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Abstract: The mathematical modeling and analysis of within-host or between-host coronavirus
disease 2019 (COVID-19) dynamics are considered robust tools to support scientific research. Severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19. This paper
proposes and investigates a within-host COVID-19 dynamics model with latent infection, the logistic
growth of healthy epithelial cells and the humoral (antibody) immune response. Time delays can
affect the dynamics of SARS-CoV-2 infection predicted by mathematical models. Therefore, we
incorporate four time delays into the model: (i) delay in the formation of latent infected epithelial
cells, (ii) delay in the formation of active infected epithelial cells, (iii) delay in the activation of latent
infected epithelial cells, and (iv) maturation delay of new SARS-CoV-2 particles. We establish that the
model’s solutions are non-negative and ultimately bounded. This confirms that the concentrations
of the virus and cells should not become negative or unbounded. We deduce that the model has
three steady states and their existence and stability are perfectly determined by two threshold
parameters. We use Lyapunov functionals to confirm the global stability of the model’s steady
states. The analytical results are enhanced by numerical simulations. The effect of time delays on the
SARS-CoV-2 dynamics is investigated. We observe that increasing time delay values can have the
same impact as drug therapies in suppressing viral progression. This offers some insight useful to
develop a new class of treatment that causes an increase in the delay periods and then may control
SARS-CoV-2 replication.

Keywords: COVID-19; latent infection; humoral immunity; time delay; Lyapunov function; global
stability

MSC: 34D20; 34D23; 37N25; 92B05

1. Introduction

Coronavirus disease 2019 (COVID-19) is considered one of the most severe epidemics
that has spread throughout whole world. According to the COVID-19 weekly epidemiolog-
ical update of 16 January 2022 by the World Health Organization (WHO), over 323 million
confirmed cases and over 5.5 million deaths have been reported worldwide [1]. COVID-19
is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus
can cause some symptoms including fever, cough, sputum production, fatigue, headache,
diarrhea, dyspnoea, and hemoptysis [2]. The virus can be transmitted from an infected
person to an uninfected person through coughing, sneezing, or talking [3]. To reduce SARS-
CoV-2 transmission, preventive measures must be implemented, such as hand washing, the
use of face masks, physical and social distancing, disinfection of surfaces, and vaccination.
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Fortunately, the following vaccines are approved for use by WHO: Oxford/AstraZeneca,
Janssen (Johnson & Johnson), Sinovac, Pfizer/BioNTech, Sinopharm (Beijing), Moderna,
Serum Institute of India, Novavax, and Bharat Biotech [4]. In addition to vaccination, the
scientific community needs to discover and develop effective drugs to treat the virus and
help to address the COVID-19 pandemic.

SARS-CoV-2 is a single-stranded RNA virus, which belongs to the Coronaviridae
family. Epithelial cells with angiotensin-converting enzyme 2 (ACE2) receptor are attacked
by SARS-CoV-2 [5]. These target cells are found in the respiratory tracts, including the lungs,
trachea/bronchial tissues, and nasal region [6]. The immune response plays an essential
role in controlling the disease’s progression and clearing SARS-CoV-2 infection. There
are two main immune responses against viral infections: CTLs and antibodies. CTLs are
responsible for killing virus-infected cells, while antibodies are responsible for neutralizing
the virus.

Besides biological and medical research, the mathematical modeling of infectious
diseases has attracted the interest of several researchers. Several epidemiological (between-
host) mathematical models for COVID-19 were proposed to forecast disease severity and
help policymakers in developing disease control interventions (see, e.g., [7–14]). Nev-
ertheless, between-host models have occupied more attention than within-host models
that study the infection within a human body [15]. Mathematical models of within-host
COVID-19 dynamics can help researchers to understand the replication cycle of SARS-CoV-
2 and the response of the immune system against viral infection. Moreover, these models
enable the merits of different types of antiviral drug therapies to be assessed in individual
COVID-19 patients [16]. Many scientists have been interested in modeling and analyzing
COVID-19 dynamics within the host (see the review paper [17]). Du and Yuan [6] proposed
a within-host model of COVID-19 infection. They studied the influence of the interaction
between adaptive and innate immune responses on the viral load’s peak in COVID-19
patients. Li et al. [18] developed a within-host COVID-19 infection model and estimated
the model’s parameters. Fatehi et al. [16] developed a within-host COVID-19 dynamics
model with five components: healthy cells, latent infected cells, productively infected cells,
SARS-CoV-2 particles, and antibodies and effector cells. Antiviral and convalescent plasma
therapies were incorporated. It was shown that using a combination of both therapies
in the early stage of infection can be very effective in reducing the duration of infection.
Danchin et al. [19] formulated a within-host COVID-19 dynamics model under the effect of
antibodies. Sadria and Layton [20] formulated a within-host COVID-19 infection model
to simulate the effect of three drug therapies: Remdesivir, an alternative (hypothetical)
therapy, and transfusion therapy convalescent plasma. It was suggested that therapies
are more effective when they are applied early, one or two days after symptom onset [20].
Néant et al. [21] reported that the viral dynamics are associated with mortality in COVID-19
patients and that strategies that consider reducing the viral load can be more effective. Dual
infection with SARS-CoV-2 and other viruses may appear in some patients. Mathematical
models of co-infection with SARS-CoV-2 and other respiratory viruses within a host were
developed in [22]. It was reported that SARS-CoV-2 progression can be suppressed by
other viruses when the co-infections occur at the same time.

