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Abstract: The insufficient development of intelligent dynamic monitoring systems, which operate
with big data, obstructs the control of traffic-related air pollution in regulated urban road networks.
The study introduces mathematical models and presents a practical comparative assessment of
pollutant emissions at urban intersections, with two typical modes of vehicle traffic combined, i.e.,
freely passing an intersection when the green signal appears and uniformly accelerated passing after
a full stop at the stop line. Input data on vehicle traffic at regulated intersections were collected
using real-time processing of video streams by Faster R-CNN neural network. Calculation models
for different traffic flow patterns at a regulated intersection for dynamic monitoring of pollutant
emissions were obtained. Statistical analysis showed a good grouping of intersections into single-
type clusters and factor reduction of initial variables. Analysis will further allow us to control and
minimize traffic-related emissions in urban road networks. A comparative analysis of pollutant
emissions in relation to the basic speed of passing at the intersection of 30 km/h was performed
according to the calculations of the mathematical models. When reducing the speed to 10 km/h
(similar to a traffic jam), the amount of emissions increases 3.6 times over, and when increasing the
speed to 50 km/h, the amount of emissions decreases by 2.3 times. Fuzzy logic methods allow us to
make a comparative prediction of the amount of emissions when changing both the speed of traffic
and the capacity of the intersection lanes. The study reveals the benefits of using a real-life
measurement approach and provides the foundation for continuous monitoring and emission

forecasting to control urban air quality and reduce congestion in the road network.

Keywords: environmental control; real-time monitoring; neural network; traffic flow; fuzzy logic
methods; forecasting
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1. Introduction

Traffic-related pollutant emissions are the main obstacle to sustainable urban
development. In recent decades, they have proportionally increased due to the
exponential growth in the road-traffic intensity. Thus, reducing and managing the
intensity of traffic-related emissions has become an unprecedented challenge subject to a
profound study.

Closed-circuit television cameras are most often used to control and monitor traffic
flows. Video cameras can record road traffic offences and obtain initial data on the
parameters of the traffic flow used in dynamic monitoring systems, as well as the
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subsequent regulation of the traffic flows themselves and the environmental status of the
urban transport network [1,2].

This study continues the authors” development of a dynamic system for traffic flow
monitoring, which implements real-time control of such parameters as the structure of the
vehicle queue and the entire flow, the speed and acceleration of vehicles, and their
trajectory at urban, regulated intersections [1,2].

This large volume of initial data is used not only to control and manage traffic flows
but also serves as a basis for calculating pollutant emissions using mathematical models
based on standard regulatory procedures. An example of such a system is the authors’
AIMS-Eco system: “Intelligent system for real-time monitoring the amount of traffic-
related pollutant emissions” [3] based on neural networks.

This paper develops an approach to design a unified urban system for the
environmental control of traffic-related pollutant emissions based on the processing of
data from video cameras. At the initial stage, we considered only traffic lanes for moving
“straight” at intersections as they are most informative in terms of traffic dynamics. We
have not considered an isolated, regulated intersection as a source of harmful emissions
but identified single-type groups (clusters) of traffic lanes to facilitate managerial
decisions aimed at reducing the environmental load on a wider scale. Thus, the purpose
of the study is to develop computational mathematical models to implement a system for
the dynamic monitoring of pollutant emissions from traffic flows passing a regulated
intersection at a variable speed.

A preliminary version of our emission monitoring system has been implemented,
examining uniform traffic at successive sections of a 20 m long intersection. To improve
the integrity of our system, we must take into account the dynamics of emissions when
vehicles accelerate after a stop at a red light. Therefore, to assess the quality of the resulting
calculation models, we should complete a comparative prediction of emissions produced
when changing the speed of traffic flows.

Section 2 of the paper provides a review of research in this field. Section 3 describes
methods for recognizing and classifying, tracking, counting, and determining vehicle
speed using neural networks. Section 4 presents a mathematical model of traffic-related
pollutant emissions. Section 5 deals with emission forecasting by fuzzy logic methods.
Section 6 discusses the obtained results, and Section 7 presents concluding thoughts and
further areas of research.

2. Related Works

A report in 2019 indicated that road transport was the principal source of nitrogen
oxides (39% of emissions) and a source of coarse particulate matter and fine particulate
matter, which affects the health and quality of life of urban residents around the world
[4].

The results of the studies carried out by Cheng et al. [5] showed that ultrafine
particles, black carbon, and particle-bound polycyclic aromatic hydrocarbons (p-PAHs)
mainly resulted from emissions generated by diesel vehicles. The monitoring of heavy
metal emissions in the road area showed [6] that high concentrations of Ti, Fe, Cu, and Ba
are typical for road sections where heavy vehicles prevail. The proposed model allows
one to determine the predominant composition of the fleet on a given road section.

The most popular models for studying traffic-related pollutant emissions in cities are
Computer Program to Calculate Emissions from Road Transport (COPERT) [7] and
Passenger Car and Heavy Duty Emission Model (PHEM) [8,9].

COPERT emission models (based on the average speed) and PHEM (based on vehicle
kinematics) are analyzed and their sensitivity to traffic dynamics is assessed in [10]. The
medium-speed approach in free flow conditions tends to overestimate the amount of
emissions, while in cases of congestion it tends to underestimate the amount of emissions,
ignoring the effects of congestion.
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Spyropoulos et al. [11] forecasted vehicle-related emissions using the COPERT
method and Brown’s double simple exponential smoothing. When analyzing the data,
they found that the measurement results are influenced by such factors as the wind speed
and direction, as well as the atmospheric air temperature. To obtain data only on vehicle-
related emissions ignoring atmospheric factors, they built a “traffic flow —roadside
environment” model. The model assesses air pollution generated only by the traffic flow
(TF).

Using an optical remote sensing device to measure the concentrations of CO, COs,
HC, and NO exhaust gases, ref. [12] calculated average emission factors and compared
them with those of the COPERT III model (version 2.1). The authors found that the model
overestimated the indicators for almost all technology classes (EURO 1, 2, 3) for CO, and
the relationship between the model and measurements was good for HC and NOx
emissions, except for heavy vehicles (in the model, the indicators had a lower level
compared to the measured data).

Angatha and Mehar [13] studied the influence of the TF parameters, the duration of
the red traffic light signal, and the average number of vehicles stopping at the red light on
the concentration of carbon monoxide. Two models are proposed: using the methods of
multiple linear regression and artificial neural networks. The latter model showed the best
results in predicting carbon monoxide values. A linear increase in carbon monoxide with
an increase in the number of vehicles at the entrance to the intersection and the duration
of the red traffic signal was observed due to changes in the acceleration and deceleration
of vehicles at intersections.

The influence of the duration of traffic signals and obeying the TF speed limit on the
amount of harmful emissions was considered in [14]. The authors developed a numerical
model choosing the optimal traffic light pattern to achieve a balance between delays at
regulated intersections for drivers and minimize the amount of harmful emissions. The
authors of [15] also analyzed the quality of urban air at a speed limit of up to 80 km/h and
found that CO, NOx, and PM2.5 were reduced by 5-7%.

Traffic-related harmful emissions depend on the properties of the vehicles
themselves, the type of urban development, geography, and meteorological conditions,
which complicate the control and forecasting of the dispersion of harmful substances [16].

All these factors set high requirements for the computational performance of the
developed real-time high-accuracy models. The system for vehicle emissions on an urban
road network (RTVEMVS) developed in [16] gives a precise real-time assessment of
emissions (taking into account the dispersion model) and visualizes the obtained data on
a map of the road network. Similar studies and developments were carried out in [17-21].

In an urban environment, harmful substances are dispersed under the influence of
the depth of street canyons and air movement caused by moving vehicles [22,23].
Simulation at various wind and vehicle speeds show that moving vehicles strongly
influence wind turbulence, which is a significant factor for the dispersion of harmful
emissions. Turbulence and air flows generated by vehicles reach a height of 7 to 12 m in
the street canyon [24]. Regulated intersections are characterized by the stop and starting
of vehicles, as well as the braking mode, which is when high concentrations of harmful
emissions are released. The wind ventilation of intersections differs from a common street
canyon due to different wind directions [25].

The Euler-Lagrange method was used as the basis of the model for predicting the
concentration of harmful emissions and the dissipation rate to study regulated
intersections in [25]. The minimum concentrations of harmful emissions are observed
when the vehicle movement slows down, while the peak values are observed when the
movement starts from the intersection. The authors also found that the distance between
traffic lights affects the concentration of PMio. Researchers in [20] demonstrated in a
microsimulation environment that the air quality can be improved by the effective
management of traffic flows at regulated intersections.
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The literature review has shown that most studies consider individual sections of
urban road networks to develop models for calculating concentrations and dispersion of
harmful emissions. Computer simulation is based on the data on the average speed of
traffic flows (according to COPERT), while traffic flows are characterized by various types
of movement, especially in urban areas.

To develop a mathematical model based on fuzzy logic methods to calculate traffic-
related harmful emissions taking into account the identified features of traffic flows in
urban conditions, we focused on the grouping of vehicle traffic lanes and developed a
model for two types of traffic flow movements at regulated intersections: uniformly
accelerated and uniform movement [26,27].

The novelty of the study is the development of a model in the problem of high-quality
and complete collection of data on the amount of traffic-related emissions based on the
use of neural network algorithms and fuzzy logic algorithms integrally taking into
account the impact of many unpredictable factors, in view of the design features of the
road network.

3. Materials and Methods

The methods include the selection of variables used to collect the initial data, data
collection, statistical methods for processing the collected information, interpreting the
obtained results on the assessment of pollutant emissions, and emission forecasting using
fuzzy logic methods. The basic traffic flow monitoring system used to collect initial data
should be considered separately.

To achieve our research goal, we needed to develop a system to assess the dynamic
parameters of vehicles, such as acceleration and speed. To this end, we divided the task
into four subtasks: object detection and classification; object tracking; object counting; and
determining the vehicle speed. Figure 1 shows an algorithm for obtaining the data on
vehicle accelerations and average speeds.
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Vehicles tracking

Vehicles counting module Distance calculation module
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Figure 1. Flow chart of the algorithm for obtaining initial data.
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The first module processes the incoming video stream and receives object predictions
using Faster Region-based Convolutional Neural Network (R-CNN) [28]. When obtaining
bounding boxes to find the average speed and determine the direction of movement, the
objects should be identified by comparing them with the data of previous frames. To train
the neural network, we collected a dataset from street surveillance cameras in
Chelyabinsk (Russia). We chose the Simple Online and Realtime Tracking (SORT) tracker
for vehicle tracking because of its excellent compromise between speed and accuracy [29].

We used the design of the Faster R-CNN architecture [28,30-32] to detect and track
the trajectory of objects. According to The Microsoft Common Objects in Context (COCO)
[33] and Cityscapes [34], this architecture is a benchmark in datasets when many objects
are tracked. We used a high-performance SORT tracker to track the trajectory of vehicles
[35,36].

We used free-access outdoor video surveillance cameras to collect the data flow [37].
This solution is very easy since it avoids additional installation and co-ordination costs,
though difficulties arose in other aspects: a large viewing angle, a high level of occlusion,
visibility and number of objects, and various scales.

The screen co-ordinates of objects are converted to geographic co-ordinates using the
perspective transformation matrix. To this end, we select four reference points on the
camera image and the corresponding four points on the map. The obtained geographic
co-ordinates (latitude and longitude) of one object in the current and previous frame, as
well as the time between the frames, are used to determine the distance covered. The
speed of the object can be calculated using this distance and the time between the frames.
Since the neural network determines objects with an error, we selected frames with a
difference of one second instead of two consecutive frames for a more accurate
determination of the speed and the distance covered. If the obtained speed is less than 2
m/s, the object is considered to be not moving. Such a nonzero speed was taken due to an
error in determining the object by the neural network in the frame sequence. The time
between the frames where the object did not move is summed up and taken into account
to calculate pollutant emissions. Figure 2 shows the binding of the screen co-ordinates to
different categories of vehicles.

(b)

Figure 2. Coordinate binding of vehicles for the neural network: (a) Daylight hours; (b) Nighttime.

3.1. Selection of Variables

We collected data at several major urban intersections in Chelyabinsk, Russia. At the
initial research stage, we selected lanes corresponding to the movement of vehicles only
in a straight line for several large intersections. We recorded both the geometric
parameters of these traffic lanes and the entire structure of the intersections. We selected
23 lanes from 10 major urban intersections. The data were collected for passenger vehicles,
and we made 10 measurements both for freely passing an intersection and movement
after a full stop at a stop line when the red signal appears. In total, we made 460
measurements for several initial variables characterizing the dynamics of passing an
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intersection. Figure 3 shows examples of frames from street cameras for various-geometry

intersections crossed by traffic flows.

~ en

~ e
a=1.784m/c2

a=2.868m/c2

Figure 3. Video frames of traffic flow monitoring.

Table 1 presents the set of initial variables obtained from the video stream used as
primary variables in the study, as well as several secondary calculation variables.

Table 1. Initial and calculation variables.

No. Initial and Calculation Variables Unit of
Measurement

Initial variables

1 Li—distance from the stop line to the 1st conflict point m

2 [>—distance from the first to the 2nd conflict point m

3 thsv—traffic time from the stop line to the 1st conflict point, with freely passing the intersection s

4 tsv—traffic time from the 1st to the 2nd conflict point, with freely passing the intersection s

5 tist—accelerated traffic time from the stop line to the 1st conflict point, after a full stop s

6 tost—accelerated traffic time from the 1st to the 2nd conflict point, after a full stop s
Calculation variables

7 Visv—traffic speed from the stop line to the 1st conflict point, with freely passing the intersection km/h

8 Vasv—traffic speed from the 1st to the 2nd conflict point, with freely passing the intersection km/h

9 VSRw—average traffic speed at the intersection, with freely passing the intersection km/h

10 aiost— vehicle acceleration from the stop line to the 1st conflict point, after a full stop m/s?

11 a2st— vehicle acceleration from the 1st to the 2nd conflict point, after a full stop m/s?

12 asrost—average vehicle acceleration at the intersection, after a full stop m/s?

13 Viest—traffic speed at the 1st conflict point, when moving after a full stop km/h

14 Vast—traffic speed at the 2nd conflict point, when moving after a full stop km/h

15 Vsrost—average traffic speed at the exit from the intersection, when moving after a full stop km/h

16 Sij—saturation flow of the i-th lane during the j-th regulation phase
17 Cij—capacity of the i-th lane during the j-th regulation phase

equivalent units/h
equivalent units/h

The following assumptions were used to calculate the variables Sij and Ci. The
capacity of the traffic lane at regulated intersections according to [38] is determined by the

formula:
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S..d..
Cij _ T QEJ , (1)
c
where Cijj is the capacity of the lane i/ during the regulation phase j, equivalent units/h; Sj
is the saturation flow of the lane i during the regulation phase j, equivalent units/h; g is
the effective duration of the regulation phase j, s; C is the duration of the regulation cycle,
s.

Sj =Sg-N-fy - fipy - fo - fo - fog - T T - i, @)

where So is the ideal saturation flow taken equal to 1800 (equivalent units/h); N is the
number of traffic lanes; fw is the coefficient taking into account the width of the traffic lane;
fuv is the coefficient taking into account heavy goods vehicles; fc is the coefficient taking
into account gradients; fr is the coefficient taking into account parking; fss is the coefficient
taking into account the interference created by buses; fa is the coefficient taking into
account the area type; frris the coefficient taking into account right turns (i.e., interference
created by passengers); fir is the coefficient taking into account left turns.

3.2. Statistical Processing of Initial Data

Dividing vehicle traffic lanes into single-type clusters will further allow us to carry
out a comparative analysis of pollutant emissions at regulated intersections for these
single-type groups, as well as formulate statistically reliable conclusions about the
environmental situation in the entire urban transport network for single-type groups of
intersections.

Statistical data processing involves the use of the following processing algorithms:
clustering; identification of the initial data, which significantly differentiate clusters; and
factor analysis to determine factor-grouping trends. The calculations were made in the
Statistical Package for the Social Sciences (SPSS) professional statistical suite

3.2.1. Clustering

The initial data space is limited during clustering by the main variables, which
determine the design parameters of traffic lanes at intersections, as well as the nature of
the actual vehicle movement. These are S;—the saturation flow of the lane; L1 and L2—the
geometry of the intersection; fiost and t2ost—the time of the vehicles’ crossing an intersection
after a full stop at the stop line. Notably, the time of freely passing an intersection tisv and
v strongly correlates with the variables L1 and L2 and is not decisive in our further
analysis.

The single type of the selected groups of lanes is determined by the measure of
proximity or difference between the values of their characterizing factors according to the
square of the normalized Euclidean distance. To determine the distance between clusters,
we chose Ward’s method [39,40] as the most correct approach forming “spherical”
clusters.

The clustering procedure forms a representation of the sequential combination of
initial objects into single-type groups—a dendrogram, indicating the agglomeration
distance as a measure of clustering stability.

The dendrogram (Figure 4) clearly shows that the upper group of traffic lanes
(12,13,5,6,11,15), distinguished by their length of the lane in the intersection, is allocated
into a separate cluster. The two lower clusters of traffic lanes have approximately the same
length in the intersection but differ in the ratio of the variables L1 and Lz, which leads to
them being considered to be separate groups. It is no longer essential to divide traffic lanes
into more than three clusters stable within the 18% difference scale range.



Mathematics 2022, 10, 1887

8 of 20

Agglomeration step 1f12|1s]14| 15 (16| 17 | 18 | 19 20 21 22

Step width, % 7.0%|8.5% | 11.6% 16.9% 28.2%
12
13

,.
o
@
S
w
@
<
o
©
5

Traffic lane
=
o

Figure 4. Cluster dendrogram uniting 23 traffic lanes.

3.2.2. Comparison of Clusters

Let us determine the importance of variables in the division of the studied traffic
lanes into three selected clusters. The answer is given in the procedure for determining
the statistical significance as of the influence of each variable according to Fisher’s
criterion—based on the assessment of differences in their average values for all the three
cluster groups. The calculation results are presented in Table 2. Taking into account that
at afet < 5% we confirm the statistical significance of the variable in clustering the initial
objects, only the length and time of the initial acceleration of vehicles Li and t1ost are not
determinant in clustering, which coincides well with our a priori assumptions—the
starting movement of vehicles does not depend on the geometry of the intersection.

Table 2. Differences in the average values of variables for three clusters.

Variables (Average Values in Clusters)

Clusters
Sij L1 L t t2
1 (8 lanes) 1755 20.6 13.8 3.73 1.36
2 (9 lanes) 1649 16.7 19.8 3.41 1.95
3 (6 lanes) 1557 22.3 27.5 3.98 2.47
tfact 0.1% 8.7% 0.0% 11.2% 0.0%

3.2.3. Factor Analysis

We use the method of multidimensional scaling (factor analysis) to assess the
relationship of the set of analyzed variables. This method establishes a relatively narrow
set of “properties” for a set of initial and calculated variables. These properties
characterize the relationship between groups of these variables and the named factors,
which allows us to group the initial variables themselves.

There are various methods of factor analysis. In this study, we use the generally
accepted approach of principal component analysis. We rotate factors to obtain a simple
structure of interpreting the selected factors, which corresponds to a large load of each
variable for only one factor and a small load for all other factors (Table 3). We use the
Varimax orthogonal method [41], which is the most popular rotation option.

The scree plot shown in Figure 5 demonstrates four new grouping factors. These are
four points lying on the steep slope of the scree area. The remaining points with
eigenvalues less than one can be considered negligible, lying at the foot of the rocky slope.
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Figure 5. Scree plot of factors.

Table 3. Rotated component matrix.

Initial Variables Component
1 2 3 4

Sij -0.919

L» 0.897

Cij -0.876

taso 0.804

t2ost 0.769

Host 0.913

L1 0.871

tiso 0.807
A20st -0.958
Alost 0.718
Viso 0.697
Vaso 0.955

According to the factor analysis, the initial 12 variables are reduced to the four new
factors, the relationship of which is expected a priori and represented by the following
groups:

Factor 1. Variables (Si;, Cij, L2, t2sv, t2ost) characterizing the geometry of the intersection
and free movement of vehicles through it;

Factor 2. Variables (L1, tisv, tist) characterizing the geometry of the intersection and
accelerated movement after a full stop;

Factor 3. Variables (aiost, a20st, Visv) characterizing uniformly accelerated movement after

a full stop and free movement before an intersection;

Factor 4. Variable (Vasv) characterizing the free movement of vehicles at an intersection.

Findings. The statistical analysis showed the statistical reliability of dividing traffic
lanes into three single-type clusters, which differ both in the geometry of an intersection
and the corresponding nature of the vehicle movement.

The next part of the study is aimed at assessing the differences in pollutant emissions
generated by traffic flows crossing the intersections of the highlighted cluster groups.
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4. Mathematical Model of Pollutant Emissions

The dynamic parameters and structure of traffic flows determine the amount of
vehicle emissions. A high-resolution analysis of the traffic-related emission inventory has
shown that the influence of the flow parameters can significantly reduce the total car
emissions [42]. Model solutions for estimating traffic-related emissions are the European
Road Transport Emission Inventory Model (COPERT) and the Danish Operational Street
Pollution Model (OSPM) [43]. These dispersion models, characterized by different degrees
of complexity, can describe dispersion conditions using a small amount of manually
collected empirical data and predict the relationship between the amount of emissions
and concentration levels on the road network. However, to obtain continuous and
objective data, model calculations should be based on real-time emission data, and their
estimation is not trivial. Significant uncertainty is still associated with accurate emission
data due to the complicated data collection procedure caused by the constantly changing
amount and pattern of the traffic flow over time and road network parameters [44].

We used a method for calculating pollutant emissions to eliminate the influence of
external factors and obtain only the data on the pollution caused by vehicles riding along
roads [45,46]. The existing traffic monitoring system provides information on acceleration
and average speed, as well as individual vehicle trajectories and categories. The use of
neural network algorithms for a continuous assessment of traffic flows will provide much
more dynamic and accurate environmental information than the static models of emission
inventory assessment.

According to the approved standards [45,46], emissions from vehicles moving at a
variable speed Miv (g/s) are generally determined by the formula:

S SRR A S (310

1200

where: Lo is length of the road section, km; M kL . is specific mileage emission of the i-th

pollutant of the k-th type of vehicle, g/km; Gk is the intensity of the traffic flow of each of
the k-groups of a certain section of the road per unit of time in all lanes; k is number of
vehicle groups; rv [V(t)] is a correction factor determined by the current speed of the traffic
flow V(t); t1 is the time needed to the traffic flow to cross the intersection of the length Lo;
Co is a constant characterizing the structure and intensity of the traffic flow (4):

M- 4
012002 )

Regulatory documents contain only tabulated values for the factor rv [V(1)]
depending on the speed of the traffic flow (Table 4).

Table 4. Correction factor rv [V(t)].

Vi rv [V()]
5 1.4
10 1.35
15 1.3
20 1.2
25 1.1
30 1
35 0.9
40 0.75
45 0.6
50 0.5

60 0.3
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However, computer calculations provide for its analytical dependence obtained by
approximation for the permissible range of urban traffic speeds up to 60 km/h. The
analytical expression of the trend was obtained using the simplest equation with the
maximum approximation confidence level of 99.9%, which will be used in our
comparative assessments of pollutant emissions:

r,V(t)]=b,-V(t) -b,-V(t) +b -V(t)+h,. )

According to (3) and (4), the equations determine the computational mathematical
model for a computer system of monitoring pollutant emissions from a traffic flow
moving at an arbitrary speed. However, it is very difficult to use it in practice due to the
need to calculate the instantaneous speeds of the entire traffic flow.

For the practical applicability of the computational model, we further considered two
variants of the traffic flow movement within an intersection according to the initial data
array —uniform movement and uniformly accelerated movement after a full stop. This
corresponds to freely passing an intersection without stopping and accelerated movement
after a full stop at a red light.

4.1. Uniform Movement

For the constant speed of the traffic flow Vo, Equation (3) is simply written as follows:

MLV :Co'rvo't1/ (6)

where rvo is the correction factor determined (from Table 4) at the known speed Vo; f1 =
(Lo/Vo) is the time needed for the traffic flow to pass an intersection with the length Lo.

Let us compare emissions at the intersection length Lo from a flow of vehicles moving
at a constant speed Vo for different levels of speed Vo. Let us assume that the base value of
pollutant emissions is expressed by the emissions from the traffic flow at rvo equal to one,
which corresponds to a speed Vo =30 km/h.

Then, the comparative emission factor at an arbitrary constant speed of the traffic
flow and a base speed of 30 km/h (Kvis) is determined, taking into account analytical
dependence (5), according to the formula:

Cor-t 30 C ; )
KVi/30 = C. rt, = r 'Vi 1= Vil'(bs 'V(t) _bz 'V(t) +b1 'V(t)"'bo) ()

The comparison factor Kviso is shown graphically in Figure 6.

4 -

10 15 20 25 30 35 40 45 50 55 60
V, km/h

Figure 6. Changes in pollutant emissions at intersections at different average speeds of the traffic
flow.
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According to the calculations, the amount of pollutant emissions strongly depends
on the average speed of the traffic flow. So, with a decrease in the average speed from 30
km/h to 10 km/h, the amount of emissions at the intersection is four times larger. With an
increase in the average speed from 30 km/h to 50 km/h, the amount of emissions at the
intersection is three times smaller. This analysis shows the extent to which emissions are
reduced by increasing the average vehicle speed.

4.2. Uniformly Accelerated Movement

Let us compare the degree of the increase in pollutant emissions caused by vehicles
moving with a uniform acceleration after a stop at the red signal and reaching the speed
Vo after leaving the intersection, in relation to the uniform movement at the speed V.

In this problem statement, the relative emission comparison factor for a uniformly
accelerated and uniform movement of the traffic flow at the speed Vois calculated as
follows:

4

e Jlou(@atP —b(actF +b.-(agt) +by it
K — LV, — 0 (8)
v M LV, I, -t

0

where t1is the time of the vehicle acceleration from 0 to Vo; a0 = Vo/t1 is the constant vehicle
acceleration; t2 = Lo/Vo is the time of the uniform movement of vehicles on the same section
Lo, at t2 = t1/2.

Figure 7 graphically represents the comparison factor Kvi at various final acceleration
rates Vo.

12 1

== Kom ~a~ Kuviao

10 15 20 25 30 35 40 45 50 55 60
V, km/h

Figure 7. The ratio of pollutant emissions at the intersection for a uniformly accelerated and
uniformly moving traffic flow.

According to the calculations, the increase in emissions varies from at least two times
at low speeds, and up to six times at a speed of 60 km/h. This confirms the environmental
expedience of enabling vehicles to move through intersections without stopping.

4.3. Total Emissions at Intersections

Assuming that the shares of vehicles passing the intersection without stops and after
a full stop at the stop line are equal, we can sum the emissions by the comparison factors
Kviso and Kw in terms of Vo of 30 km/h—-Kwvoso (Equations (7) and (8)). The total numerical
measures (Ks) (Equation (9)) of comparison in relation to the speed Vo = 30 km/h are
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presented in Table 5, and the graphical representation of Ks» on the background of Kviso is
shown in Figure 8.

Ko = Kizo T Kyosaor 9)

Table 5. The ratio of pollutant emissions at the intersection at different speeds of the traffic flow.

Vi Kvio Ksm
10 4.05 12.31
15 2.60 8.01
20 1.80 5.74
25 1.32 4.37
30 1 3.45
35 0.77 2.79
40 0.56 2.24
45 0.40 1.82
50 0.30 1.51
55 0.23 1.33
60 0.15 1.05
6.0
55
5.0
45
5 4.0
35
3.0
25 -
20

10 15 20 25 30 35 40 45 50 55 60
V, km/h

Figure 8. The ratio of pollutant emissions at the intersection with a change in the speed of the traffic
flow.

According to the comparison of the total emissions at the intersection in relation to
the free movement of a traffic flow at a speed of 30 km/h, when the vehicle speed increases,
the total emissions change significantly. So, when decreasing the speed of the traffic flow
to 10 km/h (similar to a traffic jam), the amount of emissions increases by 3.6 times, and
when increasing the speed to 50 km/h, the amount of emissions decreases by 2.3 times.

To create a practical calculation model of pollutant emissions, we should determine
the structure and intensity of the traffic flow (this calculation has already been
implemented in a working system) and calculate emissions at a speed of 30 km/h. Next,
we determine the acceleration of vehicles after a stop at the stop line and their speed at
the exit from the intersection. Based on Equations (6)—(8), we determine the total traffic-
related emissions at the intersection. These tasks can be easily implemented in practice to
instantaneously calculate vehicle speed when the traffic flow crosses the entire
intersection.
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4.4. Comparison of Clusters by Pollutant Emissions

Let us compare three cluster groups of intersections in terms of several traffic flow
characteristics, which are practically significant for assessing pollutant emissions. Table 6
presents the data and their level of statistical significance (act) of differences for the three
clusters as determined by Fisher’s criterion in the SPSS suite.

Table 6. Differences in the average values of variables for the three clusters.

Clusters L1 L2 ASRost VsRost Vsrso Sij Cij
1 (8 lanes) 20.63 13.75 2.65 48.73 52.32 838.0 1755.0
2 (9 lanes) 16.67 19.78 2.53 49.77 48.23 694.3 1648.8
3 (6 lanes) 22.33 27.50 2.40 58.07 50.02 493.2 1557.0

tact, Yo 53.8 0.6 43.1 0.3 0.0

A statistically significant difference between the cluster groups of intersections is
determined by the speed of the vehicles leaving the intersections Vsrest, as well as the
saturation flows Si and the traffic lane capacity Ci.

Let us differentiate between the three clusters of intersections in terms of the total
emissions taking into account the calculations shown in Figure 5 with the determinant
factor Vsrost. If we take the total emissions for the first cluster as 100%, the emissions for
the second cluster will be 96.9%, and for the third cluster —72.5%. According to the Chi-
square statistical test, the level of statistical significance of differences in the total
emissions is negligible (asympt.value = 0.000), which indicates a high level of statistical
significance in differences in the total emissions for the selected clusters of intersections.
The calculation results are presented in Table 7.

Table 7. Differences by pollutant emission clusters.

Total Emissions Test Statistics
Observed Expected

Clusters .. L. Balance Total Emissions
Emissions, % Emissions, %
1 100.0 898.0 102.0 Chi-square 50.528
2 96.9 898.0 71.0  Degree of freedom 2
3 72.5 898.0 ~173.0 Asymgft' Value 0.000
fact
Total 269.4

5. Emission Forecasting by Fuzzy Logic Methods

The considered algorithm for calculating the amount of traffic-related pollutant
emissions does not take into account many unpredictable, random factors, such as a sharp
change in weather conditions, nonperiodic traffic jams, accidents, unpredictable
interference, etc. In this case, it is expedient to use situation forecasting methods based on
fuzzy logic algorithms, which integrally take into account the impact of many
unpredictable factors. Taking into account the impact of such random factors separately
is very difficult because of the complexity of obtaining initial data to analyze their impact.

To visualize the influence of fuzzy factors on pollutant emissions at a regulated
intersection, we construct a general model using the fuzzyTECHS.77e computer program
to assess the influence of the vehicle speeds when freely passing the intersection Vsrw and
a uniformly accelerated movement after a full stop Vsrest, as well as the reduced capacity
of the traffic lane Cj, on total pollutant emissions (SumVBR).

The initial set of the observation data on 23 traffic lanes at urban intersections was
used as a basis. The simulation was based on the Gaussian nature of the membership
functions since it reflects the best of the unpredictability of many influencing factors,
which are difficult to take into account. The levels of membership functions are
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determined disproportionately because of the nonlinear nature of the dependence of
emissions on the vehicle speed.

Figure 9 shows the block diagram of the constructed model, as well as Gaussian
membership functions of Vsrest (Vsrse similarly) and Cij and the output variable SumVBR.
Gaussian fuzzification is most consistent with the stochastic version of the problem. The
parameters of the Gaussian terms were determined according to the authors’ expert
estimates based on their practical work with surveillance camera data.
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Figure 9. Block diagram of the model and membership functions of factors.
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The block of correspondence rules with three level input variables consisting of 27
rules is too bulky, and it also formed according to the expert estimates based on the
practical work with traffic flows.

The experimental studies of the constructed model predict the output variable based
on the actual values of the input variables, as well as graphically represent the distribution
field of their mutual influence in the form of volumetric surfaces. Thus, Figure 10 shows
the dynamics of the total pollutant emissions (on a relative scale) at a variation in lane
capacity of 25%, 50%, and 75% of the maximum value of 1200 equivalent units of vehicles
per hour.
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VSR_sv v | |VSRost v | ' SumVBR v 35% Vv
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Figure 10. The dynamics of the distribution field for pollutant emissions at the regulated
intersection. (a) Cij=25%; (b) Cij= 50%; (c) Cii= 75%.

The simulation results demonstrate a similar influence of the speeds of traffic flows
Vsrso and Vsrost on the total emissions, as well as the determinant nature of the influence of
the traffic lane capacity of the intersection. This study can serve as a useful basis for
making reasoned decisions to reduce pollutant emissions using regulated intersection
control.

6. Discussion

There are two types of movement of traffic flows at regulated traffic lights in an urban
network: moving through the intersection without stopping and accelerated movement
after a full stop at a red light.

Analysis of the initial data on the vehicle movement along 23 lanes allowed us to
group the lanes into single-type clusters that differ with a statistical significance both in
the geometry of the intersection and in the nature of the vehicle movement along them.
The factor analysis of the initial data array also showed single-type groups of initial
parameters distinguishing these traffic lanes. Statistically reliable clustering of the traffic
lanes allowed us to give a comparative assessment of the environmental situation in the
urban transport network nodes based on the obtained, practically applicable
mathematical model.

We presented a complete mathematical model for calculating pollutant emissions,
although it is difficult to apply it in practice. We proposed to simplify it to a working
version by considering the above two characteristic types of the traffic flow movement at
urban intersections. The approbation of such a practically applicable calculation model is
demonstrated in the form of a comparative analysis of all emissions at the intersection in
relation to the speed of the traffic flow of 30 km/h. Therefore, when reducing the speed of
the traffic flow to 10 km/h (similar to a traffic jam), the amount of emissions increases by
3.6 times, and when increasing the speed to 50 km/h, the amount of emissions decreases
by 2.3 times.
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We presented a generalized forecast for pollutant emissions at regulated
intersections using fuzzy logic. The simulation results demonstrate the similar influence
of the speeds of two types of traffic movement on total emissions, as well as the
determinant nature of the influence of the traffic lane capacity at intersections.

The detection of a statistically significant difference in traffic-related pollutant
emissions when changing the speed at intersections can assist in making sound
management decisions to minimize pollution in the urban transport network.

7. Conclusions

We proposed and tested a method to identify single-type groups of traffic lanes at
urban intersections, which will allow for the minimization of a number of standard
management decisions to reduce traffic-related pollutant emissions. We have developed
a complete mathematical model which calculates emissions while taking into account the
arbitrary speed of traffic flows as well as a simplified calculation model based on
identifying the two typical modes of vehicle traffic at intersections: moving through the
intersection at a constant speed (without stopping) and uniformly accelerated movement
after a full stop at a red light. When using the simplified model, the calculated load on the
dynamic monitoring system becomes acceptable, providing for stable, real-time
operation. This approach is closer to reality than the calculation models used in the AIMS-
Eco system.

When implementing the proposed simplified calculation model to determine
emissions in the AIMS-Eco system, we expect a high approximation of the calculation
results to the instrumental test measurements of emissions made by public environmental
monitoring centers.

Further studies will focus on all the traffic lanes in a regulated intersection in order
to assess the overall environmental situation at intersections and minimize emissions. This
study can also serve as a basis for a simplified design of a system for environmental
monitoring in the urban transport network based on the clustering of many urban
intersections.
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