, decreasing.

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

2
.0

y

f(
y
)

η=0.5;θ=1

η=1;θ=1

η=5;θ=1

η=0.5;θ=5

η=1;θ=5

η=5;θ=5

Figure 2. Plots of the exponentiated exp-Pareto density function, for some parameter values.

4. Parameter Estimation and Simulation Studies
4.1. Parameter Search Method

In this section, we want to, briefly, explain the parameter estimation of the two-
parameter exponentiated-composite models. Essentially, since the estimation of the lo-
cation parameter is involved in the composite modeling, a special algorithm for the
composite-model-parameter estimation was developed and used [1,6,7]. For some special
exponentiated-composite models, such an algorithm could be adapted to estimate the
parameters. Liu and Ananda [8] showed that the parameter estimation of the exponenti-
ated IG-Pareto model can be accomplished, using a step-wise grid-search procedure on
the exponent parameter η. Suppose y = (y1, y2, . . . , yn) is an independent and identically
distributed (i.i.d.) sample from a two-parameter exponentiated-composite distribution,
with a pdf defined in (2). Let L(y|θ, η) be the likelihood of y. Assuming within the sample

y, let m observations be less than θ
1
η . Now, suppose for every fixed η, the analytical solution

of ∂L(y|θ,η)
∂θ = 0 exists, where θ could be represented as a function of η, m, and y. Denote the

function as θ(η, m, y).

I. Arrange the observations in the sample in an increasing order, such that y(1) ≤ y(2) ≤
. . . ≤ y(n).

II. Define a candidate set ηc, for the exponent parameter η. For example, we can choose ηc
as an increasing sequence that starts at 0.01 and ends at 20, with an increment by 0.01.

III. For each η ∈ ηc, we start with m = 1 (assuming the m = 1 observation is below

θ
1
η ). Calculate the estimate of θ, based on θ(η, m, y). Denote this estimate as θ̂1,η . If

yη
1 ≤ θ̂1,η ≤ yη

2 , then m = 1. If not, go to step IV.
IV. Let m = 2. Calculate the estimate of θ, based on θ(η, m, y). Denote this estimate as

θ̂2,η . If yη
2 ≤ θ̂2,η ≤ yη

3 , then m = 2. The above steps will resume, until m is detected.
Once m is detected, keep θ̂m,η as the estimate of θ, for the corresponding η.
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V. The estimate of η is, then, identified as the η̂ that maximizes the likelihood function:
L(y|θ, η):

η̂ = arg max
η∈ηc

L(y|θ, η)

The corresponding estimate of θ is, then, determined as θ(η̂, m, y).

With the above algorithm, the accuracy of the estimates from the two-parameter
exponentiated IG-Pareto model was demonstrated, with limited simulations. Thus, in
the next section, we demonstrate that the parameter estimation of the two-parameter
exponentiated exp-Pareto distribution can be done, based on the above procedure.

4.2. Estimation of the Parameters of the Exponentiated Exp-Pareto Model

To utilize the search procedure in Section 4.1, the closed-form solution of ∂L(y|θ,η)
∂θ = 0

needs to be obtained. Suppose y1, y2, . . . , yn are i.i.d. two-parameter exponentiated exp-
Pareto random variables, with the pdf defined in (8), and assume y1 < y2 < . . . < yn,
without loss of generality. Assume that there exists a value m ∈ {1, 2, . . . , n− 1}, such that
yη

m < θ < yη
m+1. The likelihood L(y|θ, η) could be written, as follows:

L(y|θ, η) =
m

∏
i=1

c(
α + 1

θ
)e−

(α+1)yη
i

θ ηyη−1
i

n

∏
j=m+1

cα
θα

(yη
j )

α+1
ηyη−1

j

=
cnηn(α + 1)mαn−m(∏m

i=1 yi)
η−1

(∏n
j=m+1 yj)αη+1 θαn−(α+1)me−

α+1
θ ∑m

i=1 yη
i ,

Correspondingly, the log-likelihood l(y|θ, η) could be written as:

l(y|θ, η) = nlog(c) + nlog(η) + mlog(α + 1) + (n−m)log(α) + (η − 1)
m

∑
i=1

log(yi)

− (αη + 1)
n

∑
j=m+1

log(yj) + [αn− (α + 1)m]log(θ)− α + 1
θ

m

∑
i=1

yη
i

(10)

Therefore, given η and m, the closed-form solution of ∂l(y|θ,η)
∂θ = 0 can be obtained as:

θ(η, y) =
(α + 1)∑m

i=1 yη
i

(α + 1)m− αn
. (11)

Therefore, we can utilize the search method in Section 4.1, to estimate the parameters
of an exponentiated exp-Pareto model.

