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Abstract: This paper describes recent findings achieved during a numerical investigation of the 

circuit known as the Clapp oscillator. By considering the generalized bipolar transistor as an active 

element and after applying the search-for-chaos optimization approach, parameter regions that lead 

to either chaotic or hyperchaotic dynamics were discovered. For starters, the two-port that 

represents the transistor was firstly assumed to have a polynomial-forward trans-conductance; then 

the shape of trans-conductance changes into the piecewise-linear characteristics. Both cases cause 

vector field symmetry and allow the coexistence of several different attractors. Chaotic and 

hyperchaotic behavior were deeply analyzed by using standard numerical tools such as Lyapunov 

exponents, basins of attraction, bifurcation diagrams, and solution sensitivity. The structural 

stability of strange attractors observed numerically was finally proved via a real practical 

experiment: a flow-equivalent chaotic oscillator was constructed as the lumped electronic circuit, 

and desired attractors were captured and provided as oscilloscope screenshots. 
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1. Introduction 

Roughly speaking, deterministic chaos can be considered as the unpredictable steady 

state of nonlinear dynamical systems with at least three degrees of freedom. By definition, 

this specific kind of solution possess two fundamental properties: it is sensitive to small 

changes of the initial conditions and bounded strange attractor with a non-integer 

geometric dimension. These two key features can be achieved simultaneously thanks to 

the suitable formation of the vector field and balanced distribution of dynamic energy 

over the state space. Moreover, from the perspective of chaotic and/or hyperchaotic 

circuits, a generated chaotic signal exhibits a continuous and broad-band frequency 

spectrum, caused by the presence of many unstable limit cycles. In further texts, chaotic 

phenomena will be related to a lumped electronic circuit with four accumulation 

elements. More precisely, analog building blocks dedicated for continuous-time signal 

generation will be addressed, both with respect to the generation of sinusoidal and chaotic 

waveforms. 

The first lumped electronic circuit where the existence of a robust chaotic solution 

was confirmed theoretically, numerically, as well as experimentally was Chua’s oscillator 

[1]. It can be considered a parallel connection of the third-order passive ladder network 

and resistor having a piecewise linear (PWL) ampere–voltage (AV) characteristics. 

Without losing the chance to observe double-scroll, single-spiral, or other typical strange 

attractors, a PWL function can be substituted by a cubic polynomial function [2]. Both 

variants of Chua´s oscillator are still very popular for educational purposes because of 

their circuit simplicity, robustness of generated chaotic attractors, and easy-to-understand 

mechanisms behind chaos generation. Looking for the basic principle of chaos evolution, 
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a harmonic oscillator can be considered as its core part. It is therefore understandable that 

many conventional topologies of the harmonic oscillators are investigated from the 

viewpoint of working regimes (system parameters, initial conditions), leading to the 

positive largest Lyapunov exponent (LE). Such a value usually indicates a solution that is 

sensitive to the small changes of the initial conditions, i.e., nearby trajectories diverge as 

time grows. One of the first examples of naturally non-chaotic oscillators turned into a 

generator of structurally stable chaotic attractors is described in paper [3]. There, the basic 

topology of the Colpitts oscillator is complemented by several additional elements 

including a voltage-controlled nonlinear resistor with two segment PWL AV curves. The 

author of a short paper [4] showed that this chaotic system could be mapped into Chua´s 

oscillator having an asymmetric PWL resistor. After the mutual exchange of capacitors 

and inductors in a typical Colpitts oscillator, we are experiencing Hartley´s structure. 

Inside this autonomous deterministic system, chaos was confirmed on an experimental 

basis in paper [5]. Another short work [6] analyzed a simple network that represents a 

bridge between Chua´s circuit and the Wien bridge oscillator. The contribution of the 

authors was that the active analog block that realizes the series connection of the negative 

inductor and resistor substitutes a classical inductor. A much more comprehensive study 

involving different topologies of Wien bridge-based chaotic oscillators is provided in 

paper [7]. A semi-systematic approach for the construction of chaos generators starting 

with the sinusoidal oscillator having a single current–feedback operational amplifier 

(AD844) is discussed in paper [8]. Despite the simplicity of discovered circuits, only 

simulation results are provided. The mentioned paper can be considered an extension of 

a much more comprehensive review [9]. Focusing on the phase shift sinusoidal oscillators, 

chaos can be successfully generated by a fully passive resistor–capacitor ladder 

terminated by a PWL resistor, as proved by author of paper [10]. Of course, this PWL 

resistor needs to be active, with at least one working area characterized by negative slope. 

From a practical realization point of view, the absence of inductors could be beneficial. 

Inductor-less circuitry realizations of third-order chaotic oscillators can be found in paper 

[11]. There, only two commercially available active elements are needed, and oscillators 

offer very simple relations between the parameters of mathematical models and values of 

circuit elements. Seen from different circuit-oriented perspectives, a single higher-order 

differential equation can be practically implemented as a closed loop of a passive low-

pass filter and active two-port with polynomial transfer characteristics [12]. Besides 

“chaotic members” of class of sinusoidal oscillators, this kind of specific behavior has been 

reported in more complicated analog systems dedicated to continuous-time signal 

processing. One such example is phase-locked loop circuits, where chaos was firstly 

confirmed in paper [13]. After that, intensive research of phase-locked loops was 

performed, resulting into study [14]. Because of the existence of intrinsic nonlinearities, 

power electronics systems are ideal candidates where long chaotic transients as well as 

structurally stable chaotic oscillations can be observed. Many research papers were 

devoted to this problem. For example, papers [15] and [16] focused on the analysis of buck 

and boost DC–DC converters, respectively. A Cuk DC–DC converter was addressed in 

paper [17]. The rising of chaos phenomena in DC-DC converter, especially within a 

voltage-controlled buck converter, is explained in paper [18]. Difference equations, 

instead of differential equations, are derived and analyzed in the case of switching mode 

power converters. Consequently, conditions for the evolution of a discrete chaotic map 

are pronounced; see paper [19] for details. An analysis of a chaotic boost regulator that 

works in discontinuous modes is provided in paper [20]. Paper [21] shows that chaotic 

phenomena can be observed in a simple nonlinear switched-capacitor circuit. The 

analyzed system is described by a voltage–charge equation, i.e., it is discrete time 

dynamics. Interestingly, describing equations can be transformed into well-known 

logistic equations. 

