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Abstract: Flexible production is a typical representative of high-end manufacturing and is also a
manifestation of a country’s national production capability. Compared with other production modes,
the key distinction of flexible production is that all four dimensions of production (i.e., machines,
operations, products, and orders) can be scheduled dynamically. Although many studies have
investigated the flexible job shop scheduling problem, most have limited dynamic support and cannot
deal with multidimensional dynamic production. This study, therefore, proposed a fine-grained
system state description model, which was used to analyze the maximum production completion
time. In the presence of a dynamic event, the model was able to quickly assign priorities to products
according to the cost loss of each product. The system can therefore dynamically respond to events
in a timely manner while reducing production costs and losses. Finally, we used a large number of
orders to evaluate the proposed algorithm, which demonstrated millisecond-level response capability
and low-cost maintenance capability. Compared with existing algorithms, the proposed algorithm
reduced cost loss by up to 11%.

Keywords: flexible job shop; scheduling; low cost; dynamic event; fine-grained model

MSC: 68W99

1. Introduction

Flexible production is a typical representative of high-end manufacturing. Here,
“flexible” refers to the flexibility consumers have in customizing products. Compared
with traditional production methods in which consumers can only purchase finished
products, flexible production can quickly meet the individual needs of different consumers.
In traditional production, cost reduction is achieved through mass production, which
means it often cannot support customization. Although customization is possible for
a small number of production methods, the associated production cost is usually high.
With the rapid development of various technologies in recent years, such as industrial
Internet, robots, and edge computing, the dynamic self-reconfiguration of production
lines has become an option. Low-cost, flexible production has overcome the technical
bottleneck, and an increasing number of flexible job shops have been put into use, achieving
considerable economic benefits [1]. As an example, the flexible job shop in a Chinese heavy
equipment manufacturing company, is equipped with eight assembly lines, which can
achieve customized production for 69 types of products, showing a threefold increase in
output value.

A flexible job shop contains multiple production lines, and each is composed of
multiple machines. To make our proposed algorithm applicable to more industrial systems,
our system model is defined broadly. Although there is a strict order for all operations in a
job, multiple operations may be executed on the same machine, i.e., the job may not follow
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a linear fashion. Hence, our problem is not a flow shop scheduling problem. Details are
shown in Section 4. In our system, after a customer’s order is received, the machines are
reconfigured and scheduled according to customization needs and delivery time, such that
the production process can be dynamically adjusted to meet order demand. As a result of
different order-specific requirements, random order placement times, and the large number
of machines, simple production scheduling can no longer meet production needs in such
complex situations. Therefore, flexible job shop scheduling has become a key issue in the
industry and has been investigated by numerous studies.

In an industrial system, there are many types of dynamic events, such as process-
related, order-related and machine-related dynamic events. However, no algorithm can
handle multiple dynamic events simultaneously (shown in Section 2). Therefore, in this
study, a time-fine-grained state model was used to represent the complete characterization
of system dynamics, and the model allowed changing the relationship between products
and orders. Based on the time-fine-grained model and the flexible correspondence between
products and orders, aiming at the lowest cost loss, a theoretical description of the opti-
mization problem was given, and a priority scheduling algorithm based on completion
time analysis was proposed to realize emergent scheduling to meet production needs. Since
the model described the system state in a time-discrete manner and transformed the states
at different times through our proposed efficient algorithm, this study can flexibly respond
to multiple dynamic events.

The remainder of this paper is organized as follows. Section 2 introduces relevant
works. Section 3 details the system model and our problem. Section 4 describes our
algorithms. Section 5 evaluates the algorithms based on extensive orders. Finally, Section 6
concludes this paper.

2. Relevant Works

For the flexible job shop problem, there are two types of scheduling algorithms, namely
static scheduling algorithm and dynamic scheduling algorithm.