4.3. The Estimation of Standard Error with the Observed Fisher Information Matrix

Let Θ = (θ, η) be the parameters of an exponentiated exp-Pareto pdf, defined in (8).
Suppose Θ̂ = (θ̂, η̂) is the maximum likelihood estimate (MLE) of Θ. Notice that, with
proper regularity conditions,

I(Θ)−
1
2 (Θ̂−Θ)

D−→ N (02, I2), as n→ ∞, (12)

where I(Θ) is the Fisher information matrix of Θ, D stands for convergence in distribution
and N (02, I2) is the bivariate standard normal distribution. Thus, the asymptotic variance

of Θ̂ can be derived with the Fisher information matrix I(Θ) = −E( ∂2l(Θ)

∂Θ∂ΘT ), where l stands

for the the log-likelihood in (10). Define I(Θ) = − ∂2l(Θ)

∂Θ∂ΘT . The expression of I(Θ) could be
derived, explicitly, as follows:
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I(Θ) =

− ∂2l(y|θ,η)
∂θ2 − ∂2l(y|θ,η)

∂θ∂η

− ∂2l(y|θ,η)
∂θ∂η − ∂2l(y|θ,η)

∂η2


=

(
αn−(α+1)m

θ2 + 2(α+1)
θ3 ∑m

i=1 yη
i − α+1

θ2 ∑m
i=1 yη

i log(yi)

− α+1
θ2 ∑m

i=1 yη
i log(yi)

n
η2 +

α+1
θ ∑m

i=1 yη
i [log(yi)]

2

)
.

Theoretically, the asymptotic covariance matrix of Θ equals E(I(Θ)). However, the
expectation of the Fisher information matrix cannot be evaluated in real applications.
Therefore, the asymptotic variance of Θ̂ is approximated by I(Θ̂)−1, the inverse of the
observed Fisher information matrix. Correspondingly, the standard error of θ̂ and η̂ are
estimated, by taking the square root of the diagonal elements of I(Θ̂)−1.

4.4. Simulations

To assess the accuracy for the estimates of θ̂ and η̂, from the search method, a simulation
study was done for the chosen sample size n, θ, and η. For each simulation scenario, r = 2000
samples were generated from the composite density, given in (8). The R package ‘mistr’ [15]
was used to generate the random samples from the composite pdf, defined in (8).

Table 1 presents the results from all of the simulation scenarios. The means, the average
standard errors (SE), and the standard deviations (SD) of the estimates are provided. The
SE values of the estimates were obtained, using the observed Fisher information matrix
given in Section 4.3. For all the simulation scenarios, we spotted that the average of the
estimates of θ gets closer to the true θ, as the sample size n increases. This is, also, the
case for the average of the estimates of η. Additionally, for both θ and η, the average SE
and the SD of the estimates decrease, as the sample size n increases. As the sample size
n increases, the accuracy of the estimates found by the algorithm becomes more accurate.
This is expected, due to the consistency property of the maximum likelihood estimates.

Table 1. Simulation results for the parameter estimation of the exponentiated exp-Pareto distributions.

Scenarios n = 50 n = 100 n = 200 n = 500

η θ Par. 1 Mean SD SE Mean SD SE Mean SD SE Mean SD SE

0.8 1 η̂ 0.828 0.119 0.113 0.811 0.080 0.078 0.807 0.055 0.055 0.803 0.034 0.035
θ̂ 1.046 0.354 0.328 1.017 0.235 0.225 1.000 0.153 0.156 1.005 0.098 0.099

5 1 η̂ 5.158 0.749 0.702 5.077 0.506 0.489 5.042 0.354 0.343 5.011 0.210 0.216
θ̂ 1.046 0.347 0.326 1.018 0.242 0.226 1.007 0.158 0.157 1.002 0.099 0.099

0.8 5 η̂ 0.828 0.117 0.113 0.815 0.078 0.078 0.807 0.054 0.055 0.803 0.035 0.035
θ̂ 5.551 2.043 1.882 5.234 1.269 1.226 5.135 0.850 0.841 5.058 0.532 0.521