This paper extends the list of the well-known harmonic oscillators that are eventually 

capable of producing robust chaotic waveforms by one item, the Clapp oscillator. The next 
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section describes a mathematical model of the original and chaotic Clapp oscillator, i.e., a 

generally autonomous, deterministic fourth-order dynamical system having three linear 

capacitors and one inductor. The third section covers an analysis of the simplified Clapp 

oscillator using standard numerical algorithms (LE, bifurcation diagrams, basins of 

attraction). The fourth part of this paper shows that chaotic movement is neither long 

transient nor a numerical artifact. Finally, concluding remarks and a few suggestions for 

future work are provided. 

2. Mathematical Models 

A Clapp oscillator can be understood as a slight modification of the famous Colpitts 

topology. The typical configuration of a Clapp oscillator is provided in Figure 1a. For the 

upcoming AC analysis, some circuit elements can be recognized as supporting and can be 

removed. To be more specific, green components serve to set up bias points, which is 

respected by the numerical values of admittance parameters. The blue color marks 

coupling capacitors and, due to the large values, can be substituted by the short circuit. 

Finally, the red color denotes a subcircuit dedicated for bias point temperature 

stabilization. After removing all colored elements, the Clapp oscillator simplifies into the 

network depicted in Figure 1b. Obviously, it is a fourth-order autonomous dynamical 

system and can be understood as a closed loop of a fourth-order trans-resistance filter and 

trans-conductance amplifier with a frequency-independent amplification. Using the 

notion of the Laplace transform and matrix method of unknown nodal voltages, the 

network function for the mentioned filter can be derived easily. By adopting node 

markings as indicated in the schematic, the admittance matrix can be expressed as 

𝐘(𝑠) = (
𝑦22 + 𝑠𝐶2 + �̃� −�̃�

−�̃� 𝑦11 + 𝑠𝐶1 + �̃�
) , �̃�(𝑠) =

𝑠𝐶3
𝑠2𝐶3𝐿 + 1

 , (1) 

where s represents a complex frequency. Then, accordingly to Cramer´s rule, the trans-

resistance of a passive ladder filter can be calculated symbolically as 

𝐾(𝑠) = −
𝑣𝐵𝐸
𝑖𝐶
=
∆1,2
∆
= −

𝑠𝐶3
∑ 𝑎𝑘𝑠𝑘
4
𝑘=0

 , (2) 

where  is the determinant of the admittance matrix, j,k is the determinant of the 

admittance matrix after removing the j-th row and k-th column, vBE is the base-emitter 

voltage, iC is the collector current of bipolar transistor, and the denominator coefficients 

are 

𝑎4 = 𝐶1𝐶2𝐶3𝐿 , 𝑎3 = 𝐶3𝐿(𝐶2𝑦11 + 𝐶1𝑦22) , 𝑎2 = 𝐶1𝐶2 + 𝐶1𝐶3 + 𝐶2𝐶3 + 

+𝐶3𝑦11𝑦22𝐿 , 𝑎1 = 𝑦11(𝐶2 + 𝐶3) + 𝑦22(𝐶1 + 𝐶3) , 𝑎0 = 𝑦11𝑦22 , 
(3) 

where y11 and y22 are the input and output admittance of the used bipolar transistor, 

respectively. Now, assume that the output admittance of a generalized transistor is zero 

(𝑦22 = 0), i.e., acts as the ideal current source. By combining network function (2) with 

parameters (3) and the trans-conductance nature of the bipolar transistor, 𝑖𝐶 = 𝑦21𝑣𝐵𝐸 , we 

can obtain the characteristic equation of the Clapp oscillator 

𝐶1𝐶2𝐶3𝐿 ∙ 𝑠
3 + 𝑦11𝐶2𝐶3𝐿 ∙ 𝑠

2 + (𝐶1𝐶2 + 𝐶1𝐶3 + 𝐶2𝐶3) ∙ 𝑠
+ 𝑦11(𝐶2 + 𝐶3) + 𝑦21 ∙ 𝐶3 = 0 , 

(4) 

In common situations, grounded capacitors are equivalent; C = C1 = C2. In this case, 

the condition for stable oscillation and associated oscillation frequency in Hz can be 

derived easily as 
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 𝑦21 = 𝑦11 , 𝑓𝑜𝑠𝑐 =
1

2𝜋√
𝐿

2
𝐶
+
1
𝐶3

 , 
(5) 

A substitution of the arbitrarily biased bipolar transistor with the so-called 

generalized bipolar transistor (GBT) is suggested in paper [22]. A subsequent analysis of 

a single-stage amplifier revealed the fact that several robust chaotic attractors can be 

observed even if this circuit is considered isolated, i.e., without an input driving signal. 

However, GBT needs to exhibit at least a small linear backward trans-conductance. This 

restriction is expected in electronic systems that contain neither local nor global feedback, 

i.e., very basic structures of amplifiers. The necessity to include backward trans-

conductance to each GBT is also stated in paper [23], where a two-stage amplifier having 

a GBT and both resonant and resistive loads was analyzed. Four degrees of freedom allow 

for the existence of hyperchaotic self-oscillations. 

Most low-frequency practical sinusoidal oscillators are composed by a closed loop of 

two blocks: an inverting or noninverting amplifier (constant phase shift 180° or 0°) and 

the passive ladder two-port feedback with frequency-dependent phase shifts. This passive 

two-port exhibits ±180° or 0° phase shift for the unique oscillation frequency. A high phase 

change around oscillation frequency contributes to an increased frequency stability. On 

the other hand, typical harmonic oscillators designed for high-frequency bands are based 

on parallel inductor–capacitor tanks where losses are compensated by the negative 

resistor. 