Mathematical modeling with available real data helps in extensively exploring the
dynamical aspects of within-host COVID-19 infection. Hernandez-Vargas and Velasco-
Hernandez [23] used the Akaike information criterion to compare between different within-
host COVID-19 models. The models were fitted with real data from nine patients with
COVID-19. It was shown that the model with an immune response was better fitting than
logarithmic decay and exponential growth models, a target cell-limited model, and a latent
target cell-limited model. The COVID-19 dynamics model with the immune response
presented in [23] was used in many works (see, e.g., [24,25]). In [24], a differential evolution
algorithm was applied to fit the model with experimental data. Blanco-Rodriguez el al. [25]
elucidated the key parameters that define the course of COVID-19 developing from a severe
to critical case. The impact of multiple types of treatment or vaccines on the dynamical
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COVID-19 systems has been investigated by many researchers. Abuin et al. [3] studied
the mathematical analysis of the target cell model presented in [23]. The effect of antiviral
pharmacodynamic therapy that reduces the production of infectious SARS-CoV-2 particles
was studied using control theory. Ke et al. [26] developed some mathematical models for
the within-host dynamics of COVID-19 and fitted them to real data. They supported a
quantitative framework for concluding the influence of vaccines and therapeutics on the
infectiousness of COVID-19 patients and for assessing rapid testing strategies. Ghosh [27]
formulated a mathematical model that describes the interaction between SARS-CoV-2,
healthy cells, and the immune response within a host. The model was fitted with real data
and the effect of different antiviral drugs was addressed. Wang et al. [28] introduced three
within-host COVID-19 dynamics models: a basic model, a model with latency, and a model
with two types of target cells (pneumocytes and lymphocytes). The effects of antiviral
drugs or anti-inflammatory treatments combined with interferons on the viral load and
recovery time were studied. The models were fitted with real data of COVID-19 patients
and non-human primates. Most of these studies did not perform the mathematical analysis
of the within-host COVID-19 models.

Stability analysis of within-host COVID-19 dynamics models is one of the most pow-
erful tools that can provide researchers with a better understanding of the dynamics of the
virus and how the immune system controls and clears the virus. The stability analysis of
the COVID-19 dynamics model with the immune response presented in [23] was studied
by Almocera et al. [29]. CTL and antibody immune responses play important roles in
controlling COVID-19 infection. Hattaf and Yousfi [30] developed a COVID-19 dynamics
model with the CTL immune response and cell-to-cell infection. The global stability of the
three equilibria of the model was studied. Chatterjee and Al Basir [31] studied a COVID-19
infection model with treatment and a CTL immune response. Mondal et al. [32] developed
and analyzed a five-dimensional within-host COVID-19 dynamics model that includes both
CTL and antibody immune responses. Nath et al. [33] studied the mathematical analysis of
the COVID-19 infection model presented in [18]. They established both the local and global
stability of the two steady states of the model. The memory is an important characteristic of
COVID-19 dynamics at both within-host [34] and between-host [35,36] levels. Ghanbari [34]
extended the model presented in [30] and investigated the memory effect on the COVID-19
dynamics by using a fractional derivative. Mathematical analysis of COVID-19 and other
diseases co-infection models has received considerable attention. Elaiw et al. [37] devel-
oped and proved the global stability of a COVID-19/cancer co-infection model with two
immune responses: cancer-specific CTL immune response and COVID-19-specific antibody.
Mathematical modeling and analysis of COVID-19/HIV co-infection were studied in [38].
The global stability of a SARS-CoV-2/malaria model with antibody immune response was
studied in [39]. It was found that the SARS-CoV-2/malaria co-infection can be protective
as the shared antibody immune response serves to eliminate SARS-CoV-2 particles from
the body. This may cause less severe SARS-CoV-2 infection.

Optimal control theory (OCT) offers a means to understand how to apply one or more
time-varying control measures to a within-host or between-host viral infection model in
such a way that a given objective is optimized [40]. OCT was used for COVID-19 epidemi-
ological models to determine optimal strategies for the implementation of interventions to
control COVID-19 spread with optimal implementation costs (see, e.g., [40–44]). On the
other hand, OCT was applied for within-host viral infection models to determine optimal
antiviral drug schedules for infected patients with different viruses, such as HIV [45,46],
HBV [47], and HCV [48]. On the basis of the basic within-host viral dynamics model
presented by Nowak and Bangham [49], Chhetri et al. [50] formulated and analyzed a
within-host COVID-19 dynamics model under the effect of immunomodulating and antivi-
ral drug therapies. Optimal drug interventions were determined. It was suggested that the
combination of immunomodulating and antiviral drug therapies is most effective. In [51],
fractional differential equations were used in formulating a within-host SARS-CoV-2 model
with non-lytic and lytic immune responses. Two types of antiviral drugs were included as
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control inputs, one for blocking the infection and the other for inhibiting viral production.
Optimal antiviral drugs were determined by solving the fractional optimal control problem.