In 1954, Johnson formulated the job shop scheduling problem and proposed the first
static scheduling algorithm [2]. Static scheduling means that the production process is
determined and there are no dynamic events. Since then, the static scheduling problem
has been extensively studied. In the case of a single-objective static scheduling problem,
improved meta-heuristic algorithms have typically been used to minimize the maximum
completion time [3,4], number of machines [5], and machine usage time [6]. However,
a flexible job shop involves a large number of complex processes, and multi-objective
optimization has also been a key research topic in flexible scheduling. For example, an evo-
lutionary algorithm has been used to simultaneously optimize completion time, energy
consumption, and cost [7]. An improved multi-group NSGA-II algorithm was used to
simultaneously optimize completion time, machine efficiency, and total machine load [8].
Further, hybrid particle swarm optimization was used to optimize completion time and
total machine delay [9]. One study used the genetic algorithm to optimize total machine
load and bottleneck machine load [10]. Meanwhile, Change et al. used the concept of
“residual value subsidy + out-of-stock penalty” to optimize the economic benefits of multi-
ple enterprises at the same time [11]. Wu et al. used the batch rolling optimization method
to optimize production processes and production plans [12]. All of the above-mentioned
studies regarded machines as the scheduling resources. Some studies have considered
automatic guided vehicles as movable resources for optimization. For example, considering
both automatic guided vehicles and machines, one study proposed using discrete particle
swarm optimization to minimize the maximum completion time [13]. Considering the
working capacity limitations of automatic guided vehicles, Li et al. proposed an artificial
bee colony optimization algorithm for the multi-objective optimization of completion time
and energy consumption [14]. These studies solved some of the scheduling problems
in flexible job shops but failed to consider the dynamic situation of sudden production
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Dynamic scheduling problem

needs. One of the prerequisites of flexible job shops is that the production process can be
dynamically adjusted to produce efficiently according to demand.

In 1957, Jackson distinguished the difference between dynamic scheduling and static
scheduling, and he pointed out that the main feature of dynamic scheduling is to consider
dynamic events [15]. In terms of the dynamic scheduling problem, researchers have
conducted studies from multiple perspectives [16]. For process-related dynamic events,
Wei et al. proposed a closed-loop scheduling mechanism for detection and adjustment
based on the brainstorming algorithm to ensure completion time [17]. Li et al. proposed a
novel affinity calculation method to handle high levels of uncertainty [18]. Xu et al. proposed
an adaptive discrete flower pollination algorithm to handle the uncertainty of parameters
during a flexible industrial process [19]. Zhong et al. proposed a new artificial bee colony
algorithm to minimize the maximum fuzzy makespan [20]. Lei proposed a random key
genetic algorithm to solve job shop scheduling problems with fuzzy processing time [21].
Liu et al. proposed a fast distribution estimation algorithm [22]. For order-related dynamic
events, Luo et al. employed reinforcement learning-based methods to dynamically adjust
production processes [23]. Luo and Wang proposed a double loop deep Q-network method
with an exploration loop and exploitation loop to solve job shop scheduling problems
under random order arrivals [24,25]. Zhuang et al. proposed a network-based dynamic
dispatching rule generation mechanism to assign dynamic orders [26]. For machine-related
dynamic events, scheduling must consider the cost of machine recovery; a few algorithms
have been proposed to deal with this problem. Nouiri et al. proposed a fast, energy-efficient
rescheduling method [27], and Chen et al. proposed a machine parameter readjustment
method based on knowledge libraries and self-learning [28,29]. Zhang et al. designed an
improved empire competition algorithm to minimize completion time and machine energy
consumption while repairing the machine [30]. Shahrabi et al. used a machine learning
algorithm to achieve real-time production scheduling [31]. Ghaleb et al., meanwhile,
adopted an event-based rescheduling approach to address uncertainties in job arrivals and
machine breakdown [32]. A predictive approach was proposed by Iwona et al. to deal with
possible failures before they occur [33].

Although the above-mentioned studies investigated the dynamics of flexible job shops,
they have some limitations. In actual production, unpredictable dynamic events such as
machine breakdown, product defects, and order changes may arise, and any existing single
algorithm is unable to deal with multiple events (as shown in Figure 1). Although the
likelihood of multiple events occurring at the same time is very low, this still requires
the system to support multiple scheduling methods. Thus, when a single dynamic event
occurs, the scheduling method for the specific event can be used to solve it. However,
the scheduling methods must be coordinated with each other. Otherwise, the results of one
scheduling method will compromise existing scheduling outcomes. Therefore, compared
with multiple scheduling algorithms, it is more effective to use one scheduling algorithm
to handle multiple dynamic events. In this study, such a scheduling algorithm is proposed.

Process-related dynamic events

Our proposed algorithm handles

Order-related dynamic events . .
multiple dynamic events

Machine-related dynamic events

Figure 1. Differences between relevant works and our work.

