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Abstract: Within the framework of traditional fishery management, we propose an interpretation 
of natural resource prices. It leads to an economic taxation mechanism based on internal prices and 
reduces a complex problem of optimal long-term exploitation to a sequence of one-year optimiza-
tion problems. Internal prices obey natural, economic patterns: the increase in resource amount di-
minishes taxes, and the rise in the number of “fishers” raises taxes. These taxes stimulate cooperative 
agent behavior. We consider new problems of optimal fishing, taking into account an adaptive mi-
gration of the fish population in two regions. To analyze these problems, we use evolutionary ecol-
ogy models. We propose a paradoxical method to increase the catch yield through the so-called fish 
“luring” procedure. In this case, a kind of “giveaway” game occurs, where the region with under-
fishing becomes more attractive for fish and for catches in the future. 
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1. Introduction 
A socially sound aim of the fishery is the sustainable provision of humankind with 

seafood. This subsumes the rational exploitation and preservation of the fish populations. 
A single responsible owner could ensure this. However, the catch is carried out by agents 
focused on their profit. Uncontrolled fishing by such agents can collapse, known as Trag-
edy of the Commons [1,2]. In the second half of the twentieth century, it was realized that 
the resources of the world ocean are finite, and overexploitation needs to be prevented 
[3]. In particular, this resulted in the 1982 UN Convention on the Law of the Sea and the 
Exclusive Economic Zone (EEZ) regime. This and other measures have not led to a solu-
tion to the problem of fish stock depletion [4,5]. It is estimated that one-third of the world’s 
marine fish stocks are currently overfished [6]. 

Many management strategies aim to avoid the negative consequences of fishing and 
achieve the mentioned socially significant government goal [7–10]. Among them are taxes, 
setting TAC (Total Allowable Catch), granting exclusive ownership to a single firm, form-
ing a fishers’ cooperative, and establishing marine reserves [11]. Furthermore, if the TAC 
is fixed, it can be allocated between the fishers through a mechanism of quotas. The most 
common form is ITQ (Individual Transferable Quotas), which first were implemented in 
New Zealand in 1986 [12]. It would be naïve to assume that there is a simple tool that can 
solve a complex fishery problem. The main reason is that several factors are not included 
in any concrete model, and their impact can be quite substantial [13] where ITQs are dis-
cussed. 

Since many agents on the level of states and firms are involved in fisheries, it is nat-
ural that game theory came into play [3,14]. Although game theory can usually provide 
only qualitative results, its impact on management is significant. In particular, the report 
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[15] on the results of the Expert Consultation on the Management of Shared Fish Stocks 
(FAO 2002) reviews the basic concepts of game theory and discusses its applications. 

In this paper, we consider a catch management method based on taxes. This method 
is more related to optimization than to the game theory. However, it is also connected 
with the Stackelberg leader-follower game. Using taxes is often mentioned in the eco-
nomic literature [16–19]. Nevertheless, past research [11] suggests that taxes have “seldom 
been attempted, at least not as the sole regulatory instrument.” In [3], it is mentioned that 
presumably, tax schemes cannot be designed to foster intra-industry cooperation among 
the fishers. The role of taxes is underestimated. Indeed, taxation has solid mathematical 
grounds in optimization, where the resource prices are related to Lagrange multipliers 
[20]. These prices can stimulate optimal cooperative behavior via a decentralized manage-
ment scheme. This method is well known for flow control in communication networks 
[21].  

We distinguish two levels of management: the leader (e.g., a government) and the 
follower (agent, resource use). As a rule, agents pursue short-term commercial goals and 
do not think about the environmental consequences of their activities. On the contrary, 
the government wants to economically force the agent to act optimally in light of a long-
term perspective. It usually implements a “hard” control to satisfy the constraints. This 
traditional way often spawns corruption.  

Another approach subsumes a significant reduction of the role of the government. It 
brings to the fore specific “soft” purely economic mechanisms (e.g., taxes, etc.), making 
them responsible for the constraint compliance. This paper outlines the basics of this ap-
proach and shows its capabilities. It became evident that assigning a tax per unit of fish 
production equal to the derivative of the value function (corresponding to the specified 
optimal yield problem) forces the fisher to adhere to the optimal catching strategy with 
respect to the infinite horizon. In this case, the population size stabilizes at the universal 
limiting value, not depending on the utility function. These ideas were expressed in [22]. 

Indeed, it is not easy to determine the correct taxes. First, they depend on the dynam-
ics of the fish population, which can only be modelled approximately. Moreover, the real 
stock of fish may be unknown. Second, optimal taxes depend on the agent reward func-
tions, which are even more difficult to model. Third, as already mentioned, there are many 
factors that cannot be taken into account within a single model. For these reasons, only 
qualitative investigations in fishery management prevail at this time. Even prior studies 
[23–25] using real data mainly result in qualitative conclusions. Thus, we are doubtful that 
the correct real-world tax can be obtained within the simple models under consideration. 
Furthermore, the traditional methods of fish stock evaluation based on random samples 
seem not to be entirely reliable. We believe that Artificial Intelligence will be able to make 
substantial progress in quantitative results. Comprehensive fisheries datasets have been 
collected. As is mentioned in [26], the dataset [27] contains information about 1433 stocks 
belonging to 387 unique species. 

