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Abstract: This paper examines the fault-tolerant control problem for discrete-time descriptor systems
that are susceptible to intermittent actuator failures, nonlinear sensor data, and probability-based
missing data. The discrete-time non-homogeneous Markov chain was adopted to describe the
stochastic behavior of actuator faults. Moreover, Bernoulli-distributed stochastic variables with
known conditional probabilities were employed to describe the practical features of random sensor
non-linearity and missing data. In this study, the output signals were quantized and a dynamic output
feedback controller was synthesized such that the closed-loop system was stochastically admissible
and satisfied the strictly (Q, S, R)-γ-dissipative performance index. The theoretical developments are
illustrated through numerical simulations of an infinite machine bus.

Keywords: intermittent actuator faults; Markov process; probabilistic missing data; randomly occur-
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1. Introduction, Notations, and Outline

In this section, we provide the literature review and the notations and acronyms used
in the present document, as well as the objectives and outline of this work.

1.1. Bibliographical Review

Singular systems, well known as descriptor systems, appear to be mathematical mod-
els that are able to depict the relationship between static and dynamic equations that
simultaneously describe the behavior of different components in a system. Numerous ap-
plications of singular systems have been explored, including mechanical systems, robotics,
chemical processes, and economical systems [1,2]. For digital control purposes, discrete-
time singular systems have received great attention, with many publications in causality,
asymptotic stability, and some prescribed performances [3–7].

Most dynamic systems, including actuators and sensors, are susceptible to unexpected
faults or failures; in fact, many reasons may be responsible for a system’s instability and
performance degradation. For specific reasons, one can cite sensors, actuators’ ages, sudden
changes in working conditions, and internal components being corroded, among others,
which could cause significant damage to the systems. Fault-tolerant control and fault
diagnosis are crucial approaches for dynamic systems that seek to design satisfactory
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controllers to maintain the critical functionality of a system within admissible levels when
suffering from faults or failures. Different elegant results have been developed to address
the issue of reliable control for various classes of systems. Kavarian et al. develop a method
for designing fault-tolerant controllers for power systems subject to random changes
and actuator failures in [8]. The fault-tolerant control (FTC) method for wind-diesel
hybrid systems with time-varying bounded sensor faults was proposed in [9]. In [10],
the reliable observer-based control problem for discrete-time Takagi-Sugeno fuzzy systems
with time-varying delays and stochastic actuator faults was formulated from the input-
output approach. We also report on some results relating to fault-tolerant control for
singular systems. For systems with actuator and/or sensor faults, sliding mode control was
used [11]. The reliable control problem for nonlinear singularly perturbed systems with
random actuator failures is discussed in [12]. Besides, as is mentioned in [13], the faults
can be classified as permanent faults or intermittent faults. The first class of faults refers to
faults that appear and are permanent and the last class of faults corresponds to the case
where the faults occur occasionally and are limited in time. By virtue of its randomness,
and intermittence, an intermittent fault needs a stochastic model to describe it [14,15]. In the
meantime, Markovian jump systems have been proverbially regarded as a significant model
for describing many systems with random structure changes [16–18]. Recently, the authors
in [14] employed the Markov chain as a mathematical model to characterize the intermittent
fault where the Markov chain was assumed to be homogeneous, with the probability of
failure being independent of time. The hypothesis was, however, too restrictive in practice
since the failure rate of any component usually depends on multiple aspects, for instance,
its age and the extent of its solicitation. Thus, time-varying transition probabilities are
more convenient, and the investigation of the non-homogeneous Markov process is more
attractive, which is what motivated this study [19–21]. On the other hand, for most
complex systems, the states are, however, not usually available for measurement and only
a piece of partial information is accessible from the system outputs. A static/dynamic
output feedback control design is often considered for such complex systems. In recent
research, the dynamic output feedback control problem was also considered for singular
systems [22–24]. Nevertheless, it should be pointed out that the output signals were
generally taken from the sensors, which work practically under severe environments with
aggressive conditions.Thus, it was necessary to pay close attention to the control problems
for engineering systems with sensor non-linearities [4,11,25,26]. Moreover, it is understood
that in engineering systems that employ digital channels for signal transmission, signal
quantization becomes indispensable, especially when the bandwidth and energy are limited.
Nevertheless, it may impact the system’s performance when signals are quantized. Thus, it
is not surprising that researchers have recently investigated the problems of control and
filtering using various quantization approaches [27,28]. For instance, in [29] the authors
studied quantized non-stationary filtering for networked Markov switching repeated scalar
non-linear systems. The work in [30], examined the quantification H∞ control problem for
non-linear stochastic network systems accompanied by probabilistic missing data. In [31],
the authors studied the problem of event-triggered admissibilization for discrete-time
singular Markovian jump network systems with delay and output quantizations. To the
extent of our knowledge, few research efforts have been made on singular systems, and this
established the second motivation for the present work.

1.2. Objective and Outline

This paper reveals the following significant contributions of our work: (1) the sys-
tem under examination exhibited intermittent actuator faults, represented by a non-
homogeneous Markov chain, and the data from different sensors might be missing and
affected by stochastic nonlinearities; (2) sufficient conditions were established such that the
closed-loop system was stochastically admissible under the strictly (Q, S, R)-γ-dissipative
index; (3) a feasible control strategy was formulated for the considered control problem
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using the decoupling matrix procedure; and (4) simulation results of a physical plant to
demonstrate the effectiveness of the control scheme was presented.

Table 1 displays the notations and acronyms that are used in this paper.