3. Problem Statement

We considered the dynamic problem model in four dimensions: machines, operations,
products, and orders. The machine set available to the job shop is M = {my,my,...},
and the set of supported operations is O = {o01,02, ... }. Each machine supports several
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operations—for example, m; = {0;."1, o;-"z, ... }. Operations corresponding to the machine
are marked with a superscript m to distinguish them from the original operation set O
(ie., o;ﬂg € O). However, ojf"g might not be equal to 04 (¢ € Z™). It takes £} time to complete

the operation 0, (h € ZT). The product set is P = {p1,p2,...}, and each product is
produced after multiple steps of sequential operations, py = {o,’f,l, 01’:,2/ ... }. The user can
place an order g; =< p?, d; > at any time, and the order specifies the product p? and the
latest delivery time d;. The product p? consists of a series of operations, p? = {0?,1' 0?/2, o h
The set of orders is expressed as Q = {41, 42, ... }. The state model of the job shop at time ¢
is S; = {< m]-,pk,olf,g,t]’- > |mj € Morm; = NULL, px € Por py = NLILL,o,’:,g € proth €
[0, 7]}, where each quadruple means that machine m; is performing the gth operation of
product pk at time ¢, and the operation has been performed for ¢/ time. Note that some
products might already be in the production plan, but the production has not yet started,
and this state is expressed as < NULL, py, 0]’;, o t]r- >. When the production plan of some

products is canceled, the state is expressed as < NULL, py, o]f, o 0 >. If a machine is idle,
its state is represented as < mj, NULL,NULL,0 >. Once some operations are interrupted,
they need to be restarted, and for such operations, t]’- = 0. The above states can be jointly
expressed using S; special algorithmic processing is not needed, and thus, they will not be
considered in the sections that follow.

The system model includes the following assumptions:

¢  All pieces have arrived before the operation starts.

*  The next operation cannot be started until the current operation is completed for the
same product.

*  There is no time gap between adjacent operations for the same product.

This study separated products and orders to flexibly adjust operations during the
production process. While product demand comes from orders, products can be adjusted at
the operation level when dynamic events occur. For example, in Figure 2, the semifinished
product p‘{ in order g; is damaged due to machine breakdown in the third operation,
and product delivery cannot be guaranteed within the specified time in the case of repro-
duction. In this case, if there is product p] in the same operation as the operation of p,
and the delivery time of p] is later, then the subsequent operation of product pJ is adjusted
to that of product p’{ such that order q; can be delivered on time. At the same time, a new
pg is reproduced. Based on the idea of product-order separation, the scheduling method
in this study generates a subsequent schedule Sch(S;, t) according to the shop state S; at
time t. Products produced according to this schedule must meet the delivery requirements
of the order set Q as much as possible, with minimum cost loss. The cost loss of order g;
failure is expressed as C(g;), which includes the cost of reproduction, the cost of machine
repair and maintenance, and compensation to consumers. The cost loss can be defined by
the user of the algorithm.

q1 qz q1 qz
2 {
\ \
A P ) . A yo
m; ‘ my ‘ ‘
my ‘ ‘ ,,,J,, 2 ‘ -
[ i
m | \ i m j >
] i time o time
machine the delivery machine the delivery
breakdown time of q breakdown time of q

Figure 2. Order adjustment.

To clearly describe the above problems, we first present problem description P1
based on optimization modulo theories (OMT) at the start of the system; subsequently,
the description is expanded to the handling of dynamic events to formalize the final problem
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description P2. This study used the following 0-1 variable to describe the relationship
between elements, as shown in Figure 3.

Vet j Zk g, h Xi, k €;
Machine Operation Product Order Consumer

Figure 3. Variables and elements.

1.  If order g; has no deliverable product at the final delivery time, then ¢; = 1; otherwise,
e; = 0.

2. If product py is available for the delivery of order g;, then x; ; = 1; otherwise, x;, = 0.

3. If the operation 0,’:’ e of product py can start on m; at time ¢, then yy . ; i = 1; otherwise,
Yrgtj =0-

4. If the gth operation of product py is oy, then zy o, = 1; otherwise, z; o, = 0. This
variable enables the product to change the final product type according to the needs
of dynamic events.