Most of the above-mentioned within-host COVID-19 dynamics models assumed that
the dynamics of the target cells take one of the following forms:

(i) Target cell-limited [3,23,26,28]:

Ṫ(t) = −βT(t)V(t),

(ii) Constant regeneration of target cells [6,18,19,27,32,38,50]:

Ṫ(t) = λ− dT(t)− βT(t)V(t),

where T(t) and V(t) are the concentrations of healthy target cells and SARS-CoV-2
particles, at time t, respectively. Parameters λ, d, and β are the regeneration, death,
and infection rates of target cells, respectively. In these works, the proliferation of
the healthy target cells was not considered. Fatehi et al. [16] and Fadai et al. [52]
developed COVID-19 dynamics models by assuming that the healthy epithelial cells
follow logistic growth in the absence of the virus. However, mathematical analysis
of these models was not studied. Moreover, time delays were not considered in
these papers.

It was observed experimentally that there exits a time lag between the infection of
a target cell and the release of new virions [53]. Therefore, several COVID-19 dynamics
models were developed using ordinary differential equations (ODEs) by splitting the
infected cells into two classes: latent infected cells and active (productive) infected cells
(see, e.g., [16,20–23,26,28]). Latent infected cells contain viruses but do not produce them
until they are activated. These models assume that, once infected, the cell immediately
becomes a latent infected cell. Further, these models neglect the time needed for the latent
infected cells to be activated [54]. Furthermore, the maturation time of the new viruses
was not considered. To incorporate these time lags, we need to formulate the COVID-19
dynamics using delay differential equations (DDEs). DDEs models can characterize the
effect of time delay on the dynamical behavior of the virus.

The aim of the present paper is to formulate and analyze a within-host COVID-19
model that includes: (i) a logistic growth term for the healthy epithelial cells, (ii) latent and
active infected epithelial cells, (iii) the antibody immune response, (iv) four time delays,
namely the time from the SARS-CoV-2 particles’ contact with the healthy epithelial cells
to the time that they become latent/active infected cells, the reactivation time of latent
infected cells, and the maturation time of new virions. The basic and global properties of
the model were studied. To support the theoretical results, we performed some numerical
simulations. The effect of time delay on the dynamics of COVID-19 was addressed.

Overall, this analysis can help to better understand the dynamical behavior of within-
host COVID-19 models with time delays and immune responses. In addition, our proposed
model can be useful to develop co-infection dynamics models with more aggressive variants
of SARS-CoV-2, such as Alpha, Beta, Gamma, Delta, Lambda, and Omicron.
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2. Model Development

This section provides a brief description of the model under consideration. The model
takes the form

Ṫ(t) = λ− d1T(t) + rT(t)
(

1− T(t)
Tmax

)
− βT(t)V(t), (1)

L̇(t) = η
∫ τ1

0
f (ψ)e−n1ψβT(t− ψ)V(t− ψ)dψ− αL(t)− d2L(t), (2)

İ(t) = (1− η)
∫ τ2

0
g(ψ)e−n2ψβT(t− ψ)V(t− ψ)dψ + αe−n3τ3 L(t− τ3)− d3 I(t), (3)

V̇(t) = ke−n4τ4 I(t− τ4)− d4V(t)− uA(t)V(t), (4)

Ȧ(t) = qA(t)V(t)− d5 A(t), (5)

where T(t), L(t), I(t), V(t), and A(t) represent the concentrations of healthy epithelial
cells, latent infected cells, active infected cells, SARS-CoV-2 particles, and antibodies at
time t, respectively. The healthy epithelial cells are regenerated at a constant rate λ and
proliferate at a logistic growth rate rT

(
1− T

Tmax

)
, where r is the rate of growth and Tmax is

the maximum capacity of healthy epithelial cells in the human body. Healthy epithelial
cells are assumed to be infected by SARS-CoV-2 at a rate βTV. Parameter η ∈ (0, 1) is the
fraction of the healthy epithelial cells that enter the latent state, while α is the activation rate
constant of latent infected cells. kI is the rate at which active infected cells produce SARS-
CoV-2 particles. uAV is the neutralization rate of SARS-CoV-2, and qAV is the recruitment
rate of antibodies. The parameters d1, d2, d3, d4, and d5 symbolize the death rate constants
of healthy epithelial cells, latent infected cells, active infected cells, SARS-CoV-2 particles,
and antibodies, respectively. The factor f (ψ)e−n1ψ denotes the probability that healthy
epithelial cells contacted by SARS-CoV-2 particles at time instant t − ψ survive ψ time
units and become latent infected cells at time t. The factor g(ψ)e−n2ψ is the probability that
healthy epithelial cells contacted by SARS-CoV-2 particles at time instant t− ψ survive ψ
time units and become active infected cells at time t. Here, ψ is a random variable generated
from probability distribution functions f (ψ) and g(ψ) over the intervals [0, τ1] and [0, τ2],
respectively. τ1 and τ2 are the upper limits of the delay periods. τ3 is the period of time
during which latent infected cells are activated to produce active infected cells. τ4 is the
time it takes for the newly released viruses to become mature and then infectious. Factors
e−n3τ3 and e−n4τ4 are the survival rates of latent infected cells and viruses during their delay
periods [t − τ3, t] and [t − τ4, t], respectively. The functions f (ψ) : [0, τ1] → [0, ∞) and
g(ψ) : [0, τ2]→ [0, ∞) are the distribution functions, which satisfy the following conditions:

(i) f (ψ) > 0, g(ψ) > 0,

(ii)
∫ τ1

0
f (ψ)dψ = 1,

∫ τ2

0
g(ψ)dψ = 1,

(iii)
∫ τ1

0
f (ψ)e−n1ψdψ < ∞,

∫ τ2

0
g(ψ)e−n2ψdψ < ∞, n1, n2 > 0.