A mathematical model that describes the Clapp oscillator with a nonlinear model of 

the bipolar transistor (with output admittance removed) can be expressed accordingly to 

Figure 1c as 

𝐶1
𝑑𝑣1
𝑑𝑡

= −𝑦11 ∙ 𝑣1 − 𝑦12 ∙ 𝑣2 + 𝑖𝐿 , 𝐶2
𝑑𝑣2
𝑑𝑡

= −𝑦21(𝑣1) − 𝑖𝐿  , 

𝐶3
𝑑𝑣3
𝑑𝑡

= 𝑖𝐿  , 𝐿
𝑑𝑖𝐿
𝑑𝑡
= 𝑣2 − 𝑣1 − 𝑣3 . 

(6) 

where the state vector becomes x = (v1 v2 v3 iL)T. The nonlinear forward trans-conductance 

can be an odd-symmetrical cubic polynomial function of the form 

𝑦21(𝑣1) = 𝑎 ∙ 𝑣1
3 + 𝑏 ∙ 𝑣1  (7) 

which is saturation-type function. To get close to the standard operational regime of Clapp 

oscillators, relations a  0 and b  0 will be respected. Further in the text, we denote the 

Clapp oscillator having this polynomial type of transistor model Case I. Similarly, Case II 

will have a three-segment PWL approximation of forward trans-conductance, that is, 

𝑦21(𝑣1) = 𝑎 ∙ 𝑣1 +
1

2
∙ (𝑏 − 𝑎) ∙ (|𝑣1 + 1| − |𝑣1 − 1|) , (8) 

where a and b are slopes of the PWL curve in the outer and inner segment of the function, 

respectively. Since the PWL function (5) approximates a cubic polynomial (7), we have 

parameters a  0 and b  0. Therefore, the state space is divided into three linear regions 

separated by two parallel planes v1= ±1 V. The PWL function (8) is odd-symmetrical with 

respect to the origin. Note that breakpoints are considered fixed. 
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Figure 1. Clapp oscillator: (a) standard complete topology including biasing circuits, (b) simplified 

structure for quasilinear analysis, and (c) network with nonlinear model of bipolar transistor. 

2.1. Clapp Oscillator, Case I 

A dynamical system (6) with function (7) has a symmetrical vector field with respect 

to the origin and possesses three fixed points placed on the line, namely 

𝐱1
𝑒𝑞
= (

0
0
0
0

) , 𝐱2,3
𝑒𝑞
= ±√−

𝑏

𝑎
∙

(

 
 

1

−
𝑦11

𝑦12

−
𝑦11

𝑦12
− 1

0 )

 
 

. (9) 

We will look after the self-excited chaotic attractor driven by the equilibrium point 

located at the origin of the state space. Because of this, an origin should be a hyperbolic 

unstable fixed point, and we will prefer a saddle-focus local geometry characterized by at 

least single one-dimensional stable manifold. Eigenvalues that determine local dynamical 

movement near this equilibrium point are roots of the following characteristic 

polynomial: 

𝜆4 + 𝑦11 ∙ 𝜆
3 + (3 − 𝑏 ∙ 𝑦12) ∙ 𝜆

2 + (𝑏 + 2 ∙ 𝑦11 + 𝑦12) ∙ 𝜆 − 𝑏 ∙ 𝑦12 = 0. (10) 

A continuation with the symbolic evaluation of individual roots leads to very 

complicated formulas without further usage. The optimization discussed in the next 

section works with the numerical calculation of eigenvalues, calculated using Equation 

(10). 

2.2. Clapp Oscillator, Case II 

Analogically to Clapp oscillator, Case I, equilibrium points are all real solutions of 

the nonlinear problem dx/dt = 0. A straightforward analysis yields the following positions 

of three fixed points placed on a line, one in each region of the state space, namely, 

𝐱1
𝑒𝑞
= (

0
0
0
0

) , 𝐱2,3
𝑒𝑞
= ±

𝑎−𝑏

𝑎

(

 
 

1

−
𝑦11

𝑦12

−
𝑦11

𝑦12
− 1

0 )

 
 

. (11) 
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Since both addressed cases of the Clapp oscillator had the same derivative of the 

forward trans-conductance around zero, characteristic polynomial has the same form as 

(10). The roots of this polynomial were calculated numerically in each step of the 

optimization routine. Thus, further symbolic evaluation does not lead to useful results. 

3. Numerical Results 

Having a dimensionless mathematical model, the spectrum of LEs can be used to 

distinguish between different types of dynamical behavior. If the largest LE is 

significantly positive while the second in order converges to zero, system motion can be 

coined as chaotic. Even more interesting is the case with two distinguishable positive LEs, 

since it implies hyperchaotic behavior. In fact, the number of positive LEs represents the 

number of dimensions in which neighborhood state trajectories are separated on average. 

For each calculation of the fitness function, both initial conditions and sets of sought 

system parameters can serve as routine input variables.  

Let us describe a three-step optimization approach developed and adopted in this 

paper in more detail. To reveal a self-excited attractor, a set of the initial conditions can be 

spread about the relevant equilibria. In our case, it is a fixed point located at the origin of 

the state space. Despite the variation of system parameters during optimization, this fixed 

point should remain unstable. Thus, combinations of system parameters that lead to the 

fixed-point full stabilization can be removed from our further considerations, preferably 

before the most time-consuming final step, the numerical calculation of the LE spectrum. 

Since parameter regions that are characterized by a system´s sensitivity dependance on 

initial conditions are often surrounded by an unbounded solution, the second step is to 

ensure that the -limit set is bounded. This can be performed via the inside-the-hypercube 

rule. 

Without losing the chance to observe chaotic or hyperchaotic behavior, normalized 

values of all accumulation elements can be kept in unity. Backward trans-conductance, 

𝑦12 , is kept low with respect to the rest of admittance parameters, 𝑦11, 𝑏 , to get close 

enough to the common operational state. Therefore, the hyperspace of system parameters 

dedicated for searching becomes four dimensional only. An objective function is aimed to 

discover “the most hyperchaotic” kind of dynamical motion of the investigated system. 

Thus, both the first- and second-largest LE needs to be maximized such that the Kaplan–

Yorke dimension (KYD) will be maximal as well.  

Of course, the existence of the so-called hidden attractors within dynamics of 

analyzed systems, either normal or strange, is not answered by the proposed optimization 

routine. Different methods on how to find such limit sets can be found in various papers 

[24,25]. From a practical application point of view, the investigation of attractors 

associated with a fixed point at the origin make more sense. This equilibrium exists even 

in the original non-chaotic Clapp oscillator. For this system, neighborhood of state space 

origin usually serves as start-up to produce sinusoidal oscillations. 

3.1. Numerical Study of Case I 

Using the search-for-chaos algorithm described in the previous paragraph, numerical 

values of the remaining system parameters can be chosen as  

𝑦11 = 0.905 𝑆, 𝑦12 = 0.076 𝑆, 𝑎 = −1 𝐴
3𝑉−1, 𝑏 = 4.82 𝑆. (12) 

For these values, eigenvalues associated with the origin form a local vector field 

geometry that is composed of a three-dimensional unstable and one-dimensional stable 

manifold, namely  

𝐑4 ∈ 𝐑𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒
2 ⊕𝐑𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

1 ⊕𝐑𝑠𝑡𝑎𝑏𝑙𝑒
1  , 𝜆1,2 = 0.38 ± 𝑗1.96 , 𝜆3 = 0.052 , 𝜆4 = −1.715.  (13) 

The choice of internal system parameters (12) together with a set of the initial 

conditions 𝒙𝟎 = (0.1 0 0 0)T lead to the strange attractor depicted in Figure 2a–c. In 
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the same plots, the black circle shows the location of the limit cycle generated by a non-

chaotic Clapp oscillator for the set of initial conditions 𝒙𝟎 = (0 0 0 4)T. The forward 

trans-conductance of GBT becomes 𝑦21(𝑣1) = 𝑦11 ∙ 𝑣1 , i.e., it has been linearized. 

Additionally, the backward trans-conductance of GBT has been removed, as typical for 

the quasi-linear analysis of a sinusoidal Clapp oscillator. Of course, the size and location 

of this limit cycle in the phase space depends on the choice of initial conditions. Figure 

2d,e demonstrate the sensitivity of the system solution to tiny uncertainties in the initial 

conditions. There, black dots represent 104 randomly generated initial conditions with a 

normal distribution and standard deviation 10–2. Then, the final states after 1 s (red points), 

10 s (green points), and 50 s (blue dots) are stored and visualized. Note that the analyzed 

dynamical system clearly exhibits sensitivity to small deviations of the initial conditions. 

Figure 3 demonstrates a calculation of the largest LE in the fourth-dimensional 

hyperspace of internal parameters of the Clapp oscillator. To perform this task, a well-

established algorithm that utilizes Gram–Smith orthogonalization described in book 

chapter [26] has been adopted. It should be noted that only a very small region is 

addressed, an interesting area where the qualitative change in system behavior becomes 

visible. A legend that provides the numerical value of the largest LE is also provided. For 

these calculations, initial conditions were chosen in the vicinity of the state space origin. 

Note that regions of strong chaos marked by the orange color are surrounded by the limit 

cycle solution (blue color). All these plots are high-resolution, with parameter step 10–2, 

final time 1000 s, and time step 10 ms. For Figures 2 and 3, parameters of the chosen fourth-

order Runge–Kutta (RK) integration routine are set such that the stability of this numerical 

method is preserved. The RK method belongs to the most preferable integration 

algorithms for chaotic dynamical systems due to its high accuracy [27]. The RK method 

with fixed step size has been preferred over various RK methods with adaptive step sizes. 

Specifically, the size of the step was chosen significantly lower than the smallest 

exponential growth ratio that characterizes any existing unstable fixed point. Both the RK 

with fixed and adaptive step sizes belong to the build-in algorithms available in the 

Mathcad program (represented by function rkfixed and rkadapt, respectively). This piece 

of software was utilized for numerical integration and the graphical presentation of state 

trajectories. 

 

Figure 2. Typical strange attractor generated by transistor-based Clapp oscillator visualized in 

different 3D projections: (a) v1—v2—v3, (b) v1—v2—iL, and (c) v2—v3—iL. Sensitivity of system 

evolution to the changes of the initial conditions: (d) zoom onto group of initial states generated 

around fixed point located at origin and short-time system evolution and (e) complete state space 

visualization. 
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Figure 3. Rainbow-scaled surface-contour plot of the largest LE zoomed on the area around a set of 

parameters (12): (a) a vs. b, (b) y11 vs. b, (c) y11 vs. a, (d) y12 vs, a, (e) y12 vs. b, and (f) y11 vs. y12. Color 

scale provided on the left side corresponds to the largest LE. 

Figure 4 is a graphical visualization of basins of attraction for a generated strange 

attractor. In these plots, red denotes the set of initial conditions that end in a chaotic 

attractor, magenta represents areas that result in an unbounded solution. The step of the 

initial conditions adopted for these calculations was uniformly chosen as 10 mV; the grid 

is v1 (–10, 10) V and v2 (–10, 10) V. 
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Figure 4. Basin of attraction for typical chaotic attractor visualized in v1 vs. v2 plane. State space 

slices are defined by iL = 0 A and the following planes: (a) v3 = −10 V, (b) v3 = −9 V, (c) v3 = −8 V, (d) v3 

= −7 V, (e) v3 = −6 V, (f) v3 = −5 V, (g) v3 = −4 V, (h) v3 = −3 V, (i) v3 = −2 V, and (j) v3 = 0 V. Lower 

gallery deals with state space slices given by zero voltage v3 = 0 V and the following planes: (k) iL = 

−10 A, (l) iL = −9 A, (m) iL = −8 A, (n) iL = −7 A, (o) iL = −6 A, (p) iL = −5 A, (q) iL = −4 A, (r) iL = −3 A, 

(s) iL = −2 A, and (t) iL = −1 A. 

Figure 5 shows other interestingly shaped strange attractors discovered by the 

search-for-chaos routine (sizes of all attractors are comparable to the attractor in Figure 2). 

The initial conditions for Figure 5a,c were 𝒙𝟎 = (0.1 0 0 0)T, and the numerical value 

of parameter a=–1 A3V–1 was kept for all plots. Individual numerically integrated 

trajectories have a rainbow color scale that represents growing inductor current. The final 

time was chosen as 1000 s and time step 10 ms. Note that the geometrical structures of the 

chaotic attractor given in Figure 5a,b are geometrically similar to the famous double-scroll 

and single-scroll, respectively, although this strange attractor is formed within the state 

space having four dimensions. 
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Figure 5. Strange attractors generated by Clapp oscillator, Case I, and visualized using v1–v2 plane 

projection: (a) 𝑦11 = 0.9 S , 𝑦12 = 2.5 S , 𝑏 = 5 𝐴
3𝑉−1, (b) 𝑦11 = 0.9 S , 𝑦12 = 2.5 S , 𝑏 = 3 𝐴

3𝑉−1 with 

set of initial conditions 𝒙𝟎 = (2 −0.5 −4 0)T , and (c) 𝑦11 = 0.95 S , 𝑦12 = 0.5 S , 𝑏 = 3 𝐴
3𝑉−1 

with initial conditions 𝒙𝟎 = (0 −2 0 0)T, (d) 𝑦11 = 1 S , 𝑦12 = 0.1 S , 𝑏 = 4.8 𝐴
3𝑉−1. 

3.2. Numerical Analysis of Case II 

In this subsection, Case II of an investigated dynamical system (6) will be addressed. 

By using the search-for-chaos numerical algorithm mentioned above, a discovered 

parameter set with locally maximized chaotic motion is 

𝑦11 = 1 S , 𝑦12 = 0.1 S , 𝑎 = −9.98 S , 𝑏 = 3.78 S . (14) 

Eigenvalues associated with the origin forms local vector field geometry that is 

composed by a three-dimensional unstable and one-dimensional stable manifold, namely 

𝐑4 ∈ 𝐑𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒
2 ⊕𝐑𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

1 ⊕𝐑𝑠𝑡𝑎𝑏𝑙𝑒
1  , 𝜆1,2 = 0.295 ± 𝑗1.89 , 𝜆3 = 0.062 , 𝜆4 = −1.652. (15) 

As expected, the geometrical formation of the vector field close to the state space 

origin is like the Clapp oscillator, Case I. Numerical analysis of dynamical system (6) with 

PWL functionality (8) and parameter set (14) is provided by means of Figure 6. Besides 

the typical strange attractor, this figure contains a subplot that demonstrates the 

sensitivity of the system solution to a group of 104 initial conditions generated using 

normal distribution with standard deviation 10–2 around the origin (black dots). Then, 

final states are visualized after 1 s (green dots), 20 s (red dots), and 50 s (blue states) of 

time evolution (integrated using uniform time step 10 ms). The short time evolution shows 

directions of the fastest dynamical flow local to the origin of the state space. After a time 

evolution of 50 s, the final states fill a subset of 4D state space with a non-integer 

geometrical dimension. Figure 6c–h also shows calculated basins of attraction for this 

strange attractor (red color) vs. unbounded solution (purple color). Of course, there are 

always third types of solutions, fixed points (equilibria). Axis ranges for the initial states 

were chosen as v10 (–7, 7) V, v20 (–15, 15) V, v30 (–15, 15) V, and iL0 (–15, 15) A. It 

should be noted that the attraction set forms a compact volume that surrounds the 

equilibrium point located at the state space origin.  

Figure 7 demonstrates different types of dynamical behavior excited by the unstable 

fixed point located at the origin of the state space. The dynamical flow is quantified with 

respect to both parameters of PWL functionality (8) where, for better understanding, the 

linear slopes in the outer and inner segments are denoted 𝑦21
𝑜𝑢𝑡 ≡ a , 𝑦21

𝑖𝑛 ≡ b , respectively. 

Each figure contains 101  101 = 10201 points calculated for the final time, 1000 s, and time 

step, 10 ms. Note that the individual areas are riddled and immersed into each other. 

Different types of dynamical motions are distinguished by adopting the concept of LE 

and, after a quantification process, re-verified by random repeated numerical integration.  



Mathematics 2022, 10, 1868 11 of 21 
 

 

Figure 8 represents rainbow-scaled surface plots of KYD plotted with respect to the 

parameters of the PWL function (associated with the nonlinear forward trans-

conductance y21). The missing surface means that the solution excited by the unstable 

equilibrium located at zero suddenly becomes unbounded. The analyzed fourth-order 

dynamical system exhibits hyperchaotic movement in a wide parameter range, the 

strongest two-dimensional state space expansion along the trajectory (in average) borders 

with the unbounded solution. 

Now, this is the right moment to raise an interesting question about the transition 

process between the chaotic and hyperchaotic behavior of the analyzed dynamical system. 

Such a problem has been already addressed in several papers. Properties of attractors near 

transition points (in the sense of the smooth change of a bifurcation parameter) are 

discussed in work [28]. There, it is stated that the chaos–hyperchaos transition is caused 

by one of the following two reasons: (1). changing the sign of the real part of some real or 

complex conjugated eigenvalues, i.e., change of local vector field geometry associated 

with fixed point that affects shape of generated strange attractor. Thus, each bifurcation 

parameter that causes such a change can be easily recognized, along with a range of its 

values worthy to be investigated. (2). The shape of the generated strange attractor starts 

to be influenced by the vector field geometry associated with fixed points located outside 

the attractor. This is a reasonable assumption especially in the case of moving the 

mentioned equilibrium toward an observed attractor or increasing size of attractor (as 

bifurcation parameter changes).  

Note that both rules are more likely hypotheses than rigorous statements expressed 

by analytical formulas. A numerical study of chaos–hyperchaos transitions in a fourth-

dimensional modified Rossler system is provided in paper [29]. There, up to eight 

mathematical models are briefly analyzed with respect to the information dimension and 

prediction time. Each system possesses polynomial a vector field similar to our Clapp 

oscillator, Case I. Let us try to follow up the procedure suggested by the authors. If we fix 

numerical values (12), we obtain two additional fixed points, 𝐱2,3
𝑒𝑞
=

±(2.195 −26.143 −28.339 0)T, which are located far away from strange the attractor. 

It can be shown that both (10) and the characteristic polynomial associated with outer 

fixed points depend on the parameter b rather than the cubic term a. If we change this 

parameter in the investigated range, b (3, 5) S, there are no changes in the signs of the 

real parts of eigenvalues associated with any equilibrium point. However, in the 

mentioned parameter range, the solution experiences limit cycles and chaotic as well as 

hyperchaotic motion with a very low prediction time, only about 5.68. As can be also 

noticed in this range, the size of attractor remains almost the same, and outer fixed points 

are still far away from the attractor. Thus, some other rule probably plays a crucial role in 

the process of chaos–hyperchaos transitions. 

The same analysis can be performed for a Clapp oscillator with PWL forward trans-

conductance. If we adopt numerical values (14), the positions of the outer fixed points will 

be 𝐱2,3
𝑒𝑞
= ±(1.379 −13.788 −15.166 0)T . These locations are far away from the 

attractor. However, because of attractor boundedness, the trajectory repeatedly leaves the 

inner segment of the vector field, stays in the outer segment for a while, and then is pushed 

again toward the inner segment. Thus, the vector field geometry associated with the outer 

fixed points is important. Firstly, let us study changes in the signs of eigenvalues 

associated with a fixed point located at the origin. In such a case, parameter b becomes 

important, and the investigated range can be extended to b (1, 10) S. However, there are 

no changes in the signs of the roots of the characteristic polynomial. To calculate 

eigenvalues associated with the outer fixed point, parameter b in characteristic equation 

(10) should be replaced by parameter a with extended range, a (–10, –1) S. In the interval 

a = –10 S up to a = –2 S, the geometry of the vector field in the outer segment is 𝐑4 ∈

𝐑𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒
2 ⊕𝐑𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

2 ; then it changes into 𝐑4 ∈ 𝐑𝑠𝑡𝑎𝑏𝑙𝑒
2 ⊕𝐑𝑠𝑡𝑎𝑏𝑙𝑒

2 , and for a  −1 S it 

changes again into 𝐑4 ∈ 𝐑𝑠𝑡𝑎𝑏𝑙𝑒
2 ⊕𝐑𝑠𝑡𝑎𝑏𝑙𝑒

1 ⊕𝐑𝑠𝑡𝑎𝑏𝑙𝑒
1  . Note that the increasing of 

parameter a cause the outer fixed points to move away from the attractor (its size does not 



Mathematics 2022, 10, 1868 12 of 21 
 

 

significantly change). The mentioned bifurcation points a  −2 S and a  −1 S do not 

represent values where dynamical motion is chaotic or hyperchaotic. Therefore, the real 

cause of chaos–hyperchaos transition process still remains a mystery. 

Other numerical approaches can be utilized to study mechanisms behind a chaos–

hyperchaos transition. For further reading, the interesting paper [30] can be 

recommended. There, the correlation dimension and recurrence plots are visualized and 

compared to distinguish between chaotic and hyperchaotic regimes. It should be pointed 

out that the Murali–Lakshmanan–Chua circuit driven by the sinusoidal signal is 

considered in this paper, i.e., the nature of analyzed dynamical systems is different from 

autonomous systems addressed in this work. 

 

Figure 6. Clapp oscillator, Case II: (a) colored v1–v2–v3 plane projection of a typical strange attractor 

and (b) sensitivity of system solution to tiny changes of initial states, visualization of the final states 

after short (green points), average (red points), and long (blue dots) time evolution. Basins of 

attraction visualized using plane fragments: (c) v1—v2, (d) v1—v3, (e) v1—iL, (f) v2—v3, (g) v2—iL, and (h) 

v3—iL. Each subplot is calculated with uniform 0.01 step of the initial conditions (voltages or current) 

and with the rest of the initial conditions fixed on zero (voltages or current). See text for further 

details. 
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Figure 7. Clapp oscillator, Case II, individual colors represent different types of dynamical behavior 

driven by fixed point located at origin: unbounded solution (red), hyperchaos (light green), chaos 

(dark green), and limit cycle (blue). Figure (a) contains fragments (b,c), and these parts cover (d–l). 
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Figure 8. Clapp oscillator, Case II, rainbow-scaled surface plot of the KYD of hyperchaotic motion 

as function of PWL function shaping coefficients: (a) general view, (b,c) follow-up zoomed areas. 

Squared regions of parameters investigated in more details, with the slopes in both outer segments: 

(d–f) y21out(–8.5, –7.5) S, (g–i) y21out(–9.5, –8.5) S, and (j–l) y21out(–10.5, –9.5) S. Figure contains the 

colored legend that apply to all plots.  
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4. Experimental Results 

The construction and experimental verification through laboratory measurement 

generally belong to the presentation of a new chaotic dynamical system [31]. In an analog 

circuit design of a chaotic oscillator, very short time constants are usually adopted. This 

is also the case of each realization proposed in this paper. A pattern that settles down on 

an oscilloscope screen during measurement represents the true -limit set of the observed 

state attractor. Due to the natural smooth integration process of the accumulation 

elements, trivial fixed-point end-states or unbounded solutions cannot be misinterpreted 

with strange attractors. Because of these reasons, a true experimental confirmation of the 

existence of the strange attractors is indeed a good way how to prove that observed chaos 

is neither a long transient motion nor numerical artifact. Comprehensive review papers 

dealing with circuit synthesis tasks based on a set of ordinary differential equations 

include [32,33]. 

The circuit implementation of an analyzed dynamical system with polynomial 

nonlinearity is provided by means of Figure 9a. Describing a set of first-order ordinary 

differential equations can be expressed as 

𝐶1
𝑑𝑣1
𝑑𝑡

= −
𝑣1
𝑅1
−
𝐾 ∙ 𝑣2 ∙ 𝑉𝑎
𝑅2

+ 𝑖𝐿 , 𝐶2
𝑑𝑣2
𝑑𝑡

=
𝐾 ∙ 𝑣1(𝑣1

2 − 𝑉𝑏)

𝑅𝑧
− 𝑖𝐿 , 𝐶3

𝑑𝑣3
𝑑𝑡

= 𝑖𝐿  , 𝐿
𝑑𝑖𝐿
𝑑𝑡
= 𝑣2 − 𝑣1 − 𝑣3 , (16) 

where K=0.1 is the internally trimmed transfer constant of used analog multiplier AD633. 

This circuit realization of the Clapp oscillator needs three AD633s, one connected as a 

voltage-controlled trans-admittance amplifier. External DC voltages Va and Vb represent 

parameters y12 and b, respectively; both can be used as the natural bifurcation parameters. 

Since impedance and frequency scaling factors can be arbitrary, we can use for example 

values 103 and 106. This choice leads to the following set of numerical values: 

𝐶1 = 𝐶2 = 𝐶3 = 1 𝑛𝐹 , 𝐿 = 1 𝑚𝐻 , 𝑅1 = 𝑅𝑥 = 1 𝑘Ω , 𝑅2 = 1.3 𝑘Ω , 𝑅𝑦 = 9 𝑘Ω , 𝑅𝑧 = 100 Ω . (17) 

A suitable choice of resistors Rx and Ry, namely if equality Ry=9Rx holds, leads to the 

full compensation of the voltage scaling factor K of the first analog multiplier. 

In the case of the Clapp oscillator with PWL functionality, the subcircuit that 

represents the linear part of the vector field is the same as for system (16); see Figure 9b. 

Therefore, the same impedance and frequency scaling factors can be chosen, i.e., 103 and 

106. The complete set of ordinary differential equations for the circuit given in Figure 9b 

is  

𝐶1
𝑑𝑣1
𝑑𝑡

= −
𝑣1
𝑅1
−
𝐾 ∙ 𝑣2 ∙ 𝑉𝑎
𝑅2

+ 𝑖𝐿  , 𝐶2
𝑑𝑣2
𝑑𝑡

= −
𝑣1
𝑅𝑎
+

𝑣1
𝑅𝑏 + 2 ∙ 𝑅𝑑

− 𝑖𝐿 , 𝐶3
𝑑𝑣3
𝑑𝑡

= 𝑖𝐿 , 𝐿
𝑑𝑖𝐿
𝑑𝑡
= 𝑣2 − 𝑣1 − 𝑣3 , (18) 

where Rd is the differential resistance of diodes. This value is very low in the inner segment 

of the vector field (defined by voltage v1  2Vt) and very large (for voltage v1 > 2Vt), 

respectively, where Vt represents a threshold voltage of diode. For practical experiments, 

diodes BAT42 were utilized. The list of numerical values associated with passive circuit 

elements is 

𝐶1 = 𝐶2 = 𝐶3 = 1 𝑛𝐹 , 𝐿 = 1 𝑚𝐻 , 𝑅1 = 1 𝑘Ω , 𝑅2 = 1 𝑘Ω , 𝑅𝑎 = 265 Ω , 𝑅𝑏 = 10 Ω ). (19) 

The value of resistor Rb is a rough approximation, since the dynamic resistance of one (or 

several) forwardly biased diode is connected in series. Due to the chosen impedance norm 

103, the total power consumption of this realization of chaotic oscillator is significant (up 

to 1.5 W). 

A few oscilloscope screenshots captured during the experimental verification of the 

designed Clapp oscillator, Case I (using bread board) are shown in Figure 10. Note that 

the external voltages can be used to change system behavior accordingly to Figure 3e, i.e., 

we can easily trace the route-to-chaos scenario in two parametric dimensions. A very good 

final agreement between theoretical shapes and practically observed strange attractors 

can be concluded. 
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Figure 11 provides an experimental verification of the presence of chaotic regimes 

associated with the Clapp oscillator, Case II. A gallery of differently shaped strange 

attractors has been observed, just as in the numerical analysis. 

Figure 12 shows a one-dimensional bifurcation diagram calculated for the small steps 

of parameter b, i.e., the short variation of the external voltage Vb. For numerical calculation, 

the initial conditions were set to x0 = (1, 0, 3, 0)T, final time 104 s, and time step 10 ms. The 

bifurcation diagram is plotted for planes defined as v3 = 0 V, then the state variable v1 is 

stored and visualized. Note that by changing Vb in a very narrow numerical range, we can 

trace the evolution of chaos via a period doubling the bifurcation sequence. 

 

Figure 9. Circuitry implementation of chaotic Clapp oscillator: (a) Case I and (b) Case II. 

 

Figure 10. Chaotic attractors associated with Clapp oscillator, Case I, real measurement: (a) 

breadboard realization and (b) selected plane projections captured as oscilloscope screenshots. 
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Figure 11. Chaotic attractors associated with Clapp oscillator, Case II, real measurement: (a) 

breadboard realization and (b) selected plane projections captured as oscilloscope screenshots. 

 

Figure 12. One-dimensional bifurcation diagram obtained by adjusting external voltage Vb in circuit 

schematic: (a) focused range Vb (4.8, 5) V. Plane projection of generated state attractors for values: 

(b) Vb = 4.88 V, (c) Vb = 4.92 V, (d) Vb = 4.96 V, (e) Vb = 4.98 V, and (f) Vb = 5 V. 

Note that both autonomous circuits given in Figure 9 are very simple and contain 

very few active elements. Moreover, a chaotic electronic system with a polynomial vector 

field was constructed by using only analog multipliers as active devices. Of course, this is 

not a new idea. The same approach can be found in much older papers, but it is still an 

up-to-date method, as evident from the recent brief study [34]. By adopting analog 

multipliers as trans-conductance cells, the final network topology is much simpler if 

compared with an analog computer concept. This will be evident also from the upcoming 

text. 

Figure 13 demonstrates an alternative circuitry realization of the chaotic Clapp 

oscillator based on the integrator block schematic. The network consists of three inverting 

and single non-inverting lossless integrators, two inverting amplifiers, and a trans-



Mathematics 2022, 10, 1868 18 of 21 
 

 

conductance mode nonlinear two-port with a cubic polynomial transfer function. 

Describing the set of differential equations, we have 

𝐶1
𝑑𝑣1

𝑑𝑡
= −

𝑣1

𝑅1
+
𝑅7∙𝑣2

𝑅3∙𝑅6
+
𝑅9∙𝑣4

𝑅2∙𝑅8
 , 𝐶2

𝑑𝑣2

𝑑𝑡
=

𝑅9∙𝑣4

𝑅4∙𝑅8
−
𝐾∙𝑣1(𝑣1

2−𝑉𝑏)

𝑅𝑧
 , 𝐶3

𝑑𝑣3

𝑑𝑡
=

𝑣4

𝑅5
 , 𝐶4

𝑑𝑣4

𝑑𝑡
= −

𝑣1

𝑅11
−

𝑣2

𝑅12
−

𝑣3

𝑅10
 , (20) (20) 

where the fundamental time constant of the oscillator can be chosen as  = RC = 10310–7 

= 100 s, and, consequently, numerical values of the passive circuit elements are the 

following: 

𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 100 𝑛𝐹 , 𝑅1 = 1.1 𝑘Ω , 𝑅2 = 𝑅4 = 𝑅5 = 𝑅10 = 𝑅11 = 𝑅12 = 1 𝑘Ω ,  

𝑅6 = 𝑅7 = 𝑅8 = 𝑅9 = 10 𝑘Ω , 𝑅3 = 13 𝑘Ω, 𝑅𝑥 = 1 𝑘Ω, 𝑅𝑦 = 9 𝑘Ω , 
(21) 

where Ry = 9Rx just to compensate the K = 0.1 voltage transfer constant of the first analog 

multiplier. The generated chaotic waveform can be frequency rescaled easily via the 

simultaneous change of all capacitors. Note that a linear transformation of the coordinates 

−v2 → v2 was adopted just to make the final circuit realization simpler. 

 

Figure 13. Circuitry implementation of chaotic Clapp oscillator based on the analog computer 

concept. Contains single integrated circuit AD844, five TL084, and two AD633. External DC voltage 
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supply Vb can be used to trace evolution of chaos. Individual state variables are easily accessible as 

voltages measured at the outputs of inverting integrators. 

5. Discussion 

This paper demonstrates that the conventional structure of a Clapp oscillator can 

enter a chaotic steady state under two conditions: active element with weak local linear 

feedback and nonlinear transfer characteristics. These requirements are closely related to 

the common operational regime of the high-frequency sinusoidal oscillator having a 

bipolar transistor. Note that the model of GBT used as an active element is considered 

resistive, i.e., free of parasitic capacitances between individual terminals.  

Speaking in the terms of numerical analysis, the generated strange attractors have 

been optimized from the viewpoint of the maximization of time domain unpredictability. 

The Clapp oscillator, Class I, had a largest LE of about 0.102 and KYD approximately equal 

to 3.126. Similarly, the Clapp oscillator, Class II, exhibited a largest LE of about 0.131 and 

maximal KYD close to value 3.41. The investigated dynamical system is invariant under 

the complete inversion of state coordinates. The circuit realization of chaotic oscillators 

was simple, with only three active elements. On the other hand, both final circuits turned 

out to be very sensitive to the exact values of passive circuit components. 

6. Conclusions 

This section will briefly discuss the discovery of the chaotic regime of the Clapp 

oscillator in a broader context, including the motivation to look after the non-conventional 

dynamic behavior of deterministic mathematical models.  

If investigated analog functional blocks are commonly included in radio-frequency 

communication paths, it is highly desired to mark up all possible steady states and the 

conditions of their origin. Thus, research oriented toward searching-for-chaos is still up 

to date, although the utilized routine represents a brute force numerical approach [35]. 

The mentioned searching comprises calculations of a huge number of parametric 

combinations associated with an analyzed dynamical system, and this is allowed thanks 

to modern computational tools, in particular parallel processing in MATLAB using multi-

core computers.  

The Clapp oscillator, especially if treated as generally as possible, clearly belongs to 

standard functional subparts of complex electronic systems located on the transmitter as 

well as receiver side. There are three essential questions that should be asked at this time. 

Firstly: How close is (in the parameter sense) the common (known) and chaotic 

(unknown) operational state? Answer: In the case of a Clapp oscillator, it is rather close 

for the oscillator working at high frequency bands. However, the process of bipolar 

transistor unilaterization can significantly decrease the local linear feedback necessary for 

chaos evolution, causing chaos to disappear. Secondly: What are the main differences 

between mathematical models that describe the original and chaotic Clapp oscillator? 

Answer: Formally, these models are the same. The only difference is the nonlinear nature 

of the forward trans-conductance of an active two-port device. Third question: Does the 

nonlinear function used for chaos generation accurately model the real nature of the active 

element? Answer: For both Cases of the Clapp oscillator addressed in this paper, we used 

a saturation-type function with a positive slope of forward trans-conductance. This is 

indeed related to the real practical situation. The concrete shape, or more likely a size, of 

nonlinearity can be changed/adjusted via suitable rescaling. 

This paper opens new possibilities for future investigation. For example, the so-called 

multi-stability and coexistence of several strange attractors within an analyzed dynamical 

system remains a mystery. Fans of fractional-order calculus can consider some 

accumulation circuit element of fractional order. An analysis of mathematical models 

modified in such a way can reveal new shapes of strange attractors [36]. Last but not least, 

the implementation of chaotic Clapp oscillators using an FPGA development kit can lead 

to interesting results. 
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Final remark: the circuit realization of the analyzed Clapp oscillator is closely related 

to the so-called Pierce oscillator, where the series connection of the inductor and capacitor 

in the feedback loop of a bipolar transistor is substituted by piezoelectric crystal. 

However, the shunt and series capacitor inside the equivalent circuit of a crystal element 

(for first paired series-parallel resonance) has completely different values and cannot be 

treated as equal. Moreover, the high quality factor of the resonator will filter out all 

frequency components except the fundamental harmonic. Considering all this, forcing the 

Pierce oscillator to behave chaotically probably requires pushing circuit parameters far 

away from the common operational regime and the mathematical model far away from 

physical reality. 
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