First, we consider the situation at the start of the system. The set of orders Q, set of
machines M, set of products P, and cost loss value C(g;) (Vq; € Q) are known. All machines
are idle, and there is no product currently in the production process. The objective function
of problem P1 is

min Z C(q) x e;, (1)
vg;€Q
where ¢; can be obtained by x; ;:
Vai € Q,((ei =1) A (A (xix = 0))) vV ((e; = 0) AV (xi = 1))). )
Yok Yok

The value of e; is divided into two cases: (1) If all products cannot be delivered as part
of order g; (i-e., v/\ (xix = 0)), then e; = 1. (2) If there are products that can be delivered for
Pk

order g, (ie., v\/ (xjx = 1)), thene; = 0.
Pk

Problem P1 needs to satisfy the following constraints:
(1) One product can only be delivered for one order:

\V/Pk €P, E Xip = 1. 3)
vaieQ

(2) One operation can only be performed on one machine:

Vpr € P, VOf,g € P Y, Ykgtj =1L 4
YtNm;

(3) Each operation of a product is unique:

Vpk epb, Vg, 2 Zkgh = 1. 5)
Vhe(1,|0]]

(4) Only products that meet the requirements of the order can be used for order
delivery; that is, the operation steps and sequences of the product are exactly the same as
those of the order requirements:

Vg € Q,Vpx € P, /\(Ozg = Z (Zk,g,h X h)) A (xi,k = 1). (6)
8 Yore0
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(5) There are no conflicts regarding machine usage time. The usage time of operation

on machine ; is defined as [a ¢ i, B g il

O g
. - ) - . p
Vm; € M, agg; = ;t X Yigtj Prgj = kgt g )
t

If an operation does not involve the use of machine m;, then its usage time is expressed
as [0,0]. Any two operations on the same machine cannot overlap in time:

(Of,g =0} )V ([ak,g,js Brg,l = [0,01) V ([@ap,, Bap,j] = [0,01) V ([wk,g,is Brg,] N [@an,js Bap,] = D)- ®)

(6) Multiple steps for a product must be operated in sequence; that is, the completion
time of the previous step must be earlier than the start time of the subsequent step:

Vpe € PVg € [LIpkl), Y, Brgj < Z Akg+1,j- ©)
Vm eM

(7) The product must be completed before delivery; that is, the completion time of the
last step of the product must be earlier than the order delivery deadline:

VqlEvakEP(.‘xlk—O Z .Bk|pk|]§x1k><d) (10)

Vm] eM

The state at time ¢ is denoted S;. If a dynamic event causes production to fail, such as
the machine breakdown in Figure 2, the product is removed from S;. If the order is canceled,
it is removed from the set of orders. Based on the type of dynamic event, the following
three modifications are made to problem P1 so that it can describe scheduling problem P2
after the occurrence of the dynamic event:

(1) The elements in S; that do not include NULL indicate that the operation has been
executed on the machine, and the corresponding yy ¢ +,; and zj ¢ , cannot be changed or
optimized. Therefore, yy ¢ ; ; and zy ¢, are given fixed values, and the constraints on related
operations are removed from the problem description:

V< mjr Pk Olr(],g/ t; >€ St/yk,g,t—t;f,j = 11 (11)

v < mj, py, olf’g, ti >€ Sy, Vh e [1, Uf,g]rzk,g,h =1 (12)

In addition, although the values of ay ¢ ;, By ¢ ;, and other yy o ; ;i are also affected, they
can be calculated by Equations (4) and (7).

(2) If a product fails to be produced and needs to be reproduced, a corresponding
number of products need to be added to P. Since the production steps for the additional
products can be obtained in the algorithm, there is no need for constraints on product type.

(3) If an order is canceled, it is removed from Q.

This study focused on scheduling problem P2 after the occurrence of dynamic events.
If the decision version of the problem does not consider the situation in which products
can be transferrable to other orders, and the delivery time of all orders is limited to the
shortest schedulable time, then the decision problem can be reduced to the traditional
job shop scheduling problem. Since the job shop scheduling problem is an NP-hard
problem, problem P2 is at least NP-hard, and the optimal solution cannot be obtained in
polynomial time.

To validate the above model, we used a third-party solver Microsoft Z3 [34] to solve it.
However, owing to the complexity of the model, the optimal solution can only be found
within two hours for very small-scale variables. Since the focus of this study was emergency
responses to dynamic events, the algorithm needed to be able to provide solutions within
seconds or even milliseconds. Apparently, the hour-level algorithm cannot meet these
requirements. This study, therefore, proposed a fast heuristic algorithm, which is described
in the next section.
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4. Scheduling Algorithm

An efficient priority scheduling strategy was adopted to achieve fast responses. First,
assuming the priorities of all products have been assigned, a detailed priority scheduling
algorithm is proposed. Then, the relationship between priority and product production
time is analyzed using the scheduling algorithm. Lastly, priorities are assigned to products
according to the above relationship, and production scheduling is achieved based on the
priority scheduling algorithm.