Let
F =

∫ τ1

0
f (ψ)e−n1ψdψ and G =

∫ τ2

0
g(ψ)e−n2ψdψ.

Hence, 0 < F, G ≤ 1.
The initial conditions of system (1)–(5) are:

T(κ) = ϕ1(κ), L(κ) = ϕ2(κ), I(κ) = ϕ3(κ), V(κ) = ϕ4(κ), A(κ) = ϕ5(κ),
ϕi(κ) ≥ 0, κ ∈ [−κ, 0], i = 1, 2, . . . , 5,

(6)
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where κ = max{τ1, τ2, τ3, τ4} and ϕi ∈ C([−κ, 0],R≥0), i = 1, 2, . . . , 5, and C is the Banach
space of continuous functions mapping the interval [−κ, 0] to R≥0 with

‖ϕi‖ = sup
−κ≤κ≤0

|ϕi(κ)| for ϕi ∈ C.

By the fundamental theory of functional differential equations [55], system (1)–(5) with
initial conditions (6) has a unique solution.

3. Basic Properties

This section proves the basic properties of system (1)–(5), including the non-negativity
and boundedness of solutions. We determine a bounded domain for the concentrations of
the model’s compartments to ensure that our model is biologically acceptable. In particular,
the concentrations should not become negative or unbounded. Moreover, it lists all possible
steady states and their existence conditions.

For the non-negativity and boundedness of solutions for the system (1)–(5), we state
the following theorem:

Theorem 1. Let (T(t), L(t), I(t), V(t), A(t))′ be an arbitrary solution of system (1)–(5) with
initial conditions (6). Then, (T(t), L(t), I(t), V(t), A(t))′ are non-negative on [0,+∞) and ulti-
mately bounded.

Proof. Let us write system (1)–(5) in the matrix form K̇(t) = H(K(t)), where K = (T, L, I, V, A)′,
H = (H1, H2, H3, H4, H5)

′, and

H(K(t)) =


H1(K(t))
H2(K(t))
H3(K(t))
H4(K(t))
H5(K(t))

 =


λ− d1T(t) + rT(t)

(
1− T(t)

Tmax

)
− βT(t)V(t)

η
∫ τ1

0 f (ψ)e−n1ψβT(t− ψ)V(t− ψ)dψ− αL(t)− d2L(t)
(1− η)

∫ τ2
0 g(ψ)e−n2ψβT(t− ψ)V(t− ψ)dψ + αe−n3τ3 L(t− τ3)− d3 I(t)

ke−n4τ4 I(t− τ4)− d4V(t)− uA(t)V(t)
qA(t)V(t)− d5 A(t)

.

We observe that the function H fulfills the following condition:

Hi(K(t)) |Ki=0,K(t)∈R5
≥0
≥ 0, i = 1, 2, . . . , 5.

Using Lemma 2 in [56], any solution of system (1)–(5) with the initial states (6) is such
that K(t) ∈ R5

≥0 for all t ≥ 0. Hence, R5
≥0 is positively invariant for the system (1)–(5).

Next, we prove the ultimate boundedness of the solutions. From Equation (1), we have

Ṫ(t) = λ− d1T(t) + rT(t)
(

1− T(t)
Tmax

)
− βT(t)V(t) ≤ λ− d1T(t) + rT(t)

(
1− T(t)

Tmax

)
. (7)

From the inequality (7) and the comparison principle, we obtain lim sup
t→∞

T(t) ≤ T0,

where T0 is the positive root of λ− d1T + rT
(

1− T
Tmax

)
= 0 and is given by

T0 =
Tmax

2r

[
r− d1 +

√
(r− d1)2 +

4rλ

Tmax

]
. (8)

Now, we define

W1(t) =
∫ τ1

0
f (ψ)e−n1ψT(t− ψ)dψ +

1
η

L(t).

Then, we obtain
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Ẇ1(t) =
∫ τ1

0
f (ψ)e−n1ψṪ(t− ψ)dψ +

1
η

L̇(t)

=
∫ τ1

0
f (ψ)e−n1ψ

[
λ− d1T(t− ψ) + rT(t− ψ)

(
1− T(t− ψ)

Tmax

)
− βT(t− ψ)V(t− ψ)

]
dψ

+
∫ τ1

0
f (ψ)e−n1ψβT(t− ψ)V(t− ψ)dψ− α

η
L(t)− d2

η
L(t)

=
∫ τ1

0
f (ψ)e−n1ψ

(
− r

Tmax
T2(t− ψ) + rT(t− ψ) + λ

)
dψ− d1

∫ τ1

0
f (ψ)e−n1ψT(t− ψ)dψ

− α + d2
η

L(t).