5 5 η̂ 5.140 0.714 0.700 5.072 0.505 0.488 5.047 0.351 0.343 5.023 0.208 0.216
θ̂ 5.503 1.997 1.860 5.259 1.289 1.230 5.125 0.859 0.840 5.064 0.517 0.522

10 5 η̂ 10.312 1.461 1.404 10.174 1.004 0.979 10.068 0.682 0.685 10.029 0.433 0.432
θ̂ 5.527 2.006 1.873 5.231 1.287 1.225 5.113 0.844 0.838 5.049 0.532 0.520

10 20 η̂ 10.324 1.406 1.406 10.158 0.990 0.978 10.119 0.703 0.689 10.023 0.430 0.431
θ̂ 24.183 13.175 11.360 21.995 7.403 7.021 21.112 4.896 4.684 20.261 2.848 2.801

0.4 2 η̂ 0.414 0.058 0.056 0.408 0.040 0.039 0.404 0.028 0.027 0.401 0.017 0.017
θ̂ 2.112 0.670 0.638 2.048 0.459 0.437 2.030 0.316 0.304 2.011 0.189 0.190

0.4 1 η̂ 0.415 0.059 0.057 0.407 0.041 0.039 0.402 0.028 0.027 0.402 0.018 0.017
θ̂ 1.033 0.353 0.325 1.018 0.231 0.225 1.009 0.159 0.158 1.001 0.097 0.099

4 5 η̂ 4.141 0.578 0.564 4.060 0.400 0.391 4.029 0.267 0.274 4.012 0.173 0.173
θ̂ 5.515 2.080 1.864 5.206 1.292 1.218 5.100 0.839 0.835 5.038 0.530 0.519

4 1 η̂ 4.125 0.576 0.562 4.052 0.381 0.390 4.035 0.277 0.275 4.016 0.171 0.173
θ̂ 1.042 0.339 0.326 1.021 0.233 0.226 1.012 0.159 0.158 1.000 0.098 0.099

1 Par. stands for the estimated parameter.
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5. Real Data Application

We applied the exponentiated IG-Pareto model and the exponentiated exp-Pareto
model to the well-known Danish fire insurance data, Norwegian fire insurance data, and
Society of Actuaries (SOA) group medical claims data. We compared these two models with
the original one-parameter IG-Pareto and exp-Pareto models. For additional comparison
purposes, we included the Weibull model, the Inverse Gamma model, and the Weibull-
Inverse Weibull composite model. We chose the Weibull-Inverse Weibull composite model,
since it demonstrates the best performance among all the composite models, when fitting
to the Danish fire insurance data [5].

We used four different goodness-of-fit (GoF) measures, to compare the performances
of the different models. The brief description of the measures are listed, as follows (y
denotes the observed sample):

1. The negative log-likelihood (NLL) is defined, in the following manner:

NLL = −logL(θ̂|y).

2. The definition of the Akaike information criterion (AIC) [16] is provided, in the
following manner:

AIC = −2logL(θ̂|y) + 2k,

where k denotes the number of model parameters.
3. The Bayesian information criterion (BIC) [16] is defined, as follows:

BIC = −2logL(θ̂|y) + klog(n),

where k stands for the number of model parameters and n represents the sample size.
4. Kolmogorov–Smirnoff (KS) statistic: The KS statistic is defined, as follows [17]:

Dn = supy|F(θ̂|y)− Fn(y)|,

where Fn(y) stands for the emipirical CDF of the observed sample y.

In addition, value-at-risk (VaR) was used to evaluate the performances of the different
models, when fitting to the upper tail of the data. The definition of VaR at the level of α is
provided, as follows:

VaRα(Y) = F−1
Y (α),

where F−1
Y (.) is the inverse CDF function of the random variable Y. In Solvency II, designated

by the European Union (EU), VaR is regarded as an important risk measur,e to determine the
required amount that an insurance company needs to hold against the potential insolvency.

We obtained the estimates of the parameters in all the models, NLL, AIC, BIC, KS
distance, and VaR, using the R software.

5.1. Danish Fire Insurance Data

To assess the performance of different models, the well-known Danish fire insurance
data were used. This dataset was utilize,d by various statisticians, to investigate the
performances of different loss models [1,2,5,7,8]. There are 2492 fire insurance claims
reported in Denmark, from the years 1980 to 1990, in this dataset. Inflation adjustment was
completed, for the claim sizes. The data have been scaled to one million Danish Krones
(DKK), for analysis purposes. We accessed the dataset from the SMPracticals package in
R software [18]. Figure 3 is the histogram of this dataset. The detailed summary of the
dataset is provided in Table 2.