Priority Scheduling

The priority of product py, is py (priority assignment will be discussed later. In Algo-
rithm 1, we assume py is known.). Figure 4 shows the main steps for priority scheduling.
For each operation, there is a product queue in which products are arranged from high
to low priority. Once the machine completes an operation for a product, it continues to
perform the operation on the next product with the highest priority in the queue, and the
queue is updated. If multiple products are in the queue for machine m;, and product py has
the highest priority, then py is processed first. The corresponding scheduling algorithm is
as shown in Algorithm 1.

Queues The product with the Queues

Execute

Operations

Figure 4. Basic scheduling

Algorithm 1 Scheduling algorithm based on priority assignment.

Input: S
Output: Vi o1, 0bj
1: The elements in Q are sorted. For g; and gy, if d; < dy, then g; is in front of g,. The sorted
setis Q’, where q’l has the shortest deadline.
2: for each g/ from g to %QI do
3:  Search for product py in P belonging to other undelivered orders, and the completed
operation of py in P is exactly the same as the previous operation of ¢}, and py is the
product with the maximum number of completed operations;

4:  py will be delivered to order qg, ie,xjr=1;
5 Update the subsequent operations of py according to order g, that is, value assign-
ment for z ¢ 5.
6:  Initialize order delivery status, i.e., e; = 1;
7. AssignPriority(); // assign priority k for each product (Algorithm 2)
8: for t = ct to maxy,,co{d;} do
9:  forVm; € Mdo
10: if m; is idle then
11: m; processes py, px € Ps(m;) and / dp, € Ps(mj) such that
Pb > Pk i€, Ykgrj =1
12: if m; finishes the operation for p; then
13: m;j is idle;
14: Find the next operation for py according to zx ¢ ;, and put it in the waiting lists
of the next operation;
15: if py is completed then
16: if t < d; then
17: Order is deliverable, i.e., e; = 0;

18: Calculate obj based on ¢; using Equation (1);
19: return Vyy o, 0bj;
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The input of Algorithm 1 is the fine-grained system state model S, and the output is
the scheduling result and the optimization objective for the problem. The system breaks
down at time ct, and the problem model is modified from the three aspects of P2 and is
input into the scheduling algorithm as the known input of Algorithm 2. After a series of
processing, the scheduling result yy . ; ; and objective obj are output. The algorithm needs
to first determine the correspondence between orders and products (lines 1-6) and process
orders based on their priorities (lines 1-2). For order g;, search for a deliverable product py
in P (line 3); the product must satisfy two conditions: (1) The completed steps of p; before
time ct must be completely consistent with the steps of order g;; that is, Equation (6) is
true before time ct. (2) Compared with product py, there is no other product that has more
steps than ¢;. Then, according to the identified product py, initial values are assigned to the
order—product relation x; x, further operations zy ¢ , of py, and order undelivered indicator
e; (lines 4-6). After that, Algorithm 2 is used to assign priority to each product (line 7).
Once the relationship between order, product, and priority is determined, products and
operations are assigned to each machine in chronological order (lines 8-17). If machine m;
is idle at the current moment, find the p; with the highest priority that can be processed
on this machine (lines 10-11), where Ps(;) is the set of products that can be processed on
mi—that is, Ps(m;) = {pal|z,¢n = 1,0, € m;}. When m; completes the current operation
(line 12), its state is set to idle to wait for a new product at the next moment (line 13), and py
enters the queue for the next operation (line 14). If all operations of p; are completed before
the deadline (lines 15-16), the product can be successfully delivered, and the undelivery
indicator e¢; is cleared (line 17). When it is traversed in a finite time, the objective of the
problem is calculated according to Equation (1) (line 18), which is output to the general
control unit of the system together with the scheduling result (line 19). The algorithm is
called each time a dynamic event occurs. After that, the general control unit schedules the
production process according to the algorithm’s results.

In Algorithm 1, apart from Algorithm 2, the parts with the highest time complexity are
lines 8,9, and 11, and the corresponding time complexities are O(t), O(|M|), and O(|P|),
respectively. Thus, without considering Algorithm 2, the time complexity of Algorithm 1 is
O(t|M]||P|) (ie., O(n)).

Algorithm 2 Priority assignment algorithm AssignPriority().

Input: S

Output: Vpi
Lp=0;p=IP;
2: while p # p do
3:  forVp, € Pdo

4: Assume py is the product with the least priority in P, and calculate é; using
Equation (13);
5: ok = X Xjxxdi—0
Vq;€Q

FinAd the maximum fk ;
if o < 0 then

8: The current priority p is assigned to the product with the least cost loss, and it is
removed from P;
9: else
10: The current priority p is assigned to the corresponding product py, i.e., oy = p;
remove py from P;
11: p=p+1

12: return Vpy;
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5. Numerical Analysis
5.1. Time Analysis

Based on Algorithm 2, this section analyzes the maximum production completion time
of product py, thereby obtaining the correspondence between the priority and deliverability
of the product. For product py, it is defined that an operation to be performed at the current
time ct is Ol]f, .- Starting from the current time ct, in the worst case, it will take k time to
complete the production. k is affected by the following factors: (1) the remaining time of
the previous operation OZ 1, (2) the operation being performed on the machine at time
ct and the delay caused by py not being ready; (3) the product with a higher priority than
px will be processed on the machine first, causing py to be delayed; and (4) the operation
time of py. Starting from time ct, for each operation between the first operation OZ . and the

last operation OZ el of py, Factors (2)-(4) may exist. Thus, it will take the time described by
Equation (13) at most to complete py:
By, +C
G=Act Y (AT D), (13)
Vokge{oflc ..... of‘ } | S(Ok,g)|

where Ms(o,’(7 g) is the set of machines that support the operation o,f o Ay is the time of
Factor (1); and By g, C 4, and Dy ¢ are the time of Factors (2)-(4) of the gth step. Based on
Figure 5, time k is described as follows:

the (c-1)th step m | Ag B,
,C
My Cy,c
the c—th step 3 Ceol Dy
my Cy, e
5 By c+1=0 B Cy, ct1
th +1)th st — 4
e (ctl)th step e :—I__ Ck,c+1
ct time

Figure 5. Example of operation execution time.

If an operation of py has started before time ct, the remaining time of the operation
does not exceed the overall time of the operation. Thus, Ay can be expressed as

o —1 if Jof
A, = k,c—1 kc—17 14
k { 0 otherwise. (14)

From the second operation, each operation can be executed on multiple machines.
The factors that might cause a production delay of p; of multiple machines are expressed as
By,g + Ci ¢ After completing the previous operation, p; will wait for the next operation on
the machine that is available first. Although the earliest available time of B and C cannot
be estimated, the time will not exceed the average running time of B and C on multiple
machines, which is (By ¢ + Cy¢)/ |Ms(o£ g) |. The time delay of Factor (2) starts from time
ct. To accumulate the time delay in multiple steps, By ; only represents the time elapsed
since the end of the previous operation, such as step c in Figure 5. If the time delay of
Factor (2) does not exceed the end time of the previous operation, then By , = 0 (step ¢ + 1
in Figure 5). The end time of the previous operation is expressed as

Bk,u + Ck,u

N LT
U

P P 4
VOk,zl € {Ok/c""’ok,g—l }

+ Dk,u)- (15)
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The overall delay caused by factor (2) is expressed as

Fo = MaxT(|Ms(oZ,g)|,Os(Ms(olf/g))) + MaxT(\Ms(o,f,g)LLp(Ms(o]f,g))), (16)

where Os(Ms(o;{7 g)) is the unfinished operation on machine Ms (o} g), and Lp(Ms(o} g)) is

the operation that will be performed on Ms(o} g), which has a smaller priority than o} o

MaxT (number, set) is the sum of the execution time of number operations with the longest
execution time in the set. Therefore, By ¢ is calculated as follows:

Byg = max{0, Fg — [Ms(of )|  Exg-1}. (17)

All higher-priority products that use the same machine may cause the production
delay of py; thus, Cy ¢ is calculated as follows:

Ck,g = Z th/ (18)

Voher(Ms(of/g))

where H p(Ms(o,':, g)) represents the operations that use the same machine as Of, o and have
a higher priority.

The current operation Ol;:, g of py corresponds to a primitive operation oy, and thus,
Dy o = t,. At this point, it is known that it takes at most J; time to complete the production
of py. If ct + Jy is smaller than the delivery deadline of the order corresponding to py,
the order can be successfully delivered. If ct 4 J; exceeds the delivery deadline, the order
may be delivered, since the above analysis is only the worst-case scenario, and the actual
production time may be shorter than the maximum time. To ensure the number of deliv-
erable orders, it is necessary to reasonably assign the priority of products, such that the
number of products that is produced beyond the delivery deadline is as small as possible.

5.2. Priority Assignment

Based on the above analysis, the priority assignment algorithm is as shown in Algorithm 2.
p is the priority to be assigned currently, and p is the highest priority (line 1). Priorities
are assigned in order of low to high (lines 1, 2, and 11). For each priority, the maximum
production time ¢y for each product in P is calculated, as well as the remaining slack time
J) before the order’s deadline, according to Equation (13) (lines 3-5). The larger the value
of &, the sooner the product will be assigned. However, if the maximum Jy, is negative, it
means that no product will be completed at the current priority. To minimize production
cost, the product with the least cost loss will be assigned the current priority (lines 7-8).
If the maximum J; is not negative, then py can be produced, and the current priority p is
assigned to product py (lines 9-10). Thereafter, the above steps are repeated for the next
priority (line 11), until the priority assignment of all products is completed, and the function
returns the assignment result (line 12). The time complexity of the algorithm is mainly
in lines 2-5, with corresponding time complexities of O(|P|), O(|P|), O(|O]), and O(|Q]),
respectively. Since the time complexities of lines 4 and 5 are both linear, the time complexity
of Algorithm 2 is O(n%), which is smaller than that of Algorithm 1, which is O(n3).

5.3. Test Cases

A large number of test cases were randomly generated to evaluate the effectiveness
and generalizability of the proposed algorithm. The parameter set of each test case is
represented as <the maximum number of machines that can perform the same operation,
the number of orders, the number of operations, the execution time interval of each op-
eration, the deadline interval, the cost loss interval> (i.e., <o0,m,t,q,d,c>). For example,
the parameter set <10, 3, [1,10], 5, [50, 100, [1, 100]> means the job shop supports 10 opera-
tions, each operation can be executed by up to three machines, the time required for each
operation is within [1, 10], there are currently five orders, and the deadlines of the orders
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are in the interval of [50, 100]. If an order cannot be delivered, its cost loss is in the interval
of [1, 100].

The interval in the parameter set is used to reflect the diversity of test cases. When
a test case is generated, a value in the corresponding interval is randomly selected as the
order attribute, and a sudden breakdown of machines, operations, products, or orders
is randomly placed to simulate dynamic events in actual production. To evaluate the
generalizability of our proposed algorithm, for each parameter set, 1000 test cases are
generated randomly, and then, the algorithm runs 1000 times to process them. We analyzed
the effectiveness of the algorithm under different parameter configurations by sequentially
changing each parameter.

5.4. Result Analysis

73 is the most widely used solver for OMT. However, its execution time is unacceptable
for complex problems. In order for Z3 to solve the OMT formulation (Equations (1)-(12)),
the parameter settings are <3,2,[1,5],5, [10,20], [100]>. For each parameter setting, 100 test
cases were randomly generated. Since these test cases are simple, Z3 can finish in 10 min,
and the proposed algorithm (denoted as SchPA) finishes in 2 ms. Compared with Z3, SchPA
increases the cost by about 2%. However, when the number of orders is seven, Z3 cannot
solve the test case in 2 h. To evaluate the generalizability of SchPA, in the following, we
ignore Z3 and only compare SchPA with heuristic algorithms.

We compared SchPA with the First Come First Serve (FCFES) rule [35] and the shortest
process time (SPT) rule [36]. FCFS is a simple rule in which the order that is placed first is
produced first. SPT gives the highest priority to the job with the smallest operation time.
In [37], the comparison between SPT and other classical methods was shown, and SPT has
the most optimum outcome. This is why we chose SPT as a baseline method.

The algorithms in the present study were written in C++ and run on a Precision
5820 workstation. The solution time for all orders was less than 10 ms. The assessment
index was the percentage of cost loss to the total cost of all orders. Cost loss was calculated
using Equation (1), and total cost was obtained after the orders were generated. Each point
in the following figure represents the average cost loss for 1000 random orders. For the
purpose of comparison, the y-axis scale was kept constant at [0, 40%].

Figure 6 shows the cost loss curve with the number of orders. The parameter set is
<10, 3, [1, 10], [10, 90], [50, 100], [1, 100]>. It can be seen that the cost loss increases with the
number of orders. This is because the more orders there are, the more difficult it is for a
limited number of machines to complete them. Since deadline and cost are optimized in
our algorithm, it outperforms FCFS and SPT. SPT has less cost loss than FCFS because it can
schedule production more efficiently. However, when an order fails, it needs to reproduce,
so the cost loss is still large. When the number of orders is large, the proposed algorithm
can reduce cost loss by about 6%. To show the comparison result more clearly, the average
relative percentage deviation (ARPD) of cost loss is shown in Figure 7. Since SPT had less
cost loss than FCFS, we used SPT and SchPA to calculate the relative percentage deviation
(RPD), i.e., RPD = (SPT — SchPA)/SchPA. ARPD was the average of RPD of the 1000 test
cases. In the best case, the cost loss of SchPA is about one-ninth of SPT. Figure 8 shows the
cost loss distribution when g = 70. Owing to the large number of orders, only partial results
are shown. Regarding cost distribution, we can see that the proposed algorithm was below
1.04 for most of the orders.
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Figures 9 and 10 show the cost loss and ARPD when the deadline is shortened from [50,
100] to [50, 80]. Comparing Figures 6 and 9, we know that after the deadline is shortened,
more orders cannot be completed in time. When there are 90 orders at the same time,
the cost loss increases by about 10%. Therefore, if the deadline can be negotiated with
the customer, the later the deadline, the better. If the deadline cannot be negotiated, loss
can only be reduced by increasing the number of machines (Figure 11) or improving their
efficiency (discussed later).
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Figure 9. Cost loss after deadline reduction.
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Figure 11 shows the variations in cost loss according to the number of machines,
and Figure 12 shows ARPD for the test cases of Figure 12. The parameter set is <10, [2, 9],
[1,10], 70, [50, 100], [1, 100]>. It can be seen that when the number of machines increases to
four, the cost loss decreases to zero. When the number of machines is small, the proposed
algorithm is greatly superior to FCFS and SPT, suggesting that the proposed algorithm
can precisely capture the competitive relationship between products and machines. When
the number of machines is limited, the proposed algorithm should be used to reduce
production losses.
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Figure 12. ARPD corresponding to Figure 11.
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In Figures 13 and 14, the execution time of each operation is modified. We can see
that the shorter the execution time, the higher the machine efficiency. As can be seen, cost
loss increases with a decrease in machine efficiency. If improving machine efficiency will
increase the cost of other parts, it will be necessary to balance the costs of various parts,
such that the system achieves optimal or near-optimal performance.
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Figure 14. ARPD corresponding to Figure 13.

Figure 15 shows the variations in cost loss according to the number of operations,
and Figure 16 is ARPD for the test cases of Figure 15. The parameter set is <[5, 15], 3, [1, 10],
70, [50, 100], [1, 100]>. As can be seen, the number of operations has little effect on cost
loss. Figures 17 and 18 show the results when the cost range is modified. We can see that
the cost range has almost no effect on the percentage of loss, and loss is relatively high
only when all products have the same cost. When the cost is randomly selected in the
interval, it is not always the maximum value. Yet, when all products have the same cost,
each product has the largest loss, resulting in a large loss. As long as the cost losses of
different products are different, the percentage loss remains basically the same, regardless
of the range of difference.
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Figure 16. ARPD corresponding to Figure 15.
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We also calculated the p-value results of a paired-sample t-test to distinguish SchPA
and SPT. Among all these parameter sets, the largest p-value is 2.81 x 10~°, which is smaller
than 0.5. Therefore, SchPA significantly outperforms SPT.

6. Conclusions

In this study, we focused on the dynamic scheduling problem for flexible job shops
with the goal of minimal cost loss. Although many relevant works have investigated
the problem, most have limited dynamic support and cannot handle multiple dynamic
events. We used a time-fine-grained model to describe the system state and proposed a
priority scheduling algorithm based on completion time analysis. Since the model described
the system state in a time-discrete manner and transformed the states at different times
through our proposed efficient algorithm, this study can flexibly respond to multiple
dynamic events.

To evaluate the effectiveness and generalizability of the proposed algorithm, we ran-
domly generated extensive test cases and compared the proposed algorithm with FCFS and
SPT. The results indicated that the proposed algorithm responded in milliseconds, and the
cost optimization performance was superior to that of similar algorithms. Compared with
FCFS and SPT, the proposed algorithm reduced cost loss by up to 11%.

In the future, we will consider the design of logistics systems in our problem. The lo-
gistics system supplies raw materials, components and integrated objects to production
processes. Therefore, the stability and robustness of logistics systems are important to high-
end manufacturing. In this paper, we assume that the logistics system is ideal and ignore its
influence on production processes. In our next work, we will propose a holistic framework
that supports the co-design of production and logistics management.
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