Let us define Γ(T) = − r
Tmax

T2 + rT + λ. Then, to find the maximum value of Γ(T),
we find

Γ′(T) = − 2r
Tmax

T + r = 0⇒ T =
Tmax

2

and
Γ′′(T) = − 2r

Tmax
< 0.

Then,

Γ
(

Tmax

2

)
= − r

Tmax

(
Tmax

2

)2
+ r
(

Tmax

2

)
+ λ =

rTmax

4
+ λ.

Let N1 = rTmax+4λ
4 > 0 and q1 = min{d1, α + d2}, then Ẇ1(t) ≤ FN1 − q1W1(t) ≤

N1 − q1W1(t). Therefore, lim sup
t→∞

W1(t) ≤ N1
q1

. Since T(t) ≥ 0 and L(t) ≥ 0, then

lim sup
t→∞

L(t) ≤ ηN1
q1

= p1. To prove the ultimate boundedness of I(t), we define

W2(t) =
∫ τ2

0
g(ψ)e−n2ψT(t− ψ)dψ +

1
1− η

I(t).

Then, we obtain

Ẇ2(t) =
∫ τ2

0
g(ψ)e−n2ψṪ(t− ψ)dψ +

1
1− η

İ(t)

=
∫ τ2

0
g(ψ)e−n2ψ

[
λ− d1T(t− ψ) + rT(t− ψ)

(
1− T(t− ψ)

Tmax

)
− βT(t− ψ)V(t− ψ)

]
dψ

+
∫ τ2

0
g(ψ)e−n2ψβT(t− ψ)V(t− ψ)dψ− d3

1− η
I(t) +

αe−n3τ3

1− η
L(t− τ3)

≤
∫ τ2

0
g(ψ)e−n2ψ

(
− r

Tmax
T2(t− ψ) + rT(t− ψ) + λ

)
dψ +

αe−n3τ3

1− η
p1

− d1

∫ τ2

0
g(ψ)e−n2ψT(t− ψ)dψ− d3

1− η
I(t)

≤
∫ τ2

0
g(ψ)e−n2ψ

(
rTmax + 4λ

4

)
dψ +

αe−n3τ3

1− η
p1

− d1

∫ τ2

0
g(ψ)e−n2ψT(t− ψ)dψ− d3

1− η
I(t)

=
rTmax + 4λ

4
G +

αe−n3τ3

1− η
p1 − d1

∫ τ2

0
g(ψ)e−n2ψT(t− ψ)dψ− d3

1− η
I(t)

≤ rTmax + 4λ

4
+

α

1− η
p1 − d1

∫ τ2

0
g(ψ)e−n2ψT(t− ψ)dψ− d3

1− η
I(t).

Let N2 = rTmax+4λ
4 + α

1−η p1 > 0 and q2 = min{d1, d3}, then

Ẇ2(t) ≤ N2 − q2W2(t).
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This implies that lim sup
t→∞

W2(t) ≤ N2
q2

. Since I(t) ≥ 0, then lim sup
t→∞

I(t) ≤ (1−η)N2
q2

= p2.

To prove the ultimate boundedness of V(t) and A(t), we consider

W3(t) = V(t) +
u
q

A(t).

This gives

Ẇ3(t) = ke−n4τ4 I(t− τ4)− d4V(t)− uA(t)V(t) + uA(t)V(t)− ud5

q
A(t)

= ke−n4τ4 I(t− τ4)− d4V(t)− ud5

q
A(t)

≤ ke−n4τ4 I(t− τ4)− q3[V(t) +
u
q

A(t)]

≤ kp2 − q3W3(t),

where q3 = min{d4, d5}. Hence, lim sup
t→∞

W3(t) ≤ kp2
q3

= p3. We have V(t) ≥ 0 and

A(t) ≥ 0, then lim
t→∞

sup V(t) ≤ p3, and lim sup
t→∞

A(t) ≤ q
u p3. The above analysis proves that

T(t), L(t), I(t), V(t) and A(t) are ultimately bounded.

Steady States

This subsection computes all possible steady states of system (1)–(5) and the threshold
parameters that guarantee the existence of these steady states. Let SS = (T, L, I, V, A) be
any steady state of system (1)–(5) fulfilling the following system of nonlinear equations:

0 = λ− d1T + rT
(

1− T
Tmax

)
− βTV, (9)

0 = ηFβTV − (α + d2)L, (10)

0 = (1− η)GβTV + αe−n3τ3 L− d3 I, (11)

0 = ke−n4τ4 I − d4V − uAV, (12)

0 = qAV − d5 A. (13)

By solving system (9)–(13), we find that system (1)–(5) has the following steady states:

• Healthy steady state SS0 = (T0, 0, 0, 0, 0), where T0 is given by Equation (8).

Now, we calculate the basic reproduction numberR0 for system (1)–(5) by using the
next-generation matrix method [57]. We define the matrices F and V as follows:

F =

0 0 ηFβT0
0 0 (1− η)GβT0
0 0 0

, V =

 α + d2 0 0
−αe−n3τ3 d3 0

0 −ke−n4τ4 d4

.

The basic reproduction number R0, can be derived as the spectral radius of FV−1, and
we obtain

R0 =
kβe−n4τ4 T0

d3d4

(
αηe−n3τ3

α + d2
F + (1− η)G

)
.