Table 1. Notations and acronyms used in the present document.

Symbol Acronym/Notation

N the set of positive integer numbers
R the set of real numbers

X ∈ Rn n-dimensional Euclidean space
X ∈ Rn×m n×m real matrix

X > 0 real symmetric positive definite matrix X
‖X‖ norm of the matrix X
X> transpose of the matrix X

sym(X) X + X>

λ() eigenvalue of a matrix
E mathematical expectation
∗ term that is induced by symmetry
rk discrete-time Markov process

LMI linear matrix inequalities
MJS Markovian jump system
FTC fault-tolerant control

2. Preliminaries and Problem Statements

In this section, we introduce some preliminaries, which facilitate the comprehension
of our proposal, and state the problem under study.

2.1. The Model

Consider a class of discrete-time descriptor systems described by the following state-
space equations: 

Ex(k + 1) = A(k)x(k) + BuF(k) + B1w(k)

z(k) = C1x(k) + D1w(k)

y(k) = g(C2x(k))

(1)

where x(k) ∈ Rn, uF(k) ∈ Rm, and w(k) ∈ Rw represent, respectively, the state vector,
control input vector, and disturbance input vector, which lies in the square additive space
L2[0, ∞). z(k) ∈ Rp is the controlled output vector, and y(k) ∈ Rny is the measurement
output. The system is defined by the matrices E, B, B1, C2, C1, and D1, which are assumed
to be known, real, and constant with appropriate dimensions. The uncertain matrix A(k)
is defined as A(k) = A + ∆A(k), where A is a constant matrix, and ∆A(k) represents the
parametric uncertainties.

2.2. Assumption

Throughout this paper, the following are assumed:

A1 E ∈ Rn×n is a singular matrix such that rank(E) = q < n.
A2 Matrix ∆A is defined as ∆A = H∆(k)F, where matrices H and F are known and con-

stant with appropriate dimensions, and matrix ∆(k) is an unknown matrix verifying
∆T(k)∆(k) ≤ I.

A3 Due to actuator perturbation, we assume that there may exist an intermittent fault in
the actuator, which is described as

uF(k) = Θr(k)u(k) (2)
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where matrix Θr(k) defines the actuator fault. For the sake of notation, in each rk = i ∈ N,
the related matrices or vectors to rk are denoted using the index i.
Matrix Θi is defined as Θi = diag

(
θ̄1i, θ̄2i, · · · , θ̄mi

)
, where the degradation lev-

els of the actuator, θsi, s = 1, 2, · · ·m, are defined in N with a probability ma-
trix Π(k) = πij(k), (i, j ∈ N). πij(k) defines the transition probability such that
πij(k) = Pr(r(k + 1) = j|r(k) = i), πij(k) ≥ 0 and ∑N

j=1 πij(k) = 1 for each i. A
Markov chain that exhibits time-dependent transition probabilities is known as a
non-homogeneous Markov chain. Transition matrix Π(k) is assumed to have the
following structure:

Π(k) =
M

∑
l=1

αl(k)Πl (3)

where 0 ≤ αl(k) ≤ 1 and ∑M
l=1 αl(k) = 1.

Accordingly, the time-varying transition probability matrix Π(k) evolves on a poly-
tope defined by its vertices Πl , l = 1, · · · , M, as well as referring to the polytopic
time-varying transition matrix.

A4 Sensor outputs are sent over an unreliable network, where random non-linearities
may affect the sensors. Here, we assume that the sensor output is as follows:

ŷ(k) = θ(k)C2x(k) + (1− θ(k))ϕ(C2x(k)) (4)

where ϕ(C2x(k) is a non-linear function, which can be defined as

ϕ(C2x(k)) = L1C2x(k) + φ(C2x(k))

where φ(C2x(k)) ∈ [L1, L2] is a nonlinear continuous function satisfying the sector
condition [32,33]

φT(C2x(k))[φ(C2x(k))− Lφ(C2x(k))] ≤ 0, (5)

where diagonal matrices L1 and L2 are known and verify 0 ≤ L1 < L2 and L = L2 − L1.
A5 Additionally, this study attempts to develop a controller using the quantization of

sensor output. Based on the logarithmic quantizer, the following model can be used
to define sensor output:

q(ŷ(k)) =
[
q1(ŷ1(k)) q2(ŷ2(k)) · · · qny(ŷny(k))

]
(6)

where ŷs(k) is the ’s’th component of ŷ(k).
To define the logarithmic quantizer, we propose the following set of quantization levels:

U =
{

ul , ul
i = ρlu0, l = 0,±1,±2, · · ·

}
∪ {0}, u0 > 0 (7)

where ρl is the quantization density verifying 0 < ρl < 1.
Specifically, the corresponding logarithmic quantizer q(ν) is defined as follows:

q(ν) =


ul if

1
1 + δ

ρlu0 < ν ≤ 1
1− δ

ρlu0

0 if ν = 0

− q(−ν) if ν < 0

(8)

in which ν defines the input of the quantizer, and δ = 1−ρ
1+ρ .
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The quantization error of a logarithmic quantizer is ∆i = qi(νi)− νi, where ∆i ∈ [−δ, δ].
Then, we have

q(ŷ(k)) = (I + ∆q(k))ŷ(k)

where

∆q(k) = diag
(

∆1, ∆2, · · ·∆ny

)
(9)

A6 The measured output suffers from both signal losses and quantization arriving to the
controller, thus, the output is given by

y(k) = β(k)q(ŷ(k)) = β(k)(I + ∆q(k))
(

θ(k)C2x(k) + (1− θ(k))ϕ(C2x(k))
)