Table 2. Summary statistics, for Danish fire insurance data (in 1 million DKKs).

Sample Size Mean SD Minimum Q1 Q2 Q3 Maximum

2492 3.06 7.98 0.31 1.16 1.63 2.65 263.25
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Claim Sizes (in 1 million DKK)
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Figure 3. Histogram of Danish fire insurance dataset.

The model comparisons, in terms of four GoF measures, are presented in Table 3. The
VaR estimates for all the models, at 0.90 and 0.95 levels are, also, provided. When fitting
to the Danish Fire Insurance Data, the exponentiated IG-Pareto model demonstrated a
significantly better performance, compared to the original one-parameter IG-Pareto model.
Similarly, the exponentiated exp-Pareto model, also, presented a significant improvement
from the exp-Pareto model, in terms of all measures. These results are in accordance
with Figures 4 and 5. Figure 4 shows the comparison of the fitted composite models,
along with the Gaussian kernel density estimate of the Danish fire insurance sata. Both
exponentiated models provide a good fit to the Danish Fire Insurance Data, while the
original one-parameter composite models perform poorly. This is observed in Figure 5.
Figure 5 is the comparison of the CDF of the fitted models, with the empirical CDF of the
Danish fire insurance data. The exponentiated-composite models provided a closer fit to
the empirical CDF, compared to the original composite models. It is, also, noticeable that
the two-parameter exponentiated exp-Pareto model performed better than the common
distributions, such as Weibull and IG, in terms of all the measures. However, both the
Weibull-Inverse Weibull model and the Weibull-Pareto model, with the mixing weights,
still perform slightly better than the proposed exponentiated models.

Table 3. Comparisons of different models, with the Danish fire insurance data.

Model k 1 NLL AIC BIC KS VaR0.90 VaR0.95

Empirical Estimate 5.08 8.41

IG-Pareto (One-Parameter) 1 6983.8 13,969.6 13,975.5 0.575 5.24× 105 3.59× 107

Exponentiated IG-Pareto 2 4287.7 8591.0 8590.0 0.136 13.82 32.48

exp-Pareto (One-Parameter) 1 5878.0 11,758.0 11,763.8 0.333 325.62 2359.69

Exponentiated exp-Pareto 2 3961.0 7926.0 7937.7 0.057 4.42 6.89

Weibull-Inverse Weibull 2 4 3820.0 7648.0 7671.3 0.021 5.08 8.02

Weibull 2 5270.5 10,545.0 10,556.6 0.409 4.57 5.98

IG 2 4097.9 8199.8 8211.4 0.358 4.67 6.41
1 k is the number of parameters in the model. 2 The composite model has an additional weight parameter φ [5].
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5.2. Norwegian Fire Insurance Data for 1990

The Norwegian fire insurance data was utilized in the previous literature, to check
the performance of different loss models [4,8,19]. The dataset contains 9181 claims from a
Norwegian insurance company. The unit of the claims is in 1000s of Norwegian Krones
(NOK). We were able to access the data via R package ReIns [20]. Since we do not know if
the data was inflation adjusted, we chose only the claims from 1990, for the analysis.

Figure 6 is the histogram of the data set. There are 628 reported claims from the 1990 in
the dataset. For analysis, we scaled the data, so that the claim values had a unit of millions
of Norwegian Krones (NOK). The detailed summary of the dataset is provided in Table 4.
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Figure 4. Kernel density estimate of Danish fire insurance data, with corresponding exponentiated
exp-Pareto, exp-Pareto, exponentiated IG-Pareto, and IG-Pareto fit.
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Figure 5. The empirical CDF of Danish fire insurance data and the fitted CDF, of corresponding
exponentiated IG-Pareto, IG-Pareto, exponentiated exp-Pareto, and exp-Pareto model fit.
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Figure 6. Histogram of Norwegian fire insurance data for 1990.

Table 4. Summary statistics for Norwegian fire insurance claims, during 1990 (in 1 million NOKs).

Sample Size Mean SD Minimum Q1 Q2 Q3 Maximum

628 1.97 4.26 0.50 0.79 1.15 1.81 78.54

Table 5 summarizes the comparisons of different models, when fitting to the Norwe-
gian fire insurance data. Like the results that were obtained for the previous dataset, the
two proposed exponentiated-composite models significantly overperform the original one-
parameter composite models, with regard to all measures. This is, also, illustrated visually
in Figure 7. The two exponentiated models provided closer fits the Gaussian kernel density
estimate of the dataset, compared to the original one-parameter composite models. Both of
the two proposed two-parameter exponentiated models perform better than the Weibull and
IG models. Figure 8 shows the comparison of the fitted CDF of the exponentiated-composite
models, the original composite models, and the empirical CDF of the data. Both of the
exponentiated-composite models demonstrated a good fit to the empirical CDF, while both
of the original composite models cannot fit the data properly. In addition, among all seven
models that we chose for the real data application, the exponentiated inverse Gamma-Pareto
model demonstrates the best performance, in terms of BIC.

5.3. Society of Actuaries (SOA) Group Medical Insurance Claims Data: Year 1991

The Society of Actuaries (SOA) group medical insurance claims is a dataset that
contains 171,100 claims that exceed USD 25,000 from year 1991 to 1992. There is no
information for the inflation adjustment for this dataset, so we choose the 75,789 claims
from year 1991 in our analysis. Figure 9 is the histogram of the dataset. The detailed
summary of the dataset is presented in Table 6. The unit of the claims was scaled to USD
10,000, for analysis purposes.

The performances of different models, when fitting to the SOA group medical claims
data, are presented in Table 7. The two proposed exponentiated-composite models, still,
demonstrate significantly better performances, compared to the original one-parameter
composite models, with respect to all GoF measures. Figure 10, also, confirms that the two
exponentiated-composite models provided better fit to the kernel-density estimate of the
data, in comparison with the two original composite models. Both of the two proposed
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two-parameter exponentiated-composite models perform better than the two-parameter
Weibull and IG models. The comparison of the fitted CDF of the exponentiated-composite
models, original composite models, and the empirical CDF is presented in Figure 11. Again,
both of the original composite models cannot provide a proper fit to the data, while the
exponentiated-composite models demonstrated very close fits to the empirical CDF. Within
all the chosen models, the exponentiated IG-Pareto model performed the best, concerning
all the GoF measures. In addition, the VaR estimates for the fitted exponentiated IG-Pareto
model, at the level of 0.90 and 0.95, are very close to the empirical VaR values. This suggests
that the model is capable of capturing the data features at the extreme upper tail.

0 5 10 15 20

0
.0

0
.5

1
.0

1
.5

 Claims sizes (in 1 million NKK) 

D
e
n
s
it
y

Gaussian Kernel Density Estimate

Exponentiated IG−Pareto

IG−Pareto

Exponentiated Exp−Pareto

Exp−Pareto

Figure 7. Kernel density estimate of Norwegian fire insurance data, for 1990, with corresponding
exponentiated exp-Pareto, exp-Pareto, exponentiated IG-Pareto, and IG-Pareto fit.
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Figure 8. The empirical CDF of Norwegian fire insurance data and the fitted CDF of corresponding
exponentiated IG-Pareto, IG-Pareto, exponentiated exp-Pareto, and exp-Pareto model fit.
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Figure 9. Histogram of SOA group medical insurance claims data, for 1991.

Table 5. Comparisons of different models with the Norwegian fire insurance data, for 1990.

Model k 1 NLL AIC BIC KS VaR0.90 VaR0.95

Empirical Estimate 3.25 4.59

IG-Pareto (One-Parameter) 1 1503.7 3009.4 2013.9 0.591 3.50× 105 2.40× 107

Exponentiated IG-Pareto 2 755.6 1515.1 1524.0 0.097 4.02 7.28

exp-Pareto (One-Parameter) 1 1225.6 2453.3 2457.7 0.355 223.64 1620.64

Exponentiated exp-Pareto 2 772.2 1548.4 1557.3 0.053 3.26 5.23

Weibull-Inverse Weibull 2 4 751.0 1509.9 1527.7 0.038 3.02 4.36

Weibull 2 1054.4 2112.8 2121.7 0.232 4.57 5.98

IG 2 773.9 1551.7 1560.6 0.049 3.09 4.24

1 k is the number of parameters in the model. 2 The composite model has an additional weight parameter φ [5].

Table 6. Summary statistics for SOA group medical insurance claims, for 1991 (in 10,000 USD).

Sample Size Mean SD Minimum Q1 Q2 Q3 Maximum

75,789 5.84 6.60 2.50 3.05 4.02 6.13 451.84

Table 7. Comparisons of different models, with the SOA group medical claims insurance data, for 1991.

Model k 1 NLL AIC BIC KS VaR0.90 VaR0.95

Empirical Estimate 10.18 14.76

IG-Pareto (One-Parameter) 1 277,440.9 347,243.2 347,261.7 0.602 1.36× 106 9.36× 107

Exponentiated IG-Pareto 2 160,836.6 321,677.2 321,695.7 0.035 9.77 14.54

exp-Pareto (One-Parameter) 1 242,318.1 484,638.2 484,647.4 0.369 835.46 6054.35

Exponentiated exp-Pareto 2 168,683.5 337,371.0 337,389.5 0.085 8.69 12.29

Weibull-Inverse Weibull 2 4 167,745.8 335,499.6 335,536.5 0.070 8.67 11.40

Weibull 2 204,223.9 408,451.8 408,470.3 0.256 12.24 15.01

IG 2 173,619.6 554,883.8 554,893.0 0.099 9.29 11.78

1 k is the number of parameters in the model. 2 The composite model has an additional weight parameter φ [5].
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Figure 10. Kernel density estimate of SOA group medical claims data, with corresponding exponenti-
ated exp-Pareto, exp-Pareto, exponentiated IG-Pareto, and IG-Pareto fit.
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Figure 11. The empirical CDF of SOA group medical claims data and the fitted CDF of corresponding
exponentiated IG-Pareto, IG-Pareto, exponentiated exp-Pareto, and exp-Pareto model fit.

5.4. Estimated Parameter Values for the Three Data Sets

For the three datasets, considered in the three previous subsections, we provided
estimated parameter values for the exponentiated IG-Pareto model and exponentiated
exp-Pareto model, in Table 8. Furthermore, their estimated standard errors are presented in
parenthesis next to the corresponding estimates.
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Table 8. The parameter estimates and estimated standard error of the exponentiated-composite
models, when fitted to the three datasets.

Dataset Estimated Parameters Exponentiated IG-Pareto (se) Exponentiated Exp-Pareto (se)

Danish Fire
Insurance Data

θ̂ 2.81 (0.15) 5.22 (0.24)
η̂ 4.95 (0.07) 4.47 (0.09)

Norwegian Fire
Insurance Data

θ̂ 0.13 (0.02) 0.96 (0.09)
η̂ 7.13 (0.27) 4.19 (0.16)

SOA Group Medical
Claims Data

θ̂ 216,610 (8131.23) 1596.72 (38.98)
η̂ 10.64 (0.04) 5.72 (0.02)

6. Discussion and Concluding Remarks

In this paper, we proposed a generalized family of exponentiated-composite distri-
butions. The motivation of proposing such a family is to improve the flexibility of the
original composite distribution, by introducing an exponent parameter. Similar to how
the Weibull distribution was developed, based on exponential distribution, we introduce
the exponent parameter, by exponentiating a general random variable associated with a
composite distribution, defined in Section 2.1. We proved that an exponentiated-composite
distribution is, still, a composite distribution and we derived some mathematical properties
of this new family of distribution, including the raw moments and the limited moments.
The two-parameter exponentiated IG-Pareto and exponentiated exp-Pareto model were
discussed, as the special models within this family. We, also, provided a method to find
the estimates of the parameters in an exponentiated-composite model. The simulations
in Section 4 showed that the method has the ability to identify the true parameters, for
an exponentiated exp-Pareto model. We assess the performances of the two-parameter
exponentiated IG-Pareto and exponentiated exp-Pareto model, with the three insurance
datasets, and compared their performances to some existing models, in the past literature.
For the Norwegian fire insurance data, for 1990, the exponentiated IG-Pareto model demon-
strates the best performance among all he models we chose, in terms of BIC. When fitting
to the SOA group medical claims data, the exponentiated IG-Pareto model outperformed
all the other models we chose for comparison. We foresee that this family of exponentiated
models will significantly increase the abundance of the composite models. Since we, also,
proved the exponentiating composite models are, still, composite models, this family can
be extended to the exponentiated-composite models, with the mixing weights.
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Abbreviations

The following abbreviations are used in this manuscript:
pdf probability density function
IG inverse Gamma
exp-Pareto exponential-Pareto
i.i.d. independent and identically distributed
SE standard error
NLL negative log-likelihood
AIC Akaike information criterion
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BIC Bayesian information criterion
MLE maximum likelihood estimate
CDF cumulative distribution function
GoF goodness-of-fit
VaR value-at-risk
DKK Danish Krones
NOK Norwegian Krones
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