The parameterR0 estimates the number of secondary infections that arise from one in-
fected cell over the course of its lifespan at the beginning of infection, when cells susceptible
to infection are not depleted [58].

For convenience, let ρ = αηe−n3τ3

α+d2
F + (1− η)G. Then,R0 can be rewritten as

R0 =
kβe−n4τ4 T0

d3d4
ρ.
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• Infected steady state with inactive antibody immune response SS1 = (T1, L1, I1, V1, 0),
where

T1 =
d3d4en4τ4

kβρ
=

T0

R0
,

L1 =
η

α + d2
FβT1V1,

I1 =
d4en4τ4

k
V1,

V1 =
λke−n4τ4 ρ

d3d4
+

r
β
−
(

d1

β
+

rd3d4en4τ4

kβ2Tmaxρ

)
.

Assume that d1 − r + rT1
Tmax

> 0; then, we obtain

d1 − r +
r

Tmax

d3d4en4τ4

kβρ
> 0 =⇒ rd3d4en4τ4

kβTmaxρ
− (r− d1) > 0. (14)

We note that

R0 > 1⇐⇒ Tmax

2r

[
(r− d1) +

√
(r− d1)2 +

4rλ

Tmax

]
>

d3d4en4τ4

kβρ

⇐⇒

√
(r− d1)2 +

4rλ

Tmax
>

2rd3d4en4τ4

kβTmaxρ
− (r− d1).

From inequality (14), we have 2rd3d4en4τ4

kβTmaxρ − (r− d1) > 0. Then,

R0 > 1⇐⇒ 4rλ

Tmax
>

4r2d2
3d2

4e2n4τ4

k2β2T2
maxρ2 −

4rd3d4en4τ4

kβTmaxρ
(r− d1)

⇐⇒ rλ >
r2d2

3d2
4e2n4τ4

k2β2Tmaxρ2 −
r2d3d4en4τ4

kβρ
+

rd1d3d4en4τ4

kβρ

⇐⇒ λke−n4τ4 ρ

d3d4
+

r
β
−
(

d1

β
+

rd3d4en4τ4

kβ2Tmaxρ

)
> 0

⇐⇒ V1 > 0.

Thus, SS1 exists whenR0 > 1 and d1 − r + rT1
Tmax

> 0.
• Infected steady state with active antibody immune response SS2 = (T2, L2, I2, V2, A2),

where

T2 =
Tmax

2r

r− d1 −
d5β

q
+

√(
r− d1 −

d5β

q

)2
+

4rλ

Tmax

,

L2 =
d5ηβFT2

q(α + d2)
, I2 =

d5βT2

qd3
ρ, V2 =

d5

q
,

A2 =
d4

u

(
kβe−n4τ4 T2

d3d4
ρ− 1

)
.

We define the antibody immune response activation numberR1 as

R1 =
kβe−n4τ4 T2

d3d4
ρ.

We note that A2 > 0 whenR1 > 1. Thus, SS2 exists whenR1 > 1.
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Lemma 1. For system (1)–(5), we have the following:

(i) ifR0 ≤ 1, then there exists only one steady state SS0;
(ii) ifR1 ≤ 1 < R0 and d1 − r + rT1

Tmax
> 0, then there exist two steady states SS0 and SS1;

(iii) ifR1 > 1, then there exist three steady states SS0, SS1, and SS2.

4. Global Properties

Stability analysis is at the heart of dynamical analysis. Only stable solutions can be
noticed experimentally. Therefore, in this section, the global asymptotic stability of SS0, SS1,
and SS2 will be presented by utilizing the direct Lyapunov method and applying LaSalle’s
invariance principle, following the works of Korobeinikov [59]. Denote (T, L, I, V, A) =
(T(t), L(t), I(t), V(t), A(t)). Define a function H : (0,+∞)→ [0,+∞) by H(x) = x− 1−
ln x. Clearly,H(x) = 0 if and only if x = 1.

The following result suggests that when R0 ≤ 1, the COVID-19 infection is predicted
to die out regardless of the initial conditions.

Theorem 2. The steady state SS0 of system (1)–(5) is globally asymptotically stable (GAS) when
R0 ≤ 1.

Proof. Define a Lyapunov function V0(T, L, I, V, A) as

V0 = ρT0H
(

T
T0

)
+

αe−n3τ3

α + d2
L + I +

d3en4τ4

k
V +

d3uen4τ4

kq
A + U0(t),

where

U0(t) =
αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψ

∫ t

t−ψ
βT(φ)V(φ)dφdψ

+ (1− η)
∫ τ2

0
g(ψ)e−n2ψ

∫ t

t−ψ
βT(φ)V(φ)dφdψ

+ αe−n3τ3

∫ t

t−τ3

L(φ)dφ + d3

∫ t

t−τ4

I(φ)dφ.

Clearly, V0(T, L, I, V, A) > 0 for all T, L, I, V, A > 0, and V0(T0, 0, 0, 0, 0) = 0. The
derivative of U0(t) is computed as

dU0(t)
dt

=
αηe−n3τ3

α + d2
FβTV − αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψβT(t− ψ)V(t− ψ)dψ

+ (1− η)GβTV − (1− η)
∫ τ2

0
g(ψ)e−n2ψβT(t− ψ)V(t− ψ)dψ

+ αe−n3τ3 L− αe−n3τ3 L(t− τ3) + d3 I − d3 I(t− τ4)

= ρβTV − αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψβT(t− ψ)V(t− ψ)dψ

− (1− η)
∫ τ2

0
g(ψ)e−n2ψβT(t− ψ)V(t− ψ)dψ

+ αe−n3τ3 L− αe−n3τ3 L(t− τ3) + d3 I − d3 I(t− τ4).