= g((C2x(k)))
(10)

Stochastic parameters β(k) and θ(k) in (4) and (10) are governed by the Bernoulli
distribution so that we have the following:

Pr(τ(k) = 1) = τ, Pr(τ(k) = 0) = 1− τ

where τ(k) = {β(k), θ(k)}, τ = {β, θ}, and 0 ≤ β, θ ≤ 1 are known constants.
Let ρ1(k) = β(k) − β and ρ2(k) = β(k)θ(k) − βθ. It can be seen that E{ρl(k)} = 0,

(l = 1, 2).
The purpose of this study was to design a mode-dependent full-order dynamic output

controller of the following format:{
Ex̂(k + 1) = Âi x̂(k) + B̂iy(k)

u(k) = Ĉi x̂(k)
(11)

where Âi, B̂i, and Ĉi are the designed controller gains, and x̂(k) ∈ Rn identifies the controller
state. As a result of combining (1) and (11) we obtain the dynamics of a closed-loop system
as follows:{

Ēx̄(k + 1) = (Āi + ∆Ā)x̄(k) + B̄1w(k) + Āφiφ(C2x(k)) + ρ1(k)Υ1(k) + ρ2(k)Υ2(k)

z(k) = C̄1 x̄(k) + D̄1w(k)
(12)

where x̄T(k) =
[
xT(k) x̂T(k)

]T , Ē = diag(E, E), ∆Ā(k) = H̄∆(k)F̄, and

Āi = Āi + H̄i∆Q(k)F̄, Āφi = Āφi + H̄i∆Q(k)Ī, ∆Q(k) = diag(∆q(k), ∆q(k))

Āi =

[
A BΘiˆCi

βθB̂iC2 + β(1− θ)B̂iL1C2 Âi

]
, Āφi =

[
0

β(1− θ)B̂i

]
B̄1 =

[
B1
0

]
, C̄1 =

[
C1 0

]
, D̄1 = D1, C̄2 =

[
C2 0

]
,

H̄ =

[
H
0

]
, F̄ =

[
F 0

]
, H̄i =

[
0 0

βθB̂i β(1− θ)B̂i

]
F̄ =

[
C2 0

L1C2 0

]
, Ī =

[
0
I

]
Υ1(k) =

[
0

B̂i∆̄qL1C2x(k) + B̂i∆̄qφ(C2x(k))

]
, ∆̄q(k) = I + ∆q(k)

Υ2(k) =
[

0
B̂i∆̄qC2x(k)− B̂i∆̄qL1C2x(k)− B̂i∆̄qφ(C2x(k))

]
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Remark 1.

1. As proposed in [34,35], expression (3) provides a non-homogeneous Markovian chain charac-
terized by a time-varying transition probability, which may be described by a polytope with
time-varying parameters. This case of Markovian chain degenerates the piecewise homogeneous
and homogeneous cases.

2. The Markov process is used here to model the actuator fault; hence, the precise transition prob-
abilities were difficult to ascertain in practice. To circumvent this problem, time-varying tran-
sition probabilities were introduced in a convex polytopic set modeled by a non-homogeneous
Markovian chain.

3. From a practical point of view, the transition probability matrix can be be obtained using the
method suggested in [36].

Before doing so, we recall, for nominal singular Markovian jump system (13), the sub-
sequent definitions as follows:

Ex(k + 1) = Aix(k) (13)

Definition 1 ([37]).

1. For each i ∈ N, if det(zE− Ai) is not identically zero, then pair (E, Ai) is said to be regular;

2. For each i ∈ N, if deg
(

det(zE− Ai)
)
= rank(E), then pair (E, Ai) is said to be causal;

3. If for any initial state (r0, x0), E
{

∑∞
k=0 ‖x(k))‖2|r0, x0

}
< ∞ is verified, then system (1) is

stochastically stable;
4. If system (1) is regular, causal, and stochastically stable, then it is said to be stochasti-

cally admissible.

Throughout this study, we use a quadratic supply rate defined as

Jzw(k) = zT(k)Qz(k) + 2zT(k)Sw(k) + wT(k)Rw(k)

where matrices Q, S, R are real, and Q = QT , R = RT . We suppose that Q ≤ 0 and
−Q = QT

−Q−.

Definition 2 ([38]). System (1) is strictly (Q, S, R)-γ dissipative for a given scalar γ, if the
following inequality holds under zero initial condition:

∞

∑
s=0

Jzw(s) > γ
∞

∑
s=0

wT(s)w(s) (14)

Remark 2. The dissipativity criterion defined above unifies the H∞ performance and positive
realness by an appropriate choice of different parameters. Actually, inequality (14) is equivalent to
an H∞ performance index for γ > 0 when Q = −I, S = 0, and R = (γ2 + γ)I. The criterion
corresponds to strict passivity or strictly positive realness if Q = 0, S = I, and R = 0.

The following lemmas are introduced to help in the controller design process:

Lemma 1 ([39]). Let Q = QT and M and N be given matrices. For any matrix F(k) satisfying
FT(k)F(k) ≤ I, Q + MF(k)N + NT FT(k)MT < 0 holds, if and only Q + εMMT + ε−1NT N <
0 for any scalar ε > 0.
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Lemma 2. If there exists a scalar α, matrices Q, N, M, U, and T satisfyingQ M αN
∗ −α sym(U) + T 0
∗ ∗ −T

 < 0 (15)

then,

Q + sym(MU−1NT) < 0 (16)

Proof. By checking the congruence transformation to (15) by [I, N(U)−T , N(U)−T ]T ,
condition (16) holds.

3. Admissibility and Dissipativity Analysis

This section shows the results on the stochastic mean square admissibility with dissi-
pativity performance of the closed-loop system.

Theorem 1. Given the scalars γ > 0, δ1, · · · , δny , and matrices Q, S, and R, if there exist
matrices Pl

i > 0, Si, Wi, V1i, V2i, and positive scalars ε0i, ε1i, ε2i such thatΞ
lq
i (Āi, Āφi) Υ1iΛ Υ2Wi
∗ −Wi 0
∗ ∗ −Wi

 < 0 (17)

where

Ξ
lq
i (Āi, Āφi) =



Ξ
lq
11i Ξ12i Ξ13i Ξ14i C̄T

1iQ− V1i H̄
∗ Ξ

lq
22i V2iĀφi V2i B̄1i 0 V2i H̄

∗ ∗ −2ε1i I 0 0 0
∗ ∗ ∗ −Ξ44i D̄T

1iQ− 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −ε0i I


(18)

Υ1i = col
{
V1iH̄i, V2iH̄i, 0, 0, 0, 0

}
, Υ2 = col

{
F̄T , 0, ĪT , 0, 0, 0

}
Ξ

lq
11i = Ξ̂

lq
11i + ε0i F̄T F̄, Ξ̂

lq
11i = −ĒT(Pl

i − Xlq
i )Ē + sym(V1i(Āi − Ē))

Ξ12i = (Xlq
i Ē)T + ST

i R̄−V1i + (Āi − Ē)TVT
2i, Ξ

lq
22i = −sym(V2i) + Xlq

i

Ξ13i = V1iĀφi + ε1iLC2, Ξ14i = V1i B̄1i − C̄T
1iS

Ξ44i = (R− γI)− sym(D̄T
1iS), Λ = diag(δ1, δ2, · · · , δny)

Xlq
i =

N

∑
j=1

M

∑
l=1

M

∑
q=1

αl(k)ηq(k)πl
ijP

q
j , αl(k + 1) = ηq(k)

(19)

then, closed-loop system (12) is stochastically mean-square admissible with a strictly (Q, S, R)-γ-
dissipative performance. R̄ is a full column rank matrix such that R̄Ē = 0 and rank(R̄) = 2n− 2r.

Proof. Performing the Schur complement to (17), we get

Ξ
lq
i (Āi, Āφi) + Υ1iΛW−1

i ΛΥT
1i + Υ2WiΥ

T
2 < 0 (20)
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On the other hand, from the following inequality

0 ≤ (Υ1i∆Q(k)Wi − Υ2)W−1
i (Υ1i∆Q(k)Wi − Υ2)

T

= Υ1i∆Q(k)Wi∆Q(k)ΥT
1i + Υ2W−1

i ΥT
2 − sym(Υ1∆Q(k)ΥT

2 )

≤ Υ1iΛWiΛΥT
1i + Υ2W−1

i ΥT
2 − sym(Υ1∆Q(k)ΥT

2 )

we get

sym(Υ1∆Q(k)ΥT
2 ) ≤ Υ1iΛWiΛΥT

1i + Υ2W−1
i ΥT

2 (21)

Considering (9) with ∆s ∈ [−δs, δs], s = 1, 2 · · · , ny, results in

Ξ
lq
i (Āi, Āφi) + Υ1iWiΥ

T
1i + Υ1∆Q(k)ΥT

2 < 0 (22)

Using (21), it leads from (22) to

Ξ
lq
i (Āi, Āφi) + sym(Υ1i∆Q(k)ΥT

2 ) = Ξ
lq
i (Āi, Āφi) < 0 (23)

Assume ∆Ā = 0. We will firstly demonstrate that system (12) is admissible. From (23),
we have

Ψl
i =

[
−ĒT(Pl

i − Xlq
i )Ē + sym(V1i(Āi − Ē)) (Xlq

i Ē)T + ST
i R̄−V1i + (Āi − Ē)TWT

i
∗ −sym(V2i) + Xlq

i

]
< 0 (24)

Following this, we apply the congruence transformation to (24) by
[

I, (Āi − Ē)T
]T

,
and we get

ĀT
i Xlq

i Āi − ĒT Pl
i Ē + sym (ST

i R̄Āi) < 0 (25)

For matrix Ē, there exist two non-singular matrices M̂ and N̂ such that Ê = M̂ĒN̂ =[
I2r 0
0 0

]
.

Define

Âi = M̂Āi N̂ =

[
Â11i Â12i
Â21i Â22i

]
, R̂ = M̂R̄M̂−1 =

[
R̂11 R̂12
R̂21 R̂22

]
Ŝi = M̂−TSi N̂ =

[
Ŝ11i Ŝ12i
Ŝ21i Ŝ22i

]
, P̂l

i = M̂−T Pl
i M̂−1 =

[
P̂l

11i P̂l
12i

∗ P̂l
22i

]
X̂lq

i = M̂−TXlq
i M̂−1 =

[
X̂lq

11i X̂lq
12i

∗ X̂lq
22i

] (26)

Using the fact that R̄Ē = 0, it can be seen that R̂Ê = 0, R̂11 = 0 and R̂21 = 0.
Performing the congruence transformation to (25) by N̂T and N̂, respectively, the fol-

lowing inequality holds using (26):[
? ?

? sym
(
ŜT

12iR̂12i Â22i + ŜT
22iR̂22i Â22i + ÂT

12iX̂
lq
12i Â22i

)
+ ÂT

12iX̂
lq
12i Â12i + ÂT

22iX̂
lq
22i Â22i

]
< 0 (27)
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where ? represents the non concerned elements of the matrix. Thus, from (27), it can be
verified that sym(ŜT

12iR̂12i Â22i + ŜT
22iR̂22i Â22i + ÂT

12iX̂
lq
12i Â22i) < 0, which implies Â22i is

nonsingular. By Definition 1, it can be concluded that pair (Ē, Āi) is regular and casual.
Our next step is to demonstrate that system (12) is stochastically stable. This can be

accomplished by selecting a Lyapunov function which is defined as follows:

V(k) = x̄T(k)ĒT
( M

∑
l=1

αl(k)Pl
rk

)
Ēx̄(k) (28)

Define ∆V(k) as the forward difference of V(k). Therefore, along the trajectory of
system (12), we can calculate

E{∆V(k)} = E
{

V(k + 1)−V(k)|x(k), rk = i
}

= x̄T(k + 1)ĒT
( N

∑
j=1

M

∑
l=1

M

∑
l=1

αl(k)αl(k + 1)πl
ijP

l
j

)
Ēx̄(k + 1)

− x̄T(k)ĒT
( M

∑
l=1

αl(k)Pl
i

)
Ēx̄(k)

(29)

Note that ∑M
l=1 αl(k + 1)Pl

j = ∑M
q=1 ηq(k)Pq

j , where 0 ≤ ηq(k) ≤ 1, and ∑M
q=1 ηq(k) = 1.

Thus, we know that

E{∆V(k)} = x̄T(k + 1)Ē
( N

∑
j=1

M

∑
l=1

M

∑
q=1

αl(k)ηq(k)πl
ijP

q
j

)
Ēx̄(k + 1)

− x̄T(k)ĒT
( M

∑
l=1

αl(k)Pl
i

)
Ēx̄(k)

= x̄T(k + 1)ĒTXlq
i Ēx̄(k + 1)− x̄T(k)ĒT

( M

∑
l=1

αl(k)Pl
i

)
Ēx̄(k)

(30)

Let x̄s(k) = x̄(k + 1)− x̄(k). Equation (29) is equivalent to

E{∆V(k)} = x̄T
s (k)ĒXlq

i ĒT x̄s(k)− x̄T(k)ĒT
( M

∑
l=1

αl(k)Pl
i − Xlq

i

)
Ēx̄(k) + 2x̄T

s (k)ĒXlq
i ĒT x̄(k) (31)

Additionally, using the fact that R̄Ē = 0, we have

2x̄T(k)ST
i R̄Ēx̄s(k) = 0 (32)

Moreover, with appropriates matrices VT
1i and VT

2i it can be established from (12) that

2E
{

ζT(k)
[
VT

1i VT
2i 0

]T
[−Ēx̄s(k) + (Āi − Ē)x̄(k) + Āφiφ(C2x(k)) + ρ1(k)Υ1(k) + ρ2(k)Υ2(k)]

}
= 2ζT(k)

[
VT

1i VT
2i 0

]T[
(Āi − Ē) −I Āφi

]
ζ(k) = 0 (33)

where ζ(k) = col
{

x̄(k), Ēx̄s(k), φ(C2x(k))
}

. According to (5), one has

−2ε1i

{
φT(C2x(k))

(
φ(C2x(k))− LC̄2 x̄(k)

)}
≥ 0 (34)

where ε1i is a positive scalar.
Substituting (32)–(34) into (31) gives us

E{∆V(k)} ≤ ζT(k)Ψ̄lq
i ζ(k) (35)
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where

Ψ̄lq
i =

Ξ̂
lq
11i Ξ12i Ξ13i

∗ Ξ
lq
22i V2i Āφi

∗ ∗ −2ε1i I

 (36)

From (23), we can deduce that Ψ̄lq
i < 0, and (35) provides the following

E{∆V(k)} ≤ κ‖ζ(k)‖2 (37)

where κ < 0 is the largest eigenvalue of Ψ̄lq
i . Thus, from (37) we have

E
{ ∞

∑
l=0
‖ζ(l)‖2

}
≤ 1

κ
E
{ ∞

∑
l=0

∆V(k)
}

(38)

E
{ ∞

∑
l=0
‖ζ(l)‖2

}
≤ −1

κ
V(0) < ∞ (39)

Thus, system (12) is stochastically admissible according to Definition 1.
In order to show that system is (Q, S, R)-γ dissipative, we present the following

performance index:

J0 = E
{ ∞

∑
k=0

(Jzw − γwT(k)w(k))
}

(40)

As with previous steps, the null equation

2ψT(k)
[
VT

1i VT
2i 0 0

]T[
(Āi − Ē) −I Āφi B̄1i

]
ψ(k) = 0 (41)

can be applied to get

E{∆V(k)} − Jzw(k) + γwT(k)w(k) = ψT(k)(Ξ̄lq
i )ψ(k) (42)

where ψ(k) = col
{

ζ(k), w(k)
}

, and

Ξ̄
lq
i =


Ξ̂

lq
11i Ξ12i Ξ13i Ξ14i C̄T

1iQ−
∗ Ξ

lq
22i V2iĀφi V2i B̄1i 0

∗ ∗ −2ε1i I 0 0
∗ ∗ ∗ −Ξ44i D̄T

1iQ−
∗ ∗ ∗ ∗ −I

 (43)

According to (23), Ξ̄
lq
i < 0, and under zero initial conditions, we are left with the

following equation:

J0 ≤
∞

∑
k=0

E
{

∆V(k)− Jzw + γwT(k)w(k)
}
≤ E

{
V(∞) +

∞

∑
k=0

(−Jzw + γwT(k)w(k))
}
< 0 (44)

Since V(∞) ≥ 0, it is easy to verify that E
{

Jzw− γwT(k)w(k)
}
> 0. Therefore, according

to Definition 2, system (12) is stochastically admissible and strictly (Q, S, R)-γ dissipative.
Assume that ∆Ā 6= 0. In the same manner as above, we arrive at

Ξ̄
lq
i + sym

(
ΓT

1i∆(k)Γ2i

)
< 0 (45)

where Γ1i =
[
(V1i H̄)T (V2i H̄)T 0 0 0

]
and Γ2i =

[
F̄ 0 0 0 0

]
.
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Because of ∆T(k)∆(k) ≤ I, inequality (22) holds according to Lemma 1. This ends
the proof.

Remark 3. Theorem 1 establishes the existence of the controller such that the closed-loop system
is stochastically admissible and strictly (Q, S, R)-γ dissipative. Due to the non-linear nature of
the condition in the theorem, it cannot be solved with existing LMI solvers. The next section
demonstrates the procedure to design the controller and overcome the BMI terms in (17).

4. Dissipativity Controller Design

In the sequel, the corresponding controller gains Âi, B̂i, and Ĉi will be designed based
on the following conclusion.

Theorem 2. System (12) is stochastically admissible and strictly dissipative for a scalar γ > 0,
matrices Q, S, and R, and tuning parameters a1, a2, b1, and b2, if the matrices Pl

i > 0, Ti > 0,
V1i, V2i, W1i, W2i, Yi, Wi, Ui, Âi, B̂i, Ĉi and scalars ε0i > 0, ε1i > 0, and ε2i > 0 exist such that
the following LMI is true:

Ψlq
i (A1i,A2i) Υ̃1iΛ Υ2iWi Υ̃3i αΥ̃4i
∗ −Wi 0
∗ ∗ −Wi

∗ −α sym(Ui) + Ti 0
∗ ∗ −Ti

 < 0 (46)

where

Ψlq
i (A1i,A2i) =



Ψlq
11i Ψ12i Ψ13i + ε1iLC2 Ψ14i − C̄T

1iS C̄T
1iQ− Ψ16i

∗ Ψlq
22i Ψ23i Ψ24i 0 Ψ26i

∗ ∗ −2ε1i I 0 0 0
∗ ∗ ∗ −Φ44i D̄T

1iQ− 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −ε0i I


Υ̃1i = col

{
Ψ17i, Ψ27i, 0, 0, 0, 0

}
,

Υ̃3i = col
{

Ψ19i, Ψ29i, 0, 0, 0, 0, 0, 0
}

,

Υ̃4i = col
{[

0 Ĉi
]T , 0, 0, 0, 0, 0, 0, 0

}
,

Ψl
11i = −ĒT(Pl

i − Xlq
i )Ē + sym(A1i) + ε0i F̄T F̄,

Ψ12i = (Xlq
i Ē)T + ST

i R̄−V1i + (A2i)
T ,

Ψlq
22i = −sym(V2i) + Xlq

i ,

Vji =

[
Vji ajYi
Wji bjYi

]
, j = 1, 2

Aji =

[
Vji(A− E) + aj(βθB̂iC2 + β(1− θ)B̂iL1C2) aj(Âi −YiE) + BΘiĈi
Wji(A− E) + bj(βθB̂iC2 + β(1− θ)B̂iL1C2) bj(Ai −YiE) + BΘiĈi

]
,

Ψj3i =

[
ajβ(1− θ)B̂i
bjβ(1− θ)B̂i

]
Ψj4i =

[
VjiB1
WjiB1

]
, Ψj6i =

[
Vji H
Wji H

]
,

Ψj7i =

[
ajβθB̂i ajβ(1− θ)B̂i
bjβθB̂i bjβ(1− θ)B̂i

]
Ψj9i =

[
VjiBΘi − BΘiUi
WjiBΘi − BΘiUi

]

(47)
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Furthermore, the controller gains are given by

Âi = Y−1
i Âi, B̂i = Y−1

i B̂i, Ĉi = U−1
i Ĉi (48)

Proof. Based on Theorem 2, a feasible solution must satisfy the condition − sym(V2i) < 0
and − sym(Ui) < 0. It follows that Yi and Ui are nonsingular, and we get

Âi = Yi Âi, B̂i = Yi B̂i, Ĉi = UiĈi (49)

According to Lemma 2, we obtain from (46)Ψlq
i (A1i,A2i) Υ̃1iΛ Υ2iWi
∗ −Wi 0
∗ ∗ −Wi

+ sym(Υ̃3iU−1
i Υ̃T

4i) < 0 (50)

Note that Ĉi = U−1
i Ĉi. Thus, it is easy to get

Υ̃3iU−1
i Υ̃T

4i =



[
0 V1iBΘiĈi − BΘiĈi
0 W1iBΘiĈi − BΘiĈi

]
0 0 0 0 0 0 0[

0 V2iBΘiĈi − BΘiĈi
0 W2iBΘiĈi − BΘiĈi

]
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(51)

Using (51), inequality (50) is equivalent toΨlq
i (A1i, A2i) Υ̃1iΛ Υ2iWi
∗ −Wi 0
∗ ∗ −Wi

 < 0 (52)

where

A1i = A1i +

[
0 V1iBΘiĈi − BΘiĈi
0 W1iBΘiĈi − BΘiĈi

]
= V1i(Āi − Ē)

A2i = A2i +

[
0 V2iBΘiĈi − BΘiĈi
0 W2iBΘiĈi − BΘiĈi

]
= V2i(Āi − Ē)

V1i =

[
V1i a1Yi
W1i b1Yi

]
,V2i =

[
V2i a2Yi
W2i b2Yi

]
Moreover, using the fact that

Ψj3i = VjiĀφi, Ψj4i = Vji B̄1i, Ψj7i = VjiH̄i, j = 1, 2

it can be verified that (52) is equivalent to (17). Hence, according to Theorem 1, if (46) holds
then system (12) is stochastically admissible and strictly dissipative.

Remark 4. In comparison with existing results in [23,40,41], the proposed control design scheme’s
main benefit is its simplicity and lesser conservativeness. In [40], the SVD decomposition technique
was applied with a specific structure of auxiliary matrices. Our proposed methodology differed from
the one in [23] since it is valid only for systems with measurable states and requires the tuning of
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many scalars. Additionally, contrary to our study [41], some scalars were introduced in the matrix
V1i and V2i in order to reduce the conservatism of the method.

5. A Numerical Application
5.1. A Machine Infinite-Bus System

With the help of the example of a machine infinite-bus system displayed in Figure 1,
and borrowed from [42], we demonstrate both the efficiency and correctness of the proposed
control scheme.

Figure 1. Three machine infinite buses.

From the publication [43], the following model describes the corresponding simu-
lation system:

A =



1 0 0 0.01 0 0 0
0 1 0 0 0.01 0 0
0 0 1 0 0 0.01 0

−1.0714 0.7143 0 0.9593 0 0 0.3571
0.3846 −0.8461 0 0 0.9423 0 0.4615

0 0 −0.75 0 0 0.945 0.4
0.005 0.012 0.008 0 0 0 −0.035


,

B =



0 0 0
0 0 0
0 0 0

0.7142 0 0
0 0.3846 0
0 0 0.5
0 0 0


, B1 =



0
0
0
0
0
0

0.01


C2 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1

,

and E = diag(1, 1, 1, 1, 1, 1, 0). The other parameters are respectively selected as follows:

H

F

C11

D1


=



[
0 0 0 0.01 0.01 0.01 0.01

]T

[
0.1 −0.1 0.1 0 0 0 −0.1

]
[
0.1 0.1 0.1 0 0 0 0.1

]
0
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We suppose that an intermittent actuator fault may occur randomly according
to a time-varying Markov chain with fault matrices selected as Θ1 = diag(1, 1, 1),
and Θ2 = diag(0.5, 0.5, 0.5), and a transition probability defined by the following vertices:

Π1 =

[
0.5 0.5

5/14 9/14

]
, Π2 =

[
0.7 0.3
0.6 0.4

]
, Π3 =

[
0.75 0.25
0.65 0.35

]
,

Moreover, the following non linear function

ϕ(C2x(k)) =
L1 + L2

2
C2x(k)) +

L2 − L1

2
sin(C2x(k))

is borrowed to represent the sensor non-linearity with L1 = diag(0.5, 0.5, 0.5, 0.5) and
L2 = diag(0.8, 0.8, 0.8, 0.8). The parameters of the logarithmic quantizer are selected
as u0 = 0.1 and ρ = 0.9. Let Q = −0.1, S = 0.1, R = 10, γ = 0.1, R0 =

[
07,6 I7,1

]
,

R̄ = diag(R0, R0), a1 = 1, b1 = 0, a2 = 1, b2 = 0, α = 0.1, ε0 = 1, and ε1 = 1.
A viable solution is found using Yalmip’s toolbox in conjunction with Mosek’s solver

at β = 0.9, θ = 0.8, and

Â1 =



0.65823 0.0004064 0.001535 0.013364 0.000794 0.0061627 −0.0025474
0.0047828 0.66035 0.0028214 0.017249 0.016817 0.0067394 −0.0020184
0.0023727 0.0023443 0.65729 0.0074535 0.0030585 0.0075329 −0.0015125
−0.001726 −0.042823 −0.0083913 0.59108 −0.036362 −0.023284 −0.0025816
0.035663 0.0067386 0.0093891 −0.048313 0.61179 −0.011463 −0.0015296
−0.010618 −0.017083 0.020782 −0.014012 −0.011638 0.6231 −0.0011323
0.003645 0.0030258 0.00222 0.0017253 −0.0011264 0.00022401 −0.49802



B̂1 =



−0.05209 0.013598 −0.0007033 0.047023
0.015709 −0.062511 0.0060032 0.047707
−0.0024841 0.0037372 −0.058534 0.032604

0.19178 −0.017745 0.0011332 −0.16227
0.026467 0.15574 −0.0050712 −0.16976
0.026843 −0.0054818 0.16765 −0.1031
−0.0014821 −0.0058124 −0.0033069 0.010051


Ĉ1 =

 −0.0256 0.039964 0.019995 0.016935 −0.077525 −0.038215 −8.7587e− 05
−0.056836 −0.082333 −0.013872 0.083229 0.13775 0.0011287 9.8431e− 05
0.026176 0.023931 −0.11231 −0.11 −0.086408 0.14403 −1.9844e− 05



Â2 =



0.65804 0.00034327 0.0013678 0.0039296 0.0007452 0.0013286 −0.0017139
0.0027157 0.65996 0.0017229 0.0081953 0.0060933 0.0016663 −0.0014004
0.0015253 0.0015426 0.65774 0.00092097 0.00060671 0.0040795 −0.00092355
0.018616 −0.021029 −0.002425 0.64437 −0.0028923 4.4378e− 05 −0.0010219
0.013199 0.021075 −0.0037748 −0.013745 0.64909 0.0026206 −0.00024366
−0.0044677 −0.0065649 0.030394 0.0021783 0.0034892 0.6412 −0.0002276
0.0022379 0.0022817 0.0014652 0.00017662 −0.0012586 −0.0005046 −0.49805



B̂2 =



−0.061413 0.017146 0.0064549 0.046044
0.013098 −0.063389 0.0080104 0.048076
0.0036008 0.0070987 −0.071588 0.028373

0.11256 −0.022614 −0.011207 −0.077291
0.0031899 0.10688 −0.016069 −0.096737
−0.002898 −0.009896 0.13612 −0.055888
−0.0019342 −0.0064795 −0.0036871 0.011058


Ĉ2 =

 −0.1033 0.076039 0.016612 0.062354 −0.087665 −0.032075 −3.8798e− 05
−0.038447 −0.17818 0.020649 0.027777 0.12359 −0.042474 −3.3119e− 05

0.03359 0.030564 −0.21223 −0.076694 −0.065088 0.19051 −7.1046e− 06

.
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The control scheme proposed in [41] is not feasible with the above parameters for this
system, which indicates the superiority of the new strategy.

5.2. Results and Graphical Plots

As a way of demonstrating that the developed control strategy is effective, let us
suppose that w(k) = 0.01 sin(5k), and the initial condition
x(0) =

[
0.1 0.1 0.1 0.1 0.1 0.1 0.1

]
.

Figures 2–7 illustrate the simulation results of the resulting closed-loop system,
achieved by applying the designed fault-tolerant controller (11) to the uncertain system (1).
Figures 2–5 record the actual and quantized output responses of the system, while Figures 6–9
show, respectively, the control input u(k), the Markov chain mode of the actuator failure,
and the Bernoulli distributions. The fault-tolerant dynamic output feedback controller
could keep the closed-loop system dynamically stable under actuator faults, external
disturbances, model uncertainties, and unmeasured states.

0 50 100 150 200 250

k

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

y1
yq1

Figure 2. Actual output, y1, and quantized output, yq1.

0 50 100 150 200 250

k

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

y2
yq2

Figure 3. Actual output, y2, and quantized output, yq2.
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Figure 4. Actual output, y3, and quantized output, yq3.
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Figure 5. Actual output, y4, and quantized output, yq4.

0 20 40 60 80 100 120 140 160 180 200

-10

-5

0

5
10

-4

Figure 6. Input trajectories.
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Figure 7. Mode values of Markov chains of an intermittent fault.
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Figure 8. Bernoulli distribution variable β(k).
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Figure 9. ‘Bernoulli distribution variable θ(k).
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5.3. Comparative Explanations

With the fault-tolerant control of discrete-time descriptor systems characterized by in-
termittent actuator failures and unpredictable sensor non-linearities, this paper has proven
effective in overcoming this challenge. In spite of various control issues for discrete-time
Markovian jump systems having been explored in the literature [35,41,44], our approach
differed in the following ways:

• Ref. [35] describes a discrete-time Markovian jump system with a quantized and
resilient state feedback control law. As we considered a more general class of singular
systems with partially measured states, our approach was more general. Additionally,
random sensor non-linearity and missing data were taken into account.

• Although the reliable control problem for discrete-time descriptor systems, using a
dynamic output feedback controller, had been explored in our previous work [41],
the present investigation differed with the following points:

– The intermittent actuator failures were described by a non-homogeneous Markov
process with time-varying transition probabilities. Moreover, the randomly
occurring sensor non-linearity, suggested in this study, was more general and
might include the saturation non-linearity.

– To handle a networked control system, the output quantization and missing
data might be an effective scheme to reduce the storage space and transmission
bandwidth [44].

• Between resilient controllers proposed in [35,44] and the reliable controller developed
in this study, resilient controllers were employed to precisely handle gain fluctuations,
whereas the reliable controller was used to compensate for failures of components in
the system, especially actuators and sensors.

6. Conclusions and Future Work
6.1. Concluding Remarks

The fault-tolerant control problem presented in this paper is for discrete-time sin-
gular systems with intermittent actuator faults, randomly occurring sensor nonlinearity,
and probabilistic missing data. Among the main results, the main findings are as follows:
(i) Random sensor non-linearity and random missing data have been studied for singular
linear systems, where related impacts have been assessed. (ii) We have discussed the inter-
mittent actuator faults described by a non-homogenous Markov model. (iii) A dynamic
output feedback controller with quantized output signals was proposed. The synthesized
controller might guarantee the stochastic stability of closed-loop systems with satisfactory
dissipative performance. A numerical simulation of the machine infinite bus confirmed the
efficiency and potential value of the results obtained.

6.2. Limitations

This study revealed a quantized input model, which was independent of the failure
modes. In spite of this, as presented in [29], this model could not be used to describe
physical applications due to the absence of some available information of target modes.
Accordingly, since information relating to a mode could not be transmitted correctly,
the problem of combining mode-independent and mode-dependent systems when dealing
with control/filtering problems pertaining to Markovian jump systems is fascinating [44].
This issue could be considered in the future.

6.3. Future Work

Other research areas that should be also pursued in the future include stabilization
problems for nonlinear processes [45–47].
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