The aim of our research is to study the method of long-term optimal control of natural 
resources based on taxation. The proposed taxation mechanism is based on internal prices, 
settled by a responsible resource owner (government) to ensure sustainable development. 
The internal prices reduce a complex problem of optimal long-term exploitation to a se-
quence of one-year optimization problems and stimulate a cooperative behavior of com-
peting agents. We also consider evolutionary and spatial aspects of this problem. 

2. Methods 
The concept of a price of a product (good) can be defined in different ways. In opti-

mization theory, one first finds the maximum of a possible gain that this product can 𝑃(𝑥) 
bring. Here, 𝑥 is the initial stock of a product, while 𝐵(𝑥) defines the gain from the stock. 𝐵 is defined as an indirect utility. Then it is usually assumed [28] that the price 𝑐 equals 
the marginal gain: 𝑐(𝑥) = 𝐵 (𝑥). We call this price “internal.” In a two-dimensional case 
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the prices of goods are determined by partial derivatives: 𝑎(𝑥, 𝑦) = 𝐵 (𝑥, 𝑦), 𝑏(𝑥, 𝑦) =𝐵 (𝑥, 𝑦).  
As an example, consider the problem of optimal long-term fishing described by a 

simple discrete model 𝑥 = 𝑓(𝑥 − 𝑢 ) (1) 

where 𝑥  and 𝑢  are the current amount and annual catch of fish 𝑢 ∈ 0, 𝑥 ]. We assume 
that the annual reward is given by a utility function 𝑟(𝑢). For an illustration, we consider 
the simplest class of nonlinear ecology models, where 𝑓, 𝑟 are strictly increasing strictly 
concave smooth functions, satisfying the condition 𝑓(0) = 𝑟(0) = 0. For instance, 𝑓(𝑥) =2𝑥/(1 + 𝑥) and 𝑟(𝑢) = ln(1 + 𝑢) . The condition 𝑓(0) = 0  implies the representation 𝑓(𝑥) = 𝑥 ⋅ 𝜑(𝑥) for a smooth function 𝜑. Moreover, the concavity of 𝑓 implies that 𝜑 is 
decreasing. Sometimes 𝜑 is called a trophic function, which reflects a negative impact of 
the inter- and intra-specific competition. A useful collection of modern population growth 
functions and their discussion are presented in [29]. 

Let us first discuss the simplest model of population dynamics without fishing. On 
the one hand, to prevent the variables of this model from going to infinity, one should 
require a slow population growth, for instance, ( )   < 1, for all sufficiently large 𝑥 (say, 
for 𝑥 > 𝑀, where 𝑀 is a constant). On the other hand, it is necessary to assume that 𝑓 (0) > 1, otherwise the population will “die by itself.” Under these conditions, there ex-
ists a unique positive equilibrium. For convenience, we also select a scale such that 𝑟 (0) = 1. For an initial population stock 𝑥 , the global profit is the supremum of the dis-
counted sum of rewards over all admissible sequence of catches: 

𝑃(𝑥 ) = sup(𝑢𝑡) 𝑟(𝑢𝑡)𝛾𝑡,       𝛾 ∈ (0,1)∞
𝑡=0  (2) 

From an economic point of view, the discounting reflects the lesser significance of 
the future income compared to the past one. From a mathematical point of view, it ensures 
that the sum is finite. 

We will consider the so-called “highly productive” populations with 𝐹 (0) > . In 
this case, the optimal catch satisfies the strict inequality 𝑢(𝑥) < 𝑥 for all 𝑥 [11]. For low-
productive populations, the equality 𝑢(𝑥) = 𝑥 is possible for large 𝑥. Computation of 𝐵(𝑥) is carried out according to well-known dynamic programming schemes [30]. Recall 
that the initial piece 𝐵 (𝑥) of the optimal sum (2) from 0 to 𝑛 satisfies the recursion:  𝐵 (𝑥) = max∈ , ] 𝑟(𝑢) + 𝛾𝐵 𝑓(𝑥 − 𝑢)   (3) 

with 𝐵 (𝑥) = 𝑟(𝑥). By induction in n, we easily obtain (see, e.g., [22,31]): 

Property 1. Each 𝐵 (𝑥)  is a strictly increasing concave function satisfying the condition 𝐵 (0) = 0. 

It is natural to consider these functions as elements of the Banach space 𝐶 0, 𝑀] of 
continuous functions with the sup-norm. The right-hand side of Equation (3) maps this 
space into itself.  

Property 2. The mapping determined by the right-hand side of Equation (3) is a contraction with 
the coefficient γ. 

Hence, the sequence of functions 𝐵  converges uniformly to a monotone concave 
value function 𝐵. It was also shown that this function is continuously differentiable. We 
set the price of a fish unit equal to 𝑐(𝑥 ) = 𝐵 (𝑥 ). From the strict concavity of at least one 
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of the functions 𝑓 or 𝑟, it follows that 𝐵  is strictly decreasing. Of course, for other clas-
ses of models, the concavity property of 𝐵(𝑥) is rare, but its monotonicity often takes 
place. According to Lebesgue’s theorem [32], a monotone function is differentiable almost 
everywhere. Therefore, in this case, we also can  about the price of a fish (or a resource) 
for “almost all” 𝑥. 

Let us mention some other useful characteristics of the fishery (Figure 1). Their justi-
fication is given in the monograph [19]. 

 
Figure 1. Fishery value function (A), internal price (B), and optimal catch (C) over the fish stock. 

Property 3. Optimal fishing 𝑢(𝑥) is a continuous and non-decreasing function. For small 𝑥, we 
have 𝑢 = 0, and for large 𝑥, it strictly increases.

This statement is, to some extent, consistent with the concept of minimum possible 
population size [33]. Indeed, in the infinite series (2), the optimal catch𝑢 = 𝑢(𝑥 ) depends 
on 𝑡  only through the state variable𝑥 . According to Property 3, 𝑢 = 0  for small 𝑥 . 
Therefore 𝐵(𝑥) = 𝛾𝐵 𝑓(𝑥) . Taking the derivative, we obtain 𝐵 (+0) = 𝛾 ⋅ 𝑓 (0)] ⋅𝐵 (+0). By assumption, the factor in square brackets is greater than 1. It follows that 𝐵 (+0) = ∞. 

Using the next property, one can prove that the dynamical system (Equation (1)) with 𝑢 = 𝑢(𝑥 ) has a unique positive globally stable equilibrium [22]. 

Property 4. The function x-u(x) is strictly increasing. 

Indeed, this property implies that the right side ℎ(𝑥) = 𝑓 𝑥 − 𝑢(𝑥)  of Equation (1) 
is increasing.  

In the absence of fishing, population dynamics obey the simplified version of Equa-
tion (1), namely 𝑥 = 𝑓(𝑥 ). In some popular models, 𝑓 can be a unimodal trophic func-
tion: recall Ricker’s “humpy” function 𝑓(𝑥) = 𝐴 𝑥 exp(−𝑥) [34]. Complex aperiodic re-
gimes can arise in this model for a large constant 𝐴. Somewhat surprisingly, optimal fish-
ing has a stabilizing effect here. The following result was proven in [19]. 

Property 5. For any parameter 𝐴 > 1 in the Ricker model with fishing, each trajectory tends to 
some fixed equilibrium. 

The next property is of key importance (see Appendix A for a proof). 

Property 6. Let 𝑢(𝑥) > 0 at some point x, then 

𝐵 (𝑥) = 𝑟 (𝑢)      for 𝑢 = 𝑢(𝑥) (4) 
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In other words, the price generated by the “global utility function” must match the 
price from the “local utility function.” Note that Equation (4), the concavity of 𝑟 and the 
inequality 𝑢(𝑥) < 𝑥 implies that: 𝐵 (𝑥) > 𝑟 (𝑥) (5) 

Now the complex search for the optimal harvest vector in the multi-year problem is 
reduced to a simple one-year optimization problem. Using Equation (4), it is easy to prove 
the following result (see Appendix A). 

Property 7. Each globally optimal catch 𝑢 = 𝑢(𝑥 ) is an optimal solution to the elementary op-
timization problem 

𝑟(𝑢) − 𝐵 (𝑥 ) ⋅ 𝑢 → max       for   𝑢 ∈ 0, 𝑥 ] (6) 

Therefore, it is natural to interpret the internal price 𝑐(𝑥 ) = 𝐵 (𝑥 ) as a tax per unit 
of fish caught. 

Now, let us consider a slightly more general case when there are 𝑚 agents (fishers). 
The dynamics 𝑥  of a population, exploited by 𝑚 agents are described by the Equation 𝑥 =  𝑓 𝑥 − 𝑢 (𝑥 ) − … − 𝑢 (𝑥 )  (7) 

where 𝑢 ≥ 0 and 𝑢(𝑥) = 𝑢 (𝑥) + ⋯ + 𝑢 (𝑥) ≤ 𝑥. If the agents are far-sighted and act co-
operatively, then their common objective function has the form 

𝐹(𝑥; 𝑢) = 𝛾𝑡 𝑟 𝑢 (𝑥 ) → max,       𝑥 = 𝑥∞
𝑡=0  (8) 

Let 𝐵 (𝑥) be the correspondent value function. To stimulate such cooperative be-
havior, the leader can settle the universal (the same for all agents) price 𝐵 (𝑥) per unit 
fish. The next result was proven in [31]. 

Theorem 1. The solutions of the problems  𝑟 (𝑢 ) − 𝑢 𝐵 (𝑥) → max∈ , ] for all 𝑥 > 0 coincide 

with the far-sighted cooperative optimal strategies. 

This subsumes the assertion that the optimal myopic solutions 𝑢∗(𝑥) automatically 
satisfy the constraint 𝑢∗(𝑥) + ⋯ + 𝑢∗ (𝑥)  ≤  𝑥. Note that in the absence of a catch tax, each 
agent will strive to catch all the fish. In addition, when 𝑚 >  1, a conflict situation arises 
between the agents, and they must agree on quotas. Theorem 1 shows that the tax 𝐵 (𝑥) 
eliminates these problems. The next result shows that the competition problem remains, 
although it takes a hidden form. 

Theorem 2. The tax increases with the number of agents: 𝐵 (𝑥) ≥ 𝐵 (𝑥) for k>m. Moreover, a 
strict inequality holds everywhere, except maybe a nowhere dense closed set. 

This implies that with an increase in the number of agents, the tax on catch increases 
and, accordingly, the optimal volumes of catch and profits of all agents decrease. There-
fore, the fisher community will resist the entrance of new members. The reason for in-
creasing the tax with an increase in the number of agents is economically clear. The con-
tinuous time case was considered in [35]. Technically, this case is more complicated, and 
the formulation of the results requires some modification. However, some analogs of The-
orems 1 and 2 remain valid. 

Above we considered traditional one-region population models. Now, we turn to the 
case of two regions to analyze harvesting in the case of spatial population dynamics using 
the ideas of an evolutionary ecology within some novel models. It is important to mention 
the ambiguity of the outcomes of the evolutionary process in the framework of the models 
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under consideration. In [36], when searching for migration routes (described by matrices) 
depending on the spatial distribution of food resources, it was found that the final matrix 
depends on the choice of the initial matrix. However, unexpectedly it turned out that all 
such final matrices have, in fact, the same positive eigenvector. This (Perron) vector turns 
out to be unique [37]. Each of its components is the relative time spent by the population 
in the 𝑖-th area. Therefore, any adaptive behavior is reduced to the restructuring of the 
sojourn times. Hence, the mentioned matrix is only one of many forms of a particular mi-
gration, and the true content of the migration is the Perron vector. The solution of the op-
timal harvesting problem can be supplemented with an economic filling based on the idea 
of internal prices of the fish population for different areas. This allows to set effective eco-
nomic mechanisms: taxation, trade exchanges, etc. 

Let the reservoir be divided, for example, into two regions (1 and 2), in each of which 
a catch is performed. It is assumed that the fish population migrates between these areas. 
Formally, let 𝑥  and 𝑦  be the current fish stocks of a given population in regions 1 and 
2, respectively. Then its displacement per unit of time is given by a linear model: 𝑥𝑦 = 𝑚 𝑚𝑚 𝑚 𝑥𝑦  (9) 

where 𝑚 ≥ 0. Since the total population size does not change during “pure” migration, 
the sum of the elements in each column is equal to 1. Such matrices are called Markov. It 
is convenient to represent two-dimensional Markov matrices in the following form: 𝑀 = 1 − 𝛼 𝛽𝛼 1 − 𝛽  (10) 

where 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1. Off-diagonal elements 𝛼 and 𝛽 characterize the intensity 
of population movement. Thus, 𝛽 is the fraction of the population that can move from 
region 2 to region 1. Similarly, α defines the fraction of the population moving from the 
first region to the second region. It is convenient to represent a matrix 𝑀 as a point (𝛼, 𝛽) 
in a plane. Together, they fill the square 𝑄 = 0,1] × 0,1]  with the vertices (0,0), (0,1), (1,1), (1,  0). Each point of 𝑄  is a convex combination of these vertices, 
which, in fact, constitute a “convex” basis in 𝑄. Let us construct the corresponding “basis” 
matrices: 𝐸 = 1 00 1 , 𝐸 = 1 10 0 ,  𝐸 = 0 11 0 ,  𝐸 = 0 01 1                         (11) 

Let us discuss the adaptation of the migration route from the point of view of evolu-
tionary ecology. Assume that the original population with the migration matrix М  can 
generate “mutants” with routes 𝜇 close to 𝑀 . Namely:                 𝜇 = (1 − 𝜀)𝑀 + 𝜀𝐸  (12) 

where 𝜀 > 0  is small and 𝐸  is one of the basis matrices. In the proposed modeling 
scheme, the route of the mutant will change from time to time. Therefore, to complete the 
picture, one should specify the order in which the basis matrices are generated. The num-
ber of mutants in the model is specified in advance. Of course, the smallest number of 
them is 1. It has been established that with an increase in the number of mutants, the result 
does not change much. 

Here the process of competition of the initial population (numbered by 0) with its 
community of mutants (numbered by 1, … , 𝑚) is of key importance. Assume that 𝑖-th 
population is described by the equation 𝑧 = 𝑧 𝜑 𝑧 , 𝑖 = 0,1, … , 𝑚. If these popula-
tions are “similar” (for example, they are mutants of the original population), then their 
competition is given in the form [19]: 𝑧 = 𝑧 𝜑 (𝑤 ), where 𝑤 = 𝑧 + 𝑧 + ⋯ + 𝑧 . We 
will use this approach for the construction of evolution mechanisms. 

Consider the “basic example”, which describes the interaction of the initial popula-

tion 𝐼 = 𝑥𝑦  with a single mutant 𝐽 = 𝑥𝑦 . In the sequel for the specified population 
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vectors, we will use the lower symbol for the indication of the time moment. We assume 
that in the 𝑖-th region, the trophic function for each population is the same and equals to 𝜑 . The routes of their movement are specified given by the matrices: 𝑁 = 1 − 𝛼 𝛽𝛼 1 − 𝛽 ,     𝑁 = 1 − 𝑎 𝑏𝑎 1 − 𝑏  (13) 

The model of joint competition and migration is a composition of two operators 𝐾: 𝐼, 𝐽 → 𝐼, 𝐽  and 𝑀: 𝐼, 𝐽 → 𝐼, 𝐽 . As an illustration, we present formulas for the transfor-
mation of the vector 𝐼 under 𝐾: 𝑥 = 𝑥 ⋅ 𝜑 (𝑥 + 𝑥 ),            𝑦 ≔ 𝑦 ⋅ 𝜑 (𝑦 + 𝑦 )  (14)  𝑥 = 𝑥 ⋅ 𝜑 (𝑥 + 𝑥 ),         𝑦 ≔ 𝑦 ⋅ 𝜑 (𝑦 + 𝑦 ) (15) 

and formulas for its transformation under 𝑀: 𝑥 = (1 − 𝛼)𝑥 + 𝛽𝑦 ,  𝑦 = 𝛼𝑥 + (1 − 𝛽)𝑦  (16) 

We assumed that the initial amount of population is about 1, while the initial mutant 
amounts are small. The computations were carried in several stages. Each stage corre-
sponded to a 100-year forecast, which is a significant time in terms of evolution. The re-
sults were summarized at the end of each stage. We note right away that the competition 
outcome depends little on the choice of initial population sizes. 

Most importantly, at the end of a stage, a “strong” mutant can be revealed, whose 
amount can significantly exceed the amount of the original population (for example, by 
10 or more times). If there are several strong mutants, then we choose the strongest. Fur-
thermore, we assume that such a mutant sets the direction of natural selection. Namely, 
let 𝜇∗ be the migration matrix of a strong mutant. Then we deform the matrix of the orig-
inal population as follows:    𝑀 → (1 − 𝜉)𝑀 + 𝜉𝜇∗  (17) 

where the adaptation rate parameter 𝜉 > 0 is small. If no strong mutants are found, then 𝑀  it is saved. 
After that comes the second stage. We act similarly since for each mutant a new route 

(specified in Equation (12)) is formed with another 𝐸 . In the end, a stage comes where 
strong mutants are no longer formed. This means that the final matrix 𝑀  is evolutionarily 
stable (ES-matrix) since it is not displaced by its mutants with close migration routes. Of 
course, only ES migration matrices can be realized in nature. In the extreme version of this 
concept, the number of mutants can be arbitrary. We used only two mutants such that the 
enumeration of the basis matrices occurs in opposite directions (i.e., clockwise: 𝐸 → 𝐸 →𝐸 → 𝐸 → 𝐸 , and counterclockwise). 

For example, consider an applied problem of changing the routes of fish migration 
depending on the ratio of region food resources under optimal fishing conditions. For 
example, assume that if 𝑢 is the total harvest in the region 1, then its distribution over 
specific populations are uniform. Namely, the catch operator 𝐿 is defined there as fol-
lows: 

𝑥 → 𝑥 ⋅ 1 − 𝑢𝑥 + 𝑥 , 𝑥 → 𝑥 ⋅ 1 − 𝑢𝑥 + 𝑥  (18) 

Similar formulas hold true for the components 𝑦 , 𝑦 , in the region 2. It is interesting 
to what extent do the obtained results depend on the number of generated mutants. Pre-
liminary computations showed that they are preserved even for large number of mutants. 

Next, we introduce the parameter 𝜆 ∈ (0,1), which characterizes the share of the 1-
region in the reservoir. Denote by 𝐾 the total amount of food in the reservoir. Then 𝐾 =𝜆𝐾 is the amount of food in the first region, and 𝐾 = (1 − 𝜆)𝐾 is the amount of food in 
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region 2. We will discuss the simplest case, i.e., when food supplies are fixed and do not 
change in each region. 

The optimization block of the model considers harvesting in both areas for a multi-
year period. Denote by 𝐵 (𝑥, 𝑦) the optimal discounted income for 𝑇 + 1 years with ini-
tial fish stocks equal to 𝑥 (in the first region) and 𝑦 (in the second region). During the 
exploitation, the amount of fish changes. We denote the corresponding trajectory by (𝑥 , 𝑦 ). By definition, 

𝐵 (𝑥, 𝑦) = max 𝛾 𝑝(𝑢 ) + 𝑞(𝑣 )] (19) 

where the maximization is performed over all admissible catches 𝑢  and 𝑣  in both 
regions: 0 ≤ 𝑢 ≤ 𝑥 , 0 ≤ 𝑣 ≤ 𝑦 . As above, 𝛾 is the discount factor (put 𝛾 = 0.9). Fur-
thermore, 𝑝, 𝑞  are concave increasing utility functions with 𝑝(0) = 𝑞(0) = 0 . We put 𝑝(𝑤) = 𝑞(𝑤) = 𝑤/(1 + 𝑤). Note that 𝑝 (0) = 𝑞 (0) = 1. 

We represent any 𝑧-population dynamics as 𝑧 = 𝑓(𝑧 , 𝐾). We will use the sim-
plest variant of the non-linear growth, assuming that 𝑓 is smooth, strictly increasing, and 
concave in the first argument. These assumptions are satisfied by the scheme from [38]: 

𝑓(𝑧, 𝐾) = 𝑧 𝑑 + 𝑟 𝐾𝐾 + 𝑧  (20) 

where 𝑑 =  0.25 and 𝑟 =  3 are the mortality and growth rates. Put 𝑓 (𝑧) = 𝑓(𝑧, 𝐾 ), 𝑓 (𝑧) = 𝑓(𝑧, 𝐾 ) for brevity. Now, taking into account the annual fishing: 𝑢  (in the first 
region) and 𝑣  (in the second region), the dynamics of one population takes the form: 𝑥 = (1 − 𝛼)𝑓 (𝑥 − 𝑢 ) + 𝛽𝑓 (𝑦 − 𝑣 )  (21)        𝑦 = 𝛼𝑓 (𝑥 − 𝑢 ) + (1 − 𝛽)𝑓 (𝑦 − 𝑣 ) (22) 

Rewrite Equations (21) and (22) as 𝑥 = 𝑃(𝑥 − 𝑢, 𝑦 − 𝑣), 𝑦 = 𝑄(𝑥 − 𝑢, 𝑦 − 𝑣). Note 
that 𝑃, 𝑄 are strictly increasing and concave in each variable. By the dynamic program-
ming principle: 𝐵 (𝑥, 𝑦) = max  𝑝(𝑢) + 𝑞(𝑣) + 𝛾𝐵 (𝑥, 𝑦)] (23) 

where the maximum is taken over 0 ≤ 𝑢 ≤ 𝑥,  0 ≤ 𝑣 ≤ 𝑦. Evidently, 𝐵 (𝑥, 𝑦) = 𝑝(𝑥) +𝑞(𝑦). Each function 𝐵  is continuous. Two-dimensional analogs of the previous proper-
ties still hold true. 

Furthermore, B inherits the “good” properties of the utility and growth functions. It 
is strictly increasing and concave in each variable. Thus, the partial derivatives 𝐵 (𝑥 − 0, 𝑦), 𝐵 (𝑥 + 0, 𝑦) exist almost everywhere, and  𝐵 (𝑥 − 0, 𝑦) > 𝐵 (𝑥 + 0, 𝑦). 𝐵 can 
be regarded as an indirect utility function of the initial fish stocks by area equal to 𝑥 and 𝑦. Its partial derivatives 𝐵 (𝑥, 𝑦) and 𝐵 (𝑥, 𝑦) can be interpreted as internal fish prices in 
the first and second regions, respectively. 

Statement 1. Let the optimal catch 𝑢 = 𝑢(𝑥, 𝑦) at (𝑥, 𝑦) be positive, then there exists 𝐵 (𝑥, 𝑦) 
and 

𝐵 (𝑥, 𝑦) = 𝑝 (𝑢) (24) 

Statement 2. Let the optimal catch 𝑣 = 𝑣(𝑥, 𝑦) at (𝑥, 𝑦) be positive, then there exists 𝐵 (𝑥, 𝑦) 
and 𝐵 (𝑥, 𝑦) = 𝑞 (𝑣). 

The quantity, e.g., 𝑐 = 𝐵 (𝑥, 𝑦) can be used as a tax per unit of fish caught in the first 
region. Let us discuss the solution of the following simple optimization problem for the 
fisher of the first region: 



Mathematics 2022, 10, 1860 9 of 15 
 

 

 𝑝(𝑢) − 𝐵 (𝑥, 𝑦) ⋅ 𝑢 → max     𝑜𝑣𝑒𝑟    𝑢 ∈ 0, 𝑥] (25) 

To find out how much the controls differ in Equations (6) and (25), let us consider 
two cases for Equation (25). Let 𝑐 = 𝐵 (𝑥, 𝑦) ≥ 𝑝 (0) = 1 , then the objective function 𝐻(𝑢) = 𝑝(𝑢) − 𝑐 ⋅ 𝑢 is strictly decreasing since its derivative is negative: 𝐻 (𝑢) = 𝑝 (𝑢) −𝑐 < 0. It follows that 𝑢∗ = 0 is optimal. Now assume that 𝑐 < 1. Then by the strict con-
cavity of 𝐻, the desired control satisfies the Equation 𝐻 (𝑢∗) = 0 , that is 𝑐 = 𝑝 (𝑢∗) . 
Clearly, this relation coincides with Equation (24). Similarly, 𝐵 (𝑥, 𝑦) can be used as an 
effective catch tax in the second region. Thus, the solution of the multi-step optimization 
problem (Equation (12)) reduces to the solution of two one-step optimization problems in 
the form of Equation (25). 

3. Results 
We will use the following global characteristics �̄� = 𝐵 (�̄�, �̄�), �̄� = 𝐵 (�̄�, �̄�), where (�̄�, �̄�) is the average asymptotic value of a sufficiently representative bundle of trajectories 

of the model given by Equations (21) and (22). The search for an optimal harvest strategy 
and the construction of the accompanying ES migration matrices includes two successive 
stages (blocks). The first stage (block) is optimization. For a given migration matrix 𝑀 a 
search for optimal catches (functions 𝑢, 𝑣) is performed using the dynamic programming 
method. This corresponds to a numerically implemented mapping 𝑀 → 〈𝑢(𝑥, 𝑦),  𝑣(𝑥, 𝑦)〉 . The second stage (block) is evolution. For fixed catch functions 𝑢(𝑥, 𝑦),  𝑣(𝑥, 𝑦) a competitive interaction of the initial population (with the migration ma-
trix 𝑀) with several mutants whose matrices are close to 𝑀, is realized (Equation (12)). 
When a strong mutant is detected as a result of selection, we perform some deformation 
of 𝑀 (Equation (17)). Formally, a mapping 〈𝑢(𝑥, 𝑦),  𝑣(𝑥, 𝑦)〉 → 𝑀  is implemented nu-
merically. 

If, after multiple repetitions of stages 1 and 2, this process converges, then a stable 
evolutionary matrix 𝑀∗ and optimal catches 𝑢∗, 𝑣∗ are determined for a given value of 
food in areas 1 and 2. In each case, the corresponding computations were carried out for 
initial values varying on a certain grid. Let 𝐾 be the total supply of food in the reservoir, 
and the amounts of food 𝐾 = 𝜆 ⋅ 𝐾 and 𝐾 = (1 − 𝜆) ⋅ 𝐾 for each of the two regions are 
given by a parameter 𝜆 from the segment [0.1,  0.9]. The dynamics of the internal prices 
for various values of 𝜆 are presented in Figure 2. 

 
Figure 2. The dependence of internal prices �̄�  (solid line) and �̄�  (dashed line) on the fraction 𝜆 
of total food supply in the first region. 

In the first area, as expected, it turned out that the average number and catch of fish 
increased with an increase in the parameter 𝜆 due to the growth of food there. The oppo-
site changes occur in the second region. Of course, the smaller the amount of fish, the 
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higher its price. According to obtained results, as 𝜆 increases, the Perron vector 𝜋 runs 
through the values: 0.060.94 , 0.060.94 , 0.210.79 , 0.410.59 , 0.50.5 , 0.590.41 , 0.780.22 , 0.890.11 , 0.940.06  

Finally, if, for example �̄� > �̄� , then an additional benefit is possible from the sale of 
cheap fish from the second region to the owner of the first region. Harvesting can be con-
sidered an evolutionary game of “giveaway.” The influence of harvesting on the evolution 
of the fish migration route can be used to optimize the fishing of one population in two 
neighboring states A (region 1) and B (region 2) within the same reservoir. In fact, these 
countries compete for fish resources. What are ecological and economic mechanisms ef-
fective here? One of the paradoxical approaches is covered in [39]. Below, we present this 
in more detail. We will proceed in the spirit of hierarchical management, and at the same 
time, we will somewhat specify the previous agreements on fishing strategies. Namely, 
we assume that the Center, based on the solution of the problem given in Equation (19), 
issues recommendations to these states on the catch quota, which should not exceed the 
optimal values 𝑢 and 𝑣, and depending on (𝑥, 𝑦). Of course, in some years, it is possible 
to catch even less (liberal fishing strategy). Assume that the initial migration matrix is of 
the form: 𝑀 = 0.5 0.50.5 0.5  

and the food resources of the water areas of these countries are the same. It is convenient 
to use chess terminology. 

First, consider an equilibrium “innocuous” situation. If the countries follow the Lead-
er's recommendations (taking into account 𝑀  and the solution of Equation (12)), then the 
migration matrix is preserved, and the following average values arise: �̄� = �̄� = 1.85; �̄� =�̄� = 3.89; �̄� = �̄� = 1.28. Clearly, for 𝑀  we have 𝜋 = 0.50.5  

In the second stage, A loses material but gains a positional advantage. Let country A 
harvest 75% of the recommended amount, and country B harvest 100%. Then the A-water 
area becomes “less lethal” and, therefore, more attractive for fish. There is a “luring” of 
the fish population into the A-water area. As a result of evolution, the migration matrix is 
transformed to: 𝑀 = 0.54 0.540.46 0.46  

The correspondent average values: �̄� = 1.48, �̄� = 2.12; �̄� = 4.68, �̄� = 3.96; �̄� ≈ �̄� =1.04. Clearly, for 𝑀  we have:  𝜋 = 0.540.46  

In fact, A played a “giveaway” with B here, but gained a positional advantage by 
constructing a more profitable migration matrix. 

In the third stage, A realizes positional advantage and obtains a material advantage. 
Assume that considering the matrix, a coordinating сenter issues new recommendations 
for the optimal catch, which are now 100% implemented by both participants. This results 
in �̄� = 2.03, �̄� = 1.7; �̄� = 4.21, �̄� = 3.56; �̄� = 1.14, �̄� = 1.45. It is remarkable that if now 
both countries 𝐴 and 𝐵  adhere to this catch, then the migration matrix is no longer 
“spoiled.” Therefore, it is evolutionarily stable under the indicated controls. Most im-
portantly, after the “luring” procedure, the catch in country A will always be greater than 
in country B. Since �̄� < �̄� , А has the opportunity for additional trade benefits by selling 
its “cheap” fish to B. To restore the status quo, country B must likely apply the “lure” 
procedure in turn. An endless series of 𝐴-lures and 𝐵-lures occurs. 
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4. Discussion 
In this paper, we used taxes as a sole instrument for fishery management. Some au-

thors [40–42] argued that taxes could work better than ITQs under some types of uncer-
tainty. Certainly, such results are model dependent and do not mean that the regulators 
should confine themselves to a single economic instrument. There are also many papers 
considering the influence of taxes on optimal harvesting [43–45]. These papers use tradi-
tional optimal control methods. Our approach differs in the problem formulation. We look 
for a tax, stimulating (socially) optimal behavior of myopic agents. We claim that, in gen-
eral, it is the marginal value function. This tax automatically takes into account the fish 
stock and agent preferences. Since these quantities are not usually perfectly known, it 
would be interesting to evaluate the influence of this uncertainty on the agent reactions 
and dynamics of fish populations. 

The influence of Darwinian evolution on optimal harvesting was the subject of many 
studies (see [46–49]). Usually, economically motivated and far-sighted agents apply strat-
egies to ensure sustainable resource exploitation. Our results show that, in principle, such 
optimal behavior of myopic agents can be stimulated by taxes. The concept of internal 
prices can be introduced for any structure that brings economic profitability. Thus, for 
purely water objects, the following problems are relevant. 

Consider a reservoir. Assume that the elements of water balance (inflow, precipita-
tion, evaporation) are repeated annually, and the resulting volumes of river flow satisfy 
the condition: spring > autumn > winter > summer. What is the price of water for individ-
ual seasons? Here, the corresponding value function depends not only on the volume of 
water but also on the season number [50]. After construction of the corresponding value 
function and computing its partial derivatives, it was found that the greater the amount 
of water, the lower its price. Therefore, the reverse order of prices takes place: summer > 
winter > autumn > spring. 

Furthermore, consider a river. For simplicity, assume that the river consists of a cas-
cade of two sections (upper and lower). Which water has a higher price? The water from 
the lower section is probably more expensive. The lower section receives residual water 
consumption from the upper section. In this case, it is beneficial to buy cheap water from 
the upper section. Thus, the internal prices can also be useful for the optimal exploitation 
of water resources. Of course, internal and market prices do not quantitatively coincide, 
but their trends are qualitatively similar. Therefore, the preliminary construction of the 
landscape of internal prices can predict the direction of profitable flows in an ecological-
economic system. 

Finally, we mention that taxes are rarely used in practice due to technical and social 
problems [8]. However, there exist some successful experiments. Specifically, we indicate 
Iceland's rent taxation scheme [51], where quotas (ITQs) and taxes are combined. More 
precisely, taxes were added to ITQs after the latter provided profitability and sustainabil-
ity to the fishing industry. The role of taxes here is mainly in the replenishment of the state 
budget and a fair distribution of income. This differs from our approach, where taxes are 
used to ensure optimal agent behavior. 

5. Conclusions 
Internal prices can be used as a tax per unit of fish caught. In this case, the problem 

of long-term optimization is reduced to solving problems of maximizing one-year catch. 
An appealing feature of this approach is that it ensures the cooperative behavior of com-
petitive agents. This approach can be applied in various situations. In this paper, we pre-
sented a paradoxical strategy of fishing competition between neighboring countries 
(“giveaway game”), when, along with optimization of the agent’s own catch, the evolu-
tionary process of “luring” the fish population into the corresponding area is implicitly 
used. Let us mention some other interesting problems. 
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For example, it is possible to develop algorithms for learning internal prices. Such 
algorithms can be based on online learning [52] and reinforcement learning [53] theories. 
Note that the neural networks can give an analytical approximation of the value function, 
which is convenient for computing of the internal price by the automatic differentiation. 
In connection with this, there is a big demand for realistic data-driven dynamic models of 
fish populations and models of agent behavior. These models can be in the form of data 
generators since this is enough for reinforcement learning algorithms. 

Furthermore, we considered the case where, roughly speaking, a leader’s aim is to 
make myopic agents far-sighted. However, the leaders can also have their own economic 
goals. This assumption changes the problem substantially. A stimulation problem of this 
type was considered in [54]; however, with the use of nonlinear incentive functions. It is 
unclear to what extent a linear pricing system can be used in this case. 

As for the spatial distribution of the exploited population, one can raise further ques-
tions. For example, is it true that in the model considered in our results section, the largest 
amount of fish is located in areas with the lowest internal price. Furthermore, in our re-
search, it was assumed that the amount of food in the areas of fishing was constant. How-
ever, in a real situation, food is eaten, and this negatively affects the size of the fish popu-
lation. Therefore, the luring procedure probably becomes less effective. But maybe it is 
still sufficient to beat a greedy opponent? This requires an appropriate modeling study in 
the future. These questions are relevant to better understand the distribution of the fish 
shared between neighboring countries. Finally, in the spirit of robust control theory, it 
would be interesting to study if the closeness of the utility and reproduction functions 
imply the closeness of the internal prices. 
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Appendix A 

Proof of Property 6. We give a justification without the assumption that the value function 𝐵 is differentiable. Let 𝑢 = 𝑢(𝑥) > 0 at some point 𝑥. By virtue of Property 4 we have 𝑢 < 𝑥. For this control, from the Bellman Equation we have 𝐵(𝑥) = 𝑟(𝑢) + 𝛾𝐵 𝑓(𝑥 − 𝑢)  (A1)

Take a number 𝜀, which is sufficiently small (in absolute value). At a close point 𝑥 +𝜀 the catch 𝑢 + 𝜀 is admissible but may not be optimal. Therefore, 𝐵(𝑥 + 𝜀) ≥ 𝑟(𝑢 + 𝜀) + 𝛾𝐵 𝑓(𝑥 − 𝑢)  (A2) 

By subtracting (A1) from (A2), we obtain 𝐵(𝑥 + 𝜀) − 𝐵(𝑥) ≥ 𝑟(𝑢 + 𝜀) − 𝑟(𝑢) (A3)
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Next, consider two different options for selecting the sign of ε: 
(1) ε > 0. Letting in (A3) ε → 0, we immediately obtain 𝐵 (𝑥 + 0) ≥ 𝑟 (𝑢) (A4)

(2) 𝜀 < 0. Similarly, letting in (A3) 𝜀 → 0, we obtain 𝐵 (𝑥 − 0) ≤ 𝑟 (𝑢) (A5) 

Finally, by the concavity of the value function, 𝐵 (𝑥 − 0) ≥ 𝐵 (𝑥 + 0)  

Thus, 𝐵 (𝑥) = 𝑟 (𝑢). □ 

Proof of Property 7. Consider an auxiliary function ℎ(𝑢) = 𝑟(𝑢) − 𝑐 ⋅ 𝑢 on 0, 𝑥]. It is con-
cave and ℎ(0) = 0. For 𝑐 ≥ 1 this function is strictly decreasing and attains its maximum 
at 𝑢 = 0. In other words, with a high tax, fishing is not profitable for the entire period of 
fishing. 

For 𝑐 < 1  by the inequality (5) implies that ℎ (𝑥) = 𝑟 (𝑥) − 𝑐 < 0 . Hence, the 
“humpy” function ℎ attains its maximum at an internal point of the interval [0, 𝑥]. At this 
point 𝑢∗ the derivative of ℎ equals 0. Thus, 𝑟 (𝑢∗) = 𝐵 (𝑥), and 𝑢∗ is an optimal catch at 𝑥∗ according to Equation (4). □ 
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