Hence, dV0(t)
dt in terms of the solutions of system (1)–(5) is given by:

dV0

dt
= ρ

(
1− T0

T

)
Ṫ +

αe−n3τ3

α + d2
L̇ + İ +

d3en4τ4

k
V̇ +

d3uen4τ4

kq
Ȧ +

dU0(t)
dt

.
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By using system (1)–(5), we obtain

dV0

dt
= ρ

(
1− T0

T

)[
λ− d1T + rT

(
1− T

Tmax

)
− βTV

]
+

αe−n3τ3

α + d2

[
η
∫ τ1

0
f (ψ)e−n1ψβT(t− ψ)V(t− ψ)dψ− (α + d2)L

]
+ (1− η)

∫ τ2

0
g(ψ)e−n2ψβT(t− ψ)V(t− ψ)dψ + αe−n3τ3 L(t− τ3)− d3 I

+
d3en4τ4

k
[
ke−n4τ4 I(t− τ4)− d4V − uAV

]
+

d3uen4τ4

kq
[qAV − d5 A]

+ ρβTV − αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψβT(t− ψ)V(t− ψ)dψ

− (1− η)
∫ τ2

0
g(ψ)e−n2ψβT(t− ψ)V(t− ψ)dψ

+ αe−n3τ3 L− αe−n3τ3 L(t− τ3) + d3 I − d3 I(t− τ4)

= ρ

(
1− T0

T

)[
λ− d1T + rT

(
1− T

Tmax

)]
+ ρβT0V − d3d4en4τ4

k
V − d3d5uen4τ4

kq
A.

At the steady state SS0, we have λ = d1T0 − rT0

(
1− T0

Tmax

)
, then

λ− d1T + rT
(

1− T
Tmax

)
= (T0 − T)

(
d1 − r +

rT0

Tmax
+

rT
Tmax

)
.

Therefore, we deduce that

dV0

dt
≤ −ρ

(
d1 − r +

rT0

Tmax

)
(T − T0)

2

T
+

(
ρβT0 −

d3d4en4τ4

k

)
V − d3d5uen4τ4

kq
A

= −ρ

(
d1 − r +

rT0

Tmax

)
(T − T0)

2

T
+

d3d4en4τ4

k

(
kβe−n4τ4 T0

d3d4
ρ− 1

)
V − d3d5uen4τ4

kq
A

= −ρ

(
d1 − r +

rT0

Tmax

)
(T − T0)

2

T
+

d3d4en4τ4

k
(R0 − 1)V − d3d5uen4τ4

kq
A.

At the equilibrium, we have λ = d1T0 − rT0

(
1− T0

Tmax

)
, which implies that d1 − r +

rT0
Tmax

> 0. It follows that dV0
dt ≤ 0 when R0 ≤ 1. Moreover, dV0

dt = 0 when T = T0, V = 0,
and A = 0. The solutions of system (1)–(5) converge to M′0, the largest invariant subset of

M0 = {(T, L, I, V, A) | dV0

dt
= 0}. For any elements in M′0, we have T = T0 and V = A = 0,

and hence V̇ = 0. From Equation (4), we obtain 0 = V̇ = ke−n4τ4 I, which gives I = 0 and
İ = 0. From Equation (3), we obtain 0 = İ = αe−n3τ3 L, which gives L = 0. It follows that
M′0 = {SS0}. By LaSalle’s invariance principle (LIP) [60], we find that SS0 is GAS when
R0 ≤ 1.

The following result establishes that when R1 ≤ 1 < R0 and d1 − r + rT1
Tmax

> 0, a
COVID-19 infection with inactive antibody immunity is always established, regardless of
the initial conditions.

Theorem 3. The steady state SS1 of system (1)–(5) is GAS when R1 ≤ 1 < R0 and d1 − r +
rT1

Tmax
> 0.

Proof. Define a Lyapunov function V1(T, L, I, V, A) as

V1 = ρT1H
(

T
T1

)
+

αe−n3τ3

α + d2
L1H

(
L
L1

)
+ I1H

(
I
I1

)
+

d3en4τ4

k
V1H

(
V
V1

)
+

d3uen4τ4

kq
A + U1(t),
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where

U1(t) =
αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ

∫ t

t−ψ
H
(

T(φ)V(φ)

T1V1

)
dφdψ

+ (1− η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ

∫ t

t−ψ
H
(

T(φ)V(φ)

T1V1

)
dφdψ

+ αe−n3τ3 L1

∫ t

t−τ3

H
(

L(φ)
L1

)
dφ + d3 I1

∫ t

t−τ4

H
(

I(φ)
I1

)
dφ.

