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Abstract: The insufficient development of intelligent dynamic monitoring systems, which operate 

with big data, obstructs the control of traffic-related air pollution in regulated urban road networks. 

The study introduces mathematical models and presents a practical comparative assessment of 

pollutant emissions at urban intersections, with two typical modes of vehicle traffic combined, i.e., 

freely passing an intersection when the green signal appears and uniformly accelerated passing after 

a full stop at the stop line. Input data on vehicle traffic at regulated intersections were collected 

using real-time processing of video streams by Faster R-CNN neural network. Calculation models 

for different traffic flow patterns at a regulated intersection for dynamic monitoring of pollutant 

emissions were obtained. Statistical analysis showed a good grouping of intersections into single-

type clusters and factor reduction of initial variables. Analysis will further allow us to control and 

minimize traffic-related emissions in urban road networks. A comparative analysis of pollutant 

emissions in relation to the basic speed of passing at the intersection of 30 km/h was performed 

according to the calculations of the mathematical models. When reducing the speed to 10 km/h 

(similar to a traffic jam), the amount of emissions increases 3.6 times over, and when increasing the 

speed to 50 km/h, the amount of emissions decreases by 2.3 times. Fuzzy logic methods allow us to 

make a comparative prediction of the amount of emissions when changing both the speed of traffic 

and the capacity of the intersection lanes. The study reveals the benefits of using a real-life 

measurement approach and provides the foundation for continuous monitoring and emission 

forecasting to control urban air quality and reduce congestion in the road network. 

Keywords: environmental control; real-time monitoring; neural network; traffic flow; fuzzy logic 

methods; forecasting 
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1. Introduction 

Traffic-related pollutant emissions are the main obstacle to sustainable urban 

development. In recent decades, they have proportionally increased due to the 

exponential growth in the road-traffic intensity. Thus, reducing and managing the 

intensity of traffic-related emissions has become an unprecedented challenge subject to a 

profound study. 

Closed-circuit television cameras are most often used to control and monitor traffic 

flows. Video cameras can record road traffic offences and obtain initial data on the 

parameters of the traffic flow used in dynamic monitoring systems, as well as the 
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subsequent regulation of the traffic flows themselves and the environmental status of the 

urban transport network [1,2]. 

This study continues the authors’ development of a dynamic system for traffic flow 

monitoring, which implements real-time control of such parameters as the structure of the 

vehicle queue and the entire flow, the speed and acceleration of vehicles, and their 

trajectory at urban, regulated intersections [1,2]. 

This large volume of initial data is used not only to control and manage traffic flows 

but also serves as a basis for calculating pollutant emissions using mathematical models 

based on standard regulatory procedures. An example of such a system is the authors’ 

AIMS-Eco system: “Intelligent system for real-time monitoring the amount of traffic-

related pollutant emissions” [3] based on neural networks. 

This paper develops an approach to design a unified urban system for the 

environmental control of traffic-related pollutant emissions based on the processing of 

data from video cameras. At the initial stage, we considered only traffic lanes for moving 

“straight” at intersections as they are most informative in terms of traffic dynamics. We 

have not considered an isolated, regulated intersection as a source of harmful emissions 

but identified single-type groups (clusters) of traffic lanes to facilitate managerial 

decisions aimed at reducing the environmental load on a wider scale. Thus, the purpose 

of the study is to develop computational mathematical models to implement a system for 

the dynamic monitoring of pollutant emissions from traffic flows passing a regulated 

intersection at a variable speed. 

A preliminary version of our emission monitoring system has been implemented, 

examining uniform traffic at successive sections of a 20 m long intersection. To improve 

the integrity of our system, we must take into account the dynamics of emissions when 

vehicles accelerate after a stop at a red light. Therefore, to assess the quality of the resulting 

calculation models, we should complete a comparative prediction of emissions produced 

when changing the speed of traffic flows. 

Section 2 of the paper provides a review of research in this field. Section 3 describes 

methods for recognizing and classifying, tracking, counting, and determining vehicle 

speed using neural networks. Section 4 presents a mathematical model of traffic-related 

pollutant emissions. Section 5 deals with emission forecasting by fuzzy logic methods. 

Section 6 discusses the obtained results, and Section 7 presents concluding thoughts and 

further areas of research. 

2. Related Works 

A report in 2019 indicated that road transport was the principal source of nitrogen 

oxides (39% of emissions) and a source of coarse particulate matter and fine particulate 

matter, which affects the health and quality of life of urban residents around the world 

[4]. 

The results of the studies carried out by Cheng et al. [5] showed that ultrafine 

particles, black carbon, and particle-bound polycyclic aromatic hydrocarbons (p-PAHs) 

mainly resulted from emissions generated by diesel vehicles. The monitoring of heavy 

metal emissions in the road area showed [6] that high concentrations of Ti, Fe, Cu, and Ba 

are typical for road sections where heavy vehicles prevail. The proposed model allows 

one to determine the predominant composition of the fleet on a given road section. 

The most popular models for studying traffic-related pollutant emissions in cities are 

Computer Program to Calculate Emissions from Road Transport (COPERT) [7] and 

Passenger Car and Heavy Duty Emission Model (PHEM) [8,9]. 

COPERT emission models (based on the average speed) and PHEM (based on vehicle 

kinematics) are analyzed and their sensitivity to traffic dynamics is assessed in [10]. The 

medium-speed approach in free flow conditions tends to overestimate the amount of 

emissions, while in cases of congestion it tends to underestimate the amount of emissions, 

ignoring the effects of congestion. 
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Spyropoulos et al. [11] forecasted vehicle-related emissions using the COPERT 

method and Brown’s double simple exponential smoothing. When analyzing the data, 

they found that the measurement results are influenced by such factors as the wind speed 

and direction, as well as the atmospheric air temperature. To obtain data only on vehicle-

related emissions ignoring atmospheric factors, they built a “traffic flow—roadside 

environment” model. The model assesses air pollution generated only by the traffic flow 

(TF). 

Using an optical remote sensing device to measure the concentrations of CO, CO2, 

HC, and NO exhaust gases, ref. [12] calculated average emission factors and compared 

them with those of the COPERT III model (version 2.1). The authors found that the model 

overestimated the indicators for almost all technology classes (EURO 1, 2, 3) for CO, and 

the relationship between the model and measurements was good for HC and NOx 

emissions, except for heavy vehicles (in the model, the indicators had a lower level 

compared to the measured data). 

Angatha and Mehar [13] studied the influence of the TF parameters, the duration of 

the red traffic light signal, and the average number of vehicles stopping at the red light on 

the concentration of carbon monoxide. Two models are proposed: using the methods of 

multiple linear regression and artificial neural networks. The latter model showed the best 

results in predicting carbon monoxide values. A linear increase in carbon monoxide with 

an increase in the number of vehicles at the entrance to the intersection and the duration 

of the red traffic signal was observed due to changes in the acceleration and deceleration 

of vehicles at intersections. 

The influence of the duration of traffic signals and obeying the TF speed limit on the 

amount of harmful emissions was considered in [14]. The authors developed a numerical 

model choosing the optimal traffic light pattern to achieve a balance between delays at 

regulated intersections for drivers and minimize the amount of harmful emissions. The 

authors of [15] also analyzed the quality of urban air at a speed limit of up to 80 km/h and 

found that CO, NOx, and PM2.5 were reduced by 5–7%. 

Traffic-related harmful emissions depend on the properties of the vehicles 

themselves, the type of urban development, geography, and meteorological conditions, 

which complicate the control and forecasting of the dispersion of harmful substances [16]. 

All these factors set high requirements for the computational performance of the 

developed real-time high-accuracy models. The system for vehicle emissions on an urban 

road network (RTVEMVS) developed in [16] gives a precise real-time assessment of 

emissions (taking into account the dispersion model) and visualizes the obtained data on 

a map of the road network. Similar studies and developments were carried out in [17–21]. 

In an urban environment, harmful substances are dispersed under the influence of 

the depth of street canyons and air movement caused by moving vehicles [22,23]. 

Simulation at various wind and vehicle speeds show that moving vehicles strongly 

influence wind turbulence, which is a significant factor for the dispersion of harmful 

emissions. Turbulence and air flows generated by vehicles reach a height of 7 to 12 m in 

the street canyon [24]. Regulated intersections are characterized by the stop and starting 

of vehicles, as well as the braking mode, which is when high concentrations of harmful 

emissions are released. The wind ventilation of intersections differs from a common street 

canyon due to different wind directions [25]. 

The Euler–Lagrange method was used as the basis of the model for predicting the 

concentration of harmful emissions and the dissipation rate to study regulated 

intersections in [25]. The minimum concentrations of harmful emissions are observed 

when the vehicle movement slows down, while the peak values are observed when the 

movement starts from the intersection. The authors also found that the distance between 

traffic lights affects the concentration of PM10. Researchers in [20] demonstrated in a 

microsimulation environment that the air quality can be improved by the effective 

management of traffic flows at regulated intersections. 
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The literature review has shown that most studies consider individual sections of 

urban road networks to develop models for calculating concentrations and dispersion of 

harmful emissions. Computer simulation is based on the data on the average speed of 

traffic flows (according to COPERT), while traffic flows are characterized by various types 

of movement, especially in urban areas. 

To develop a mathematical model based on fuzzy logic methods to calculate traffic-

related harmful emissions taking into account the identified features of traffic flows in 

urban conditions, we focused on the grouping of vehicle traffic lanes and developed a 

model for two types of traffic flow movements at regulated intersections: uniformly 

accelerated and uniform movement [26,27]. 

The novelty of the study is the development of a model in the problem of high-quality 

and complete collection of data on the amount of traffic-related emissions based on the 

use of neural network algorithms and fuzzy logic algorithms integrally taking into 

account the impact of many unpredictable factors, in view of the design features of the 

road network. 

3. Materials and Methods 

The methods include the selection of variables used to collect the initial data, data 

collection, statistical methods for processing the collected information, interpreting the 

obtained results on the assessment of pollutant emissions, and emission forecasting using 

fuzzy logic methods. The basic traffic flow monitoring system used to collect initial data 

should be considered separately. 

To achieve our research goal, we needed to develop a system to assess the dynamic 

parameters of vehicles, such as acceleration and speed. To this end, we divided the task 

into four subtasks: object detection and classification; object tracking; object counting; and 

determining the vehicle speed. Figure 1 shows an algorithm for obtaining the data on 

vehicle accelerations and average speeds. 

 

Figure 1. Flow chart of the algorithm for obtaining initial data. 
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The first module processes the incoming video stream and receives object predictions 

using Faster Region-based Convolutional Neural Network (R-CNN) [28]. When obtaining 

bounding boxes to find the average speed and determine the direction of movement, the 

objects should be identified by comparing them with the data of previous frames. To train 

the neural network, we collected a dataset from street surveillance cameras in 

Chelyabinsk (Russia). We chose the Simple Online and Realtime Tracking (SORT) tracker 

for vehicle tracking because of its excellent compromise between speed and accuracy [29]. 

We used the design of the Faster R-CNN architecture [28,30–32] to detect and track 

the trajectory of objects. According to The Microsoft Common Objects in Context (COCO) 

[33] and Cityscapes [34], this architecture is a benchmark in datasets when many objects 

are tracked. We used a high-performance SORT tracker to track the trajectory of vehicles 

[35,36]. 

We used free-access outdoor video surveillance cameras to collect the data flow [37]. 

This solution is very easy since it avoids additional installation and co-ordination costs, 

though difficulties arose in other aspects: a large viewing angle, a high level of occlusion, 

visibility and number of objects, and various scales. 

The screen co-ordinates of objects are converted to geographic co-ordinates using the 

perspective transformation matrix. To this end, we select four reference points on the 

camera image and the corresponding four points on the map. The obtained geographic 

co-ordinates (latitude and longitude) of one object in the current and previous frame, as 

well as the time between the frames, are used to determine the distance covered. The 

speed of the object can be calculated using this distance and the time between the frames. 

Since the neural network determines objects with an error, we selected frames with a 

difference of one second instead of two consecutive frames for a more accurate 

determination of the speed and the distance covered. If the obtained speed is less than 2 

m/s, the object is considered to be not moving. Such a nonzero speed was taken due to an 

error in determining the object by the neural network in the frame sequence. The time 

between the frames where the object did not move is summed up and taken into account 

to calculate pollutant emissions. Figure 2 shows the binding of the screen co-ordinates to 

different categories of vehicles. 

 

 

(a) (b) 

Figure 2. Coordinate binding of vehicles for the neural network: (a) Daylight hours; (b) Nighttime. 

3.1. Selection of Variables 

We collected data at several major urban intersections in Chelyabinsk, Russia. At the 

initial research stage, we selected lanes corresponding to the movement of vehicles only 

in a straight line for several large intersections. We recorded both the geometric 

parameters of these traffic lanes and the entire structure of the intersections. We selected 

23 lanes from 10 major urban intersections. The data were collected for passenger vehicles, 

and we made 10 measurements both for freely passing an intersection and movement 

after a full stop at a stop line when the red signal appears. In total, we made 460 

measurements for several initial variables characterizing the dynamics of passing an 
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intersection. Figure 3 shows examples of frames from street cameras for various-geometry 

intersections crossed by traffic flows. 

19 m.

12 m.

a=2.393m/c2

15 m.

18 m.

a=1.784m/c2

22 m.

28 m.

a=2.540m/c2

25 m.

26 m.

a=2.868m/c2
 

Figure 3. Video frames of traffic flow monitoring. 

Table 1 presents the set of initial variables obtained from the video stream used as 

primary variables in the study, as well as several secondary calculation variables. 

Table 1. Initial and calculation variables. 

No. Initial and Calculation Variables 
Unit of  

Measurement 

 Initial variables  

1 L1—distance from the stop line to the 1st conflict point m 

2 L2—distance from the first to the 2nd conflict point m 

3 t1sv—traffic time from the stop line to the 1st conflict point, with freely passing the intersection  s 

4 t2sv—traffic time from the 1st to the 2nd conflict point, with freely passing the intersection  s 

5 t1ost—accelerated traffic time from the stop line to the 1st conflict point, after a full stop s 

6 t2ost—accelerated traffic time from the 1st to the 2nd conflict point, after a full stop s 

 Calculation variables  

7 V1sv—traffic speed from the stop line to the 1st conflict point, with freely passing the intersection km/h 

8 V2sv—traffic speed from the 1st to the 2nd conflict point, with freely passing the intersection km/h 

9 VSRsv—average traffic speed at the intersection, with freely passing the intersection km/h 

10 a1ost—vehicle acceleration from the stop line to the 1st conflict point, after a full stop m/s2 

11 a2ost—vehicle acceleration from the 1st to the 2nd conflict point, after a full stop m/s2 

12 aSRost—average vehicle acceleration at the intersection, after a full stop m/s2 

13 V1ost—traffic speed at the 1st conflict point, when moving after a full stop km/h 

14 V2ost—traffic speed at the 2nd conflict point, when moving after a full stop km/h 

15 VSRost—average traffic speed at the exit from the intersection, when moving after a full stop km/h 

16 Sij—saturation flow of the i-th lane during the j-th regulation phase  equivalent units/h 

17 Cij—capacity of the i-th lane during the j-th regulation phase equivalent units/h 

The following assumptions were used to calculate the variables Sij and Cij. The 

capacity of the traffic lane at regulated intersections according to [38] is determined by the 

formula: 
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,
c

gS
C

ejij

ij


=  (1) 

where Cij is the capacity of the lane i during the regulation phase j, equivalent units/h; Sij 

is the saturation flow of the lane i during the regulation phase j, equivalent units/h; gej is 

the effective duration of the regulation phase j, s; C is the duration of the regulation cycle, 

s. 

,0 LTRTABBPGHVWij ffffffffNSS =  (2) 

where S0 is the ideal saturation flow taken equal to 1800 (equivalent units/h); N is the 

number of traffic lanes; fW is the coefficient taking into account the width of the traffic lane; 

fHV is the coefficient taking into account heavy goods vehicles; fG is the coefficient taking 

into account gradients; fP is the coefficient taking into account parking; fBB is the coefficient 

taking into account the interference created by buses; fA is the coefficient taking into 

account the area type; fRT is the coefficient taking into account right turns (i.e., interference 

created by passengers); fLT is the coefficient taking into account left turns. 

3.2. Statistical Processing of Initial Data 

Dividing vehicle traffic lanes into single-type clusters will further allow us to carry 

out a comparative analysis of pollutant emissions at regulated intersections for these 

single-type groups, as well as formulate statistically reliable conclusions about the 

environmental situation in the entire urban transport network for single-type groups of 

intersections. 

Statistical data processing involves the use of the following processing algorithms: 

clustering; identification of the initial data, which significantly differentiate clusters; and 

factor analysis to determine factor-grouping trends. The calculations were made in the 

Statistical Package for the Social Sciences (SPSS) professional statistical suite 

3.2.1. Clustering 

The initial data space is limited during clustering by the main variables, which 

determine the design parameters of traffic lanes at intersections, as well as the nature of 

the actual vehicle movement. These are Sij—the saturation flow of the lane; L1 and L2—the 

geometry of the intersection; t1ost and t2ost—the time of the vehicles’ crossing an intersection 

after a full stop at the stop line. Notably, the time of freely passing an intersection t1sv and 

t2sv strongly correlates with the variables L1 and L2 and is not decisive in our further 

analysis. 

The single type of the selected groups of lanes is determined by the measure of 

proximity or difference between the values of their characterizing factors according to the 

square of the normalized Euclidean distance. To determine the distance between clusters, 

we chose Ward’s method [39,40] as the most correct approach forming “spherical” 

clusters. 

The clustering procedure forms a representation of the sequential combination of 

initial objects into single-type groups—a dendrogram, indicating the agglomeration 

distance as a measure of clustering stability. 

The dendrogram (Figure 4) clearly shows that the upper group of traffic lanes 

(12,13,5,6,11,15), distinguished by their length of the lane in the intersection, is allocated 

into a separate cluster. The two lower clusters of traffic lanes have approximately the same 

length in the intersection but differ in the ratio of the variables L1 and L2, which leads to 

them being considered to be separate groups. It is no longer essential to divide traffic lanes 

into more than three clusters stable within the 18% difference scale range. 
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Figure 4. Cluster dendrogram uniting 23 traffic lanes. 

3.2.2. Comparison of Clusters 

Let us determine the importance of variables in the division of the studied traffic 

lanes into three selected clusters. The answer is given in the procedure for determining 

the statistical significance αfact of the influence of each variable according to Fisher’s 

criterion—based on the assessment of differences in their average values for all the three 

cluster groups. The calculation results are presented in Table 2. Taking into account that 

at αfact < 5% we confirm the statistical significance of the variable in clustering the initial 

objects, only the length and time of the initial acceleration of vehicles L1 and t1ost are not 

determinant in clustering, which coincides well with our a priori assumptions—the 

starting movement of vehicles does not depend on the geometry of the intersection. 

Table 2. Differences in the average values of variables for three clusters. 

Clusters 
Variables (Average Values in Clusters) 

Sij L1 L2 t1 t2 

1 (8 lanes) 1755 20.6 13.8 3.73 1.36 

2 (9 lanes) 1649 16.7 19.8 3.41 1.95 

3 (6 lanes) 1557 22.3 27.5 3.98 2.47 

αfact 0.1% 8.7% 0.0% 11.2% 0.0% 

3.2.3. Factor Analysis 

We use the method of multidimensional scaling (factor analysis) to assess the 

relationship of the set of analyzed variables. This method establishes a relatively narrow 

set of “properties” for a set of initial and calculated variables. These properties 

characterize the relationship between groups of these variables and the named factors, 

which allows us to group the initial variables themselves. 

There are various methods of factor analysis. In this study, we use the generally 

accepted approach of principal component analysis. We rotate factors to obtain a simple 

structure of interpreting the selected factors, which corresponds to a large load of each 

variable for only one factor and a small load for all other factors (Table 3). We use the 

Varimax orthogonal method [41], which is the most popular rotation option. 

The scree plot shown in Figure 5 demonstrates four new grouping factors. These are 

four points lying on the steep slope of the scree area. The remaining points with 

eigenvalues less than one can be considered negligible, lying at the foot of the rocky slope. 
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Figure 5. Scree plot of factors. 

Table 3. Rotated component matrix. 

Initial Variables 
Component 

1 2 3 4 

Sij −0.919    

L2 0.897    

Cij −0.876    

t2sv 0.804    

t2ost 0.769    

t1ost  0.913   

L1  0.871   

t1sv  0.807   

a2ost   −0.958  

a1ost   0.718  

V1sv   0.697  

V2sv    0.955 

According to the factor analysis, the initial 12 variables are reduced to the four new 

factors, the relationship of which is expected a priori and represented by the following 

groups: 

Factor 1. Variables (Sij, Cij, L2, t2sv, t2ost) characterizing the geometry of the intersection 

and free movement of vehicles through it; 

Factor 2. Variables (L1, t1sv, t1ost) characterizing the geometry of the intersection and 

accelerated movement after a full stop; 

Factor 3. Variables (a1ost, a2ost, V1sv) characterizing uniformly accelerated movement after 

a full stop and free movement before an intersection; 

Factor 4. Variable (V2sv) characterizing the free movement of vehicles at an intersection. 

Findings. The statistical analysis showed the statistical reliability of dividing traffic 

lanes into three single-type clusters, which differ both in the geometry of an intersection 

and the corresponding nature of the vehicle movement. 

The next part of the study is aimed at assessing the differences in pollutant emissions 

generated by traffic flows crossing the intersections of the highlighted cluster groups. 
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4. Mathematical Model of Pollutant Emissions 

The dynamic parameters and structure of traffic flows determine the amount of 

vehicle emissions. A high-resolution analysis of the traffic-related emission inventory has 

shown that the influence of the flow parameters can significantly reduce the total car 

emissions [42]. Model solutions for estimating traffic-related emissions are the European 

Road Transport Emission Inventory Model (COPERT) and the Danish Operational Street 

Pollution Model (OSPM) [43]. These dispersion models, characterized by different degrees 

of complexity, can describe dispersion conditions using a small amount of manually 

collected empirical data and predict the relationship between the amount of emissions 

and concentration levels on the road network. However, to obtain continuous and 

objective data, model calculations should be based on real-time emission data, and their 

estimation is not trivial. Significant uncertainty is still associated with accurate emission 

data due to the complicated data collection procedure caused by the constantly changing 

amount and pattern of the traffic flow over time and road network parameters [44]. 

We used a method for calculating pollutant emissions to eliminate the influence of 

external factors and obtain only the data on the pollution caused by vehicles riding along 

roads [45,46]. The existing traffic monitoring system provides information on acceleration 

and average speed, as well as individual vehicle trajectories and categories. The use of 

neural network algorithms for a continuous assessment of traffic flows will provide much 

more dynamic and accurate environmental information than the static models of emission 

inventory assessment. 

According to the approved standards [45,46], emissions from vehicles moving at a 

variable speed MLV (g/s) are generally determined by the formula: 

( ) ( )  ,
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1
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0
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0 1
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0

  =







=

t

VV

t

k

k
L

ikLV
dttVrCdttrGM

L
M  (3) 

where: L0 is length of the road section, km; 
L
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M

,
 is specific mileage emission of the i-th 

pollutant of the k-th type of vehicle, g/km; Gk is the intensity of the traffic flow of each of 

the k-groups of a certain section of the road per unit of time in all lanes; k is number of 

vehicle groups; rV [V(t)] is a correction factor determined by the current speed of the traffic 

flow V(t); t1 is the time needed to the traffic flow to cross the intersection of the length L0; 

C0 is a constant characterizing the structure and intensity of the traffic flow (4): 

.
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0
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Regulatory documents contain only tabulated values for the factor rV [V(t)] 

depending on the speed of the traffic flow (Table 4). 

Table 4. Correction factor rV [V(t)]. 

Vi rV [V(t)] 

5 1.4 

10 1.35 

15 1.3 

20 1.2 

25 1.1 

30 1 

35 0.9 

40 0.75 

45 0.6 

50 0.5 

60 0.3 
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However, computer calculations provide for its analytical dependence obtained by 

approximation for the permissible range of urban traffic speeds up to 60 km/h. The 

analytical expression of the trend was obtained using the simplest equation with the 

maximum approximation confidence level of 99.9%, which will be used in our 

comparative assessments of pollutant emissions: 

( )  ( ) ( ) ( ) .
01

2

2

3

3
btVbtVbtVbtVr

V
++−=  (5) 

According to (3) and (4), the equations determine the computational mathematical 

model for a computer system of monitoring pollutant emissions from a traffic flow 

moving at an arbitrary speed. However, it is very difficult to use it in practice due to the 

need to calculate the instantaneous speeds of the entire traffic flow. 

For the practical applicability of the computational model, we further considered two 

variants of the traffic flow movement within an intersection according to the initial data 

array—uniform movement and uniformly accelerated movement after a full stop. This 

corresponds to freely passing an intersection without stopping and accelerated movement 

after a full stop at a red light. 

4.1. Uniform Movement 

For the constant speed of the traffic flow V0, Equation (3) is simply written as follows: 

100 trCM VLV = , (6) 

where rV0 is the correction factor determined (from Table 4) at the known speed V0; t1 = 

(L0/V0) is the time needed for the traffic flow to pass an intersection with the length L0. 

Let us compare emissions at the intersection length L0 from a flow of vehicles moving 

at a constant speed V0 for different levels of speed V0. Let us assume that the base value of 

pollutant emissions is expressed by the emissions from the traffic flow at rV0 equal to one, 

which corresponds to a speed V0 = 30 km/h. 

Then, the comparative emission factor at an arbitrary constant speed of the traffic 

flow and a base speed of 30 km/h (KVi/30) is determined, taking into account analytical 

dependence (5), according to the formula: 
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The comparison factor KVi/30 is shown graphically in Figure 6. 

 

Figure 6. Changes in pollutant emissions at intersections at different average speeds of the traffic 

flow. 
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According to the calculations, the amount of pollutant emissions strongly depends 

on the average speed of the traffic flow. So, with a decrease in the average speed from 30 

km/h to 10 km/h, the amount of emissions at the intersection is four times larger. With an 

increase in the average speed from 30 km/h to 50 km/h, the amount of emissions at the 

intersection is three times smaller. This analysis shows the extent to which emissions are 

reduced by increasing the average vehicle speed. 

4.2. Uniformly Accelerated Movement 

Let us compare the degree of the increase in pollutant emissions caused by vehicles 

moving with a uniform acceleration after a stop at the red signal and reaching the speed 

V0 after leaving the intersection, in relation to the uniform movement at the speed V0. 

In this problem statement, the relative emission comparison factor for a uniformly 

accelerated and uniform movement of the traffic flow at the speed V0 is calculated as 

follows: 
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where t1 is the time of the vehicle acceleration from 0 to V0; a0 = V0/t1 is the constant vehicle 

acceleration; t2 = L0/V0 is the time of the uniform movement of vehicles on the same section 

L0, at t2 = t1/2. 

Figure 7 graphically represents the comparison factor KVi at various final acceleration 

rates V0. 

 

Figure 7. The ratio of pollutant emissions at the intersection for a uniformly accelerated and 

uniformly moving traffic flow. 

According to the calculations, the increase in emissions varies from at least two times 

at low speeds, and up to six times at a speed of 60 km/h. This confirms the environmental 

expedience of enabling vehicles to move through intersections without stopping. 

4.3. Total Emissions at Intersections 

Assuming that the shares of vehicles passing the intersection without stops and after 

a full stop at the stop line are equal, we can sum the emissions by the comparison factors 

KVi/30 and KV0 in terms of V0 of 30 km/h–KV0/30 (Equations (7) and (8)). The total numerical 

measures (Ksm) (Equation (9)) of comparison in relation to the speed V0 = 30 km/h are 
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presented in Table 5, and the graphical representation of Ksm on the background of KVi/30 is 

shown in Figure 8. 

,
30/030/ VVism

KKK +=  (9) 

Table 5. The ratio of pollutant emissions at the intersection at different speeds of the traffic flow. 

Vi KVi/30 Ksm 

10 4.05 12.31 

15 2.60 8.01 

20 1.80 5.74 

25 1.32 4.37 

30 1 3.45 

35 0.77 2.79 

40 0.56 2.24 

45 0.40 1.82 

50 0.30 1.51 

55 0.23 1.33 

60 0.15 1.05 

 

Figure 8. The ratio of pollutant emissions at the intersection with a change in the speed of the traffic 

flow. 

According to the comparison of the total emissions at the intersection in relation to 

the free movement of a traffic flow at a speed of 30 km/h, when the vehicle speed increases, 

the total emissions change significantly. So, when decreasing the speed of the traffic flow 

to 10 km/h (similar to a traffic jam), the amount of emissions increases by 3.6 times, and 

when increasing the speed to 50 km/h, the amount of emissions decreases by 2.3 times. 

To create a practical calculation model of pollutant emissions, we should determine 

the structure and intensity of the traffic flow (this calculation has already been 

implemented in a working system) and calculate emissions at a speed of 30 km/h. Next, 

we determine the acceleration of vehicles after a stop at the stop line and their speed at 

the exit from the intersection. Based on Equations (6)–(8), we determine the total traffic-

related emissions at the intersection. These tasks can be easily implemented in practice to 

instantaneously calculate vehicle speed when the traffic flow crosses the entire 

intersection. 
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4.4. Comparison of Clusters by Pollutant Emissions 

Let us compare three cluster groups of intersections in terms of several traffic flow 

characteristics, which are practically significant for assessing pollutant emissions. Table 6 

presents the data and their level of statistical significance (αfact) of differences for the three 

clusters as determined by Fisher’s criterion in the SPSS suite. 

Table 6. Differences in the average values of variables for the three clusters. 

Clusters L1 L2 aSRost VSRost VSRsv Sij Cij 

1 (8 lanes) 20.63 13.75 2.65 48.73 52.32 838.0 1755.0 

2 (9 lanes) 16.67 19.78 2.53 49.77 48.23 694.3 1648.8 

3 (6 lanes) 22.33 27.50 2.40 58.07 50.02 493.2 1557.0 

αfact, %   53.8 0.6 43.1 0.3 0.0 

A statistically significant difference between the cluster groups of intersections is 

determined by the speed of the vehicles leaving the intersections VSRost, as well as the 

saturation flows Sij and the traffic lane capacity Cij. 

Let us differentiate between the three clusters of intersections in terms of the total 

emissions taking into account the calculations shown in Figure 5 with the determinant 

factor VSRost. If we take the total emissions for the first cluster as 100%, the emissions for 

the second cluster will be 96.9%, and for the third cluster—72.5%. According to the Chi-

square statistical test, the level of statistical significance of differences in the total 

emissions is negligible (asympt.value = 0.000), which indicates a high level of statistical 

significance in differences in the total emissions for the selected clusters of intersections. 

The calculation results are presented in Table 7. 

Table 7. Differences by pollutant emission clusters. 

Total Emissions Test Statistics 

Clusters 
Observed 

Emissions, % 

Expected 

Emissions, % 
Balance  Total Emissions 

1 100.0 898.0 102.0 Chi-square 50.528 

2 96.9 898.0 71.0 Degree of freedom 2 

3 72.5 898.0 −173.0 
Asympt. Value 

αfact 
0.000 

Total 269.4     

5. Emission Forecasting by Fuzzy Logic Methods 

The considered algorithm for calculating the amount of traffic-related pollutant 

emissions does not take into account many unpredictable, random factors, such as a sharp 

change in weather conditions, nonperiodic traffic jams, accidents, unpredictable 

interference, etc. In this case, it is expedient to use situation forecasting methods based on 

fuzzy logic algorithms, which integrally take into account the impact of many 

unpredictable factors. Taking into account the impact of such random factors separately 

is very difficult because of the complexity of obtaining initial data to analyze their impact. 

To visualize the influence of fuzzy factors on pollutant emissions at a regulated 

intersection, we construct a general model using the fuzzyTECH8.77e computer program 

to assess the influence of the vehicle speeds when freely passing the intersection VSRsv and 

a uniformly accelerated movement after a full stop VSRost, as well as the reduced capacity 

of the traffic lane Cij, on total pollutant emissions (SumVBR). 

The initial set of the observation data on 23 traffic lanes at urban intersections was 

used as a basis. The simulation was based on the Gaussian nature of the membership 

functions since it reflects the best of the unpredictability of many influencing factors, 

which are difficult to take into account. The levels of membership functions are 
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determined disproportionately because of the nonlinear nature of the dependence of 

emissions on the vehicle speed. 

Figure 9 shows the block diagram of the constructed model, as well as Gaussian 

membership functions of VSRost (VSRsv similarly) and Cij and the output variable SumVBR. 

Gaussian fuzzification is most consistent with the stochastic version of the problem. The 

parameters of the Gaussian terms were determined according to the authors’ expert 

estimates based on their practical work with surveillance camera data. 

 

 

 

 

Figure 9. Block diagram of the model and membership functions of factors. 
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The block of correspondence rules with three level input variables consisting of 27 

rules is too bulky, and it also formed according to the expert estimates based on the 

practical work with traffic flows. 

The experimental studies of the constructed model predict the output variable based 

on the actual values of the input variables, as well as graphically represent the distribution 

field of their mutual influence in the form of volumetric surfaces. Thus, Figure 10 shows 

the dynamics of the total pollutant emissions (on a relative scale) at a variation in lane 

capacity of 25%, 50%, and 75% of the maximum value of 1200 equivalent units of vehicles 

per hour. 

 

(a) 

 

(b) 
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(c) 

Figure 10. The dynamics of the distribution field for pollutant emissions at the regulated 

intersection. (a) Cij = 25%; (b) Cij = 50%; (c) Cij = 75%. 

The simulation results demonstrate a similar influence of the speeds of traffic flows 

VSRsv and VSRost on the total emissions, as well as the determinant nature of the influence of 

the traffic lane capacity of the intersection. This study can serve as a useful basis for 

making reasoned decisions to reduce pollutant emissions using regulated intersection 

control. 

6. Discussion 

There are two types of movement of traffic flows at regulated traffic lights in an urban 

network: moving through the intersection without stopping and accelerated movement 

after a full stop at a red light. 

Analysis of the initial data on the vehicle movement along 23 lanes allowed us to 

group the lanes into single-type clusters that differ with a statistical significance both in 

the geometry of the intersection and in the nature of the vehicle movement along them. 

The factor analysis of the initial data array also showed single-type groups of initial 

parameters distinguishing these traffic lanes. Statistically reliable clustering of the traffic 

lanes allowed us to give a comparative assessment of the environmental situation in the 

urban transport network nodes based on the obtained, practically applicable 

mathematical model. 

We presented a complete mathematical model for calculating pollutant emissions, 

although it is difficult to apply it in practice. We proposed to simplify it to a working 

version by considering the above two characteristic types of the traffic flow movement at 

urban intersections. The approbation of such a practically applicable calculation model is 

demonstrated in the form of a comparative analysis of all emissions at the intersection in 

relation to the speed of the traffic flow of 30 km/h. Therefore, when reducing the speed of 

the traffic flow to 10 km/h (similar to a traffic jam), the amount of emissions increases by 

3.6 times, and when increasing the speed to 50 km/h, the amount of emissions decreases 

by 2.3 times. 
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We presented a generalized forecast for pollutant emissions at regulated 

intersections using fuzzy logic. The simulation results demonstrate the similar influence 

of the speeds of two types of traffic movement on total emissions, as well as the 

determinant nature of the influence of the traffic lane capacity at intersections. 

The detection of a statistically significant difference in traffic-related pollutant 

emissions when changing the speed at intersections can assist in making sound 

management decisions to minimize pollution in the urban transport network. 

7. Conclusions 

We proposed and tested a method to identify single-type groups of traffic lanes at 

urban intersections, which will allow for the minimization of a number of standard 

management decisions to reduce traffic-related pollutant emissions. We have developed 

a complete mathematical model which calculates emissions while taking into account the 

arbitrary speed of traffic flows as well as a simplified calculation model based on 

identifying the two typical modes of vehicle traffic at intersections: moving through the 

intersection at a constant speed (without stopping) and uniformly accelerated movement 

after a full stop at a red light. When using the simplified model, the calculated load on the 

dynamic monitoring system becomes acceptable, providing for stable, real-time 

operation. This approach is closer to reality than the calculation models used in the AIMS-

Eco system. 

When implementing the proposed simplified calculation model to determine 

emissions in the AIMS-Eco system, we expect a high approximation of the calculation 

results to the instrumental test measurements of emissions made by public environmental 

monitoring centers. 

Further studies will focus on all the traffic lanes in a regulated intersection in order 

to assess the overall environmental situation at intersections and minimize emissions. This 

study can also serve as a basis for a simplified design of a system for environmental 

monitoring in the urban transport network based on the clustering of many urban 

intersections. 

Author Contributions: All of the authors contributed to publishing this article. Conceptualization, 

V.S. and A.G. (Alexandr Glushkov); methodology, O.F.; software, A.G. (Alexandr Glushkov); 

validation, A.G. (Alexandr Gritsenko), investigation, O.F.; writing—original draft preparation, A.G. 

(Alexandr Glushkov); writing—review and editing, V.S.; visualization, A.G. (Alexandr Glushkov). 

All authors have read and agreed to the published version of the manuscript. 

Funding: This research was supported by Russian Science Foundation, grant number 22-21-20057. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: All code and gathered datasets are available online: 

https://github.com/alnfedorov/traffic-analysis. Data access will be provided upon a request 

(accessed on 17 March 2022). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Shepelev, V.; Zhankaziev, S.; Aliukov, S.; Varkentin, V.; Marusin, A.; Marusin, A.; Gritsenko, A. Forecasting the Passage Time 

of the Queue of Highly Automated Vehicles Based on Neural Networks in the Services of Cooperative Intelligent Transport 

Systems. Mathematics 2022, 10, 282. https://doi.org/10.3390/math10020282. 

2. Khazukov, K.; Shepelev, V.; Karpeta, T.; Shabiev, S.; Slobodin, I.; Charbadze, I.; Alferova, I. Real-time monitoring of traffic 

parameters. J. Big Data 2020, 7, 1. https://doi.org/10.1186/s40537-020-00358-x. 

3. Real-Time Monitoring (Chelyabinsk City, Russia). Available online: http://aims.susu.ru/view (accessed on 22 April 2022). 

4. Sources and Emissions of Air Pollutants in Europe Is Part of the Air Quality in Europe 2021 Report. Available online: 

https://www.eea.europa.eu/publications/air-quality-in-europe-2021/sources-and-emissions-of-air (accessed on 10 March 2022). 



Mathematics 2022, 10, 1887 19 of 20 
 

 

5. Cheng, Y.; Yu, C.W.F.; Huang, Y.; Zhang, Y.W.; Gao, Y.; Yau, P.S.; Chan, C.S.; Lee, S.C. Particle counts and size distributions in 

the roadside environment. Indoor Built Environ. 2012, 21, 633–641. https://doi.org/10.1177/1420326X12445490. 

6. Wang, J.M.; Jeong, C.-H.; Hilker, N.; Healy, R.M.; Sofowote, U.; Debosz, J.; Su, Y.; Munoz, A.; Evans, G.J. Quantifying metal 

emissions from vehicular traffic using real world emission factors. Environ. Pollut. 2021, 268, 115805. 

https://doi.org/10.1016/j.envpol.2020.115805. 

7. Ntziachristos, L.; Gkatzoflias, D.; Kouridis, C.; Samaras, Z. COPERT: A European road transport emission inventory model. In 

Information Technologies in Environmental Engineering, Proceedings of the 4th International ICSC Symposium, ITEE 2009, Thessaloniki, 

Greece, 28–29 May 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 491–504. https://doi.org/10.1007/978-3-540-88351-7_37. 

8. PHEM. Available online: https://www.fvt.at/em/en/simulation/phem.html (accessed on 8 March 2022). 

9. Luz, R.; Hausberger, S. User Guide for the Model PHEM; Handbuch ed.: Graz, Austria, 2010. 

10. Lejri, D.; Can, A.; Schiper, N.; Leclercq, L. Accounting for traffic speed dynamics when calculating COPERT and PHEM 

pollutant emissions at the urban scale. Transp. Res. Part D Transp. Environ. 2018, 63, 588–603. 

https://doi.org/10.1016/j.trd.2018.06.023. 

11. Spyropoulos, G.C.; Nastos, P.T.; Moustris, K.P.; Chalvatzis, K.J. Transportation and air quality perspectives and projections in 

a mediterranean country, the case of Greece. Land 2022, 11, 152. https://doi.org/10.3390/land11020152. 

12. Ekström, M.; Sjödin, Å.; Andreasson, K. Evaluation of the COPERT III emission model with on-road optical remote sensing 

measurements. Atmos. Environ. 2004, 38, 6631–6641. https://doi.org/10.1016/j.atmosenv.2004.07.019. 

13. Angatha, R.K.; Mehar, A. Modeling of carbon monoxide concentrations at urban signalized intersections using mulitple linear 

regression and artificial neural networks. Suranaree J. Sci. Technol. 2022, 29, 010087. 

14. Coelho, M.C.; Farias, T.L.; Rouphail, N.M. Impact of speed control traffic signals on pollutant emissions. Transp. Res. Part D 

Transp. Environ. 2005, 10, 323–340. https://doi.org/10.1016/j.trd.2005.04.005. 

15. Baldasano, J.M.; Gonçalves, M.; Soret, A.; Jiménez-Guerrero, P. Air pollution impacts of speed limitation measures in large 

cities: The need for improving traffic data in a metropolitan area. Atmos. Environ. 2010, 44, 2997–3006. 

https://doi.org/10.1016/j.atmosenv.2010.05.013. 

16. Ding, H.; Cai, M.; Lin, X.; Chen, T.; Li, L.; Liu, Y. RTVEMVS: Real-time modeling and visualization system for vehicle emissions 

on an urban road network. J. Clean. Prod. 2021, 309, 127166. https://doi.org/10.1016/j.jclepro.2021.127166. 

17. Scora, G.; Morris, B.; Tran, C.; Barth, M.; Trivedi, M. Real-time roadway emissions estimation using visual traffic measurements. 

In Proceedings of the 2011 IEEE Forum on Integrated and Sustainable Transportation Systems, Vienna, Austria, 29 June–1 July 

2011; No. 5973651, pp. 40–47. https://doi.org/10.1109/FISTS.2011.5973651. 

18. Morris, B.T.; Tran, C.; Scora, G.; Trivedi, M.M.; Barth, M.J. Real-time video-based traffic measurement and visualization system 

for energy/emissions. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1667–1678. https://doi.org/10.1109/TITS.2012.2208222. 

19. Allegrini, I.; Costabile, F. Monitoring air quality in urban areas: Experiences in China. Monitoring Air Quality in Urban Areas. 

In Sustainable Development and Environmental Management: Experiences and Case Study; Clini, C., Musu, I., Gullino, M.L., Eds.; 

Springer: Dordrecht, The Netherlands, 2008; pp. 125-139. https://doi.org/10.1007/978-1-4020-8229-0_9. 

20. Klunder, G.A.; Wilmink, I.R. Real-time monitoring of emissions with traffic data, simulation and air quality measurements. In 

Proceedings of the 16th World Congress on Intelligent Transport Systems and Services, Stockholm, Sweden, 21–25 September 

2009. 

21. Adams, M.D.; Kanaroglou, P.S. Mapping real-time air pollution health risk for environmental management: Combining mobile 

and stationary air pollution monitoring with neural network models. J. Environ. Manag. 2016, 168, 133–141. 

https://doi.org/10.1016/j.jenvman.2015.12.012. 

22. Zheng, X.; Yang, J. CFD simulations of wind flow and pollutant dispersion in a street canyon with traffic flow: Comparison 

between RANS and LES. Sustain. Cities Soc. 2021, 75, 103307. https://doi.org/10.1016/j.scs.2021.103307. 

23. Zhang, Y.; Gu, Z.; Yu, C.W. Large eddy simulation of vehicle induced turbulence in an urban street canyon with a new 

dynamically vehicle-tracking scheme. Aerosol Air Qual. Res. 2017, 17, 865–874. https://doi.org/10.4209/aaqr.2016.05.0204. 

24. Qin, Y.; Kot, S.C. Dispersion of vehicular emission in street canyons, Guangzhou City, South China (P.R.C.). Atmos. Environ. 

1993, 27, 283–291. 

25. Pospisil, J.; Jicha, M. Numerical modelling of transient dispersion of air pollution in perpendicular urban street intersection 

with detail inclusion of traffic dynamics. Int. J. Environ. Pollut. 2019, 65, 71–83. https://doi.org/10.1504/IJEP.2019.101834. 

26. Glushkov, A.; Shepelev, V. Development of reliable models of signal-controlled intersections. Transp. Telecommun. 2021, 22, 417–

424. https://doi.org/10.2478/ttj-2021-0032. 

27. Shepelev, V.; Glushkov, A.; Bedych, T.; Gluchshenko, T.; Almetova, Z. Predicting the traffic capacity of an intersection using 

fuzzy logic and computer vision. Mathematics 2021, 9, 2631. https://doi.org/10.3390/math9202631. 

28. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 

December 2015; pp. 1440–1448. 

29. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and real-time tracking. In Proceedings of the IEEE International 

Conference on Image Processing, Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. 

https://doi.org/10.1109/ICIP.2016.7533003. 

30. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. 

arXiv 2014, arXiv:1311.2524. 



Mathematics 2022, 10, 1887 20 of 20 
 

 

31. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer 

Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. https://doi.org/10.1109/ICCV.2017.322. 

32. Fedorov, A.; Nikolskaia, K.; Ivanov, S.; Shepelev, V.; Minbaleev, A. Traffic flow estimation with data from a video surveillance 

camera. J. Big Data 2019, 6, 1–15. https://doi.org/10.1186/s40537-019-0234-z. 

33. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects 

in context. In Computer Vision—ECCV 2014. ECCV 2014. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2004; 

pp. 740–755. https://doi.org/10.1007/978-3-319-10602-1_48. 

34. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The cityscapes 

dataset for semantic urban scene understanding. arXiv 2016, arXiv:1604.01685. 

35. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Fluids Eng. Trans. ASME 1960, 82, 35–45. 

https://doi.org/10.1115/1.3662552. 

36. Kuhn, H.W. The Hungarian Method for the Assignment Problem. In 50 Years of Integer Programming 1958–2008; Springer: 

Berlin/Heidelberg, Germany, 2010. https://doi.org/10.1007/978-3-540-68279-0_2. 

37. Video surveillance (Chelyabinsk). Available online: https://cams.is74.ru/live (accessed on 15 March 2022). 

38. Highway Capacity Manual: A Guide for Multimodal Mobility Analysis, 7th ed.; The National Academies Press: Washington, DC, 

USA, 2022. 

39. Murtagh, F.; Legendre, P. Ward’s Hierarchical Clustering Method: Clustering Criterion and Agglomerative Algorithm. arXiv 

2011, arXiv:1111.6285. 

40. Lee, A.; Willcox, B. Minkowski Generalizations of Ward's Method in Hierarchical Clustering. J. Classif. 2014, 31, 194–218. 

https://doi.org/10.1007/s00357-014-9157-8. 

41. Ricolfi, L.; Testa, S. Factorial Invariance and Orthogonal Rotation. Multivar. Behav. Res. 2021, 56, 787–804. 

https://doi.org/10.1080/00273171.2020.1770571. 

42. Yang, Z.; Peng, J.; Wu, L.; Ma, C.; Zou, C.; Wei, N.; Zhang, Y.; Liu, Y.; Andre, M.; Li, D.; et al. Speed-guided intelligent 

transportation system helps achieve low-carbon and green traffic: Evidence from real-world measurements. J. Clean. Prod. 2020, 

268, 122230. https://doi.org/10.1016/j.jclepro.2020.122230. 

43. Kousoulidou, M.; Fontaras, G.; Ntziachristos, L.; Bonnel, P.; Samaras, Z.; Dilara, P. Use of portable emissions measurement 

system (PEMS) for the development and validation of passenger car emission factors. Atmos. Environ. 2013, 64, 329–338. 

https://doi.org/10.1016/j.atmosenv.2012.09.062. 

44. Berkowicz, R.; Winther, M.; Ketzel, M. Traffic pollution modelling and emission data. Environ. Model. Softw. 2006, 21, 454–460. 

https://doi.org/10.1016/j.envsoft.2004.06.013. 

45. Order of the Ministry of Natural Resources and Ecology of the Russian Federation No. 804 dated November 27, 2019 “On 

Approval of the Methodology for Determining Emissions of Pollutants into the Atmospheric Air from Mobile Sources for 

Conducting Summary Calculations of Atmospheric air Pollution”. Available online: 

https://www.garant.ru/products/ipo/prime/doc/73240708 (accessed on 10 November 2021). 

46. GOST R 56162-2019 “Emissions of Pollutants into the Atmosphere”. Method for Calculating the Amount of Emissions of 

Pollutants into the Atmosphere by Flows of Motor Vehicles on Highways of Different Categories. Available online: 

https://docs.cntd.ru/document/1200167788 (accessed on 10 November 2021). 