It is seen that V1(T, L, I, V, A) > 0 for all T, L, I, V, A > 0, and V1(T1, L1, I1, V1, 0) = 0.
Then, dU1(t)

dt is given by

dU1(t)
dt

= ρβTV − αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψβT(t− ψ)V(t− ψ)dψ

− (1− η)
∫ τ2

0
g(ψ)e−n2ψβT(t− ψ)V(t− ψ)dψ

+
αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ ln

(
T(t− ψ)V(t− ψ)

TV

)
dψ

+ (1− η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ ln

(
T(t− ψ)V(t− ψ)

TV

)
dψ

+ αe−n3τ3

(
L− L(t− τ3) + L1 ln

(
L(t− τ3)

L

))
+ d3

(
I − I(t− τ4) + I1 ln

(
I(t− τ4)

I

))
.

By using the derivatives in Equations (1)–(5), we obtain

dV1
dt

= ρ

(
1− T1

T

)
Ṫ +

αe−n3τ3

α + d2

(
1− L1

L

)
L̇ +

(
1− I1

I

)
İ +

d3en4τ4

k

(
1− V1

V

)
V̇

+
d3uen4τ4

kq
Ȧ +

dU1(t)
dt

= ρ

(
1− T1

T

)[
λ− d1T + rT

(
1− T

Tmax

)
− βTV

]
+

αe−n3τ3

α + d2

(
1− L1

L

)[
η
∫ τ1

0
f (ψ)e−n1ψβT(t− ψ)V(t− ψ)dψ− (α + d2)L

]
+

(
1− I1

I

)[
(1− η)

∫ τ2

0
g(ψ)e−n2ψβT(t− ψ)V(t− ψ)dψ + αe−n3τ3 L(t− τ3)− d3 I

]
+

d3en4τ4

k

(
1− V1

V

)[
ke−n4τ4 I(t− τ4)− d4V − uAV

]
+

d3uen4τ4

kq
[qAV − d5 A]

+ ρβTV − αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψβT(t− ψ)V(t− ψ)dψ

− (1− η)
∫ τ2

0
g(ψ)e−n2ψβT(t− ψ)V(t− ψ)dψ

+
αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ ln

(
T(t− ψ)V(t− ψ)

TV

)
dψ

+ (1− η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ ln

(
T(t− ψ)V(t− ψ)

TV

)
dψ

+ αe−n3τ3

(
L− L(t− τ3) + L1 ln

(
L(t− τ3)

L

))
+ d3

(
I − I(t− τ4) + I1 ln

(
I(t− τ4)

I

))
.

(15)
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Equation (15) can be simplified as
dV1
dt

= ρ

(
1− T1

T

)[
λ− d1T + rT

(
1− T

Tmax

)]
+ ρβT1V

− αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψ L1βT(t− ψ)V(t− ψ)

L
dψ + αe−n3τ3 L1

− (1− η)
∫ τ2

0
g(ψ)e−n2ψ I1βT(t− ψ)V(t− ψ)

I
dψ− αe−n3τ3

I1L(t− τ3)

I
+ d3 I1 −

d3d4en4τ4

k
V

− d3
V1 I(t− τ4)

V
+

d3d4en4τ4

k
V1 +

d3uen4τ4

k
V1 A− d3d5uen4τ4

kq
A

+
αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ ln

(
T(t− ψ)V(t− ψ)

TV

)
dψ

+ (1− η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ ln

(
T(t− ψ)V(t− ψ)

TV

)
dψ + αe−n3τ3 L1 ln

(
L(t− τ3)

L

)
+ d3 I1 ln

(
I(t− τ4)

I

)
.

By using the steady-state conditions at SS1,

λ = d1T1 − rT1

(
1− T1

Tmax

)
+ βT1V1,

αe−n3τ3 L1 =
αηe−n3τ3

α + d2
FβT1V1,

d3 I1 = ρβT1V1,
d3d4en4τ4

k
V1 = d3 I1.

we obtain

λ− d1T + rT
(

1− T
Tmax

)
= (T1 − T)

(
d1 − r +

rT1

Tmax
+

rT
Tmax

)
+ βT1V1.

Further, we obtain
dV1
dt
≤ −ρ

(
d1 − r +

rT1
Tmax

)
(T − T1)

2

T
+ ρβT1V1 − ρβT1V1

T1
T

+

(
ρβT1 −

d3d4en4τ4

k

)
V − αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ L1T(t− ψ)V(t− ψ)

LT1V1
dψ

+
αηe−n3τ3

α + d2
βT1V1F− (1− η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ I1T(t− ψ)V(t− ψ)

IT1V1
dψ

− αηe−n3τ3

α + d2
βT1V1F

I1L(t− τ3)

IL1
+

αηe−n3τ3

α + d2
βT1V1F + (1− η)βT1V1G− ρβT1V1

V1 I(t− τ4)

VI1

+ ρβT1V1 +
αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ ln

(
T(t− ψ)V(t− ψ)

TV

)
dψ

+ (1− η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ ln

(
T(t− ψ)V(t− ψ)

TV

)
dψ +

αηe−n3τ3

α + d2
βT1V1F ln

(
L(t− τ3)

L

)
+

αηe−n3τ3

α + d2
βT1V1F ln

(
I(t− τ4)

I

)
+ (1− η)βT1V1G ln

(
I(t− τ4)

I

)
+

d3uen4τ4

k

(
V1 −

d5
q

)
A.

From the steady-state conditions of SS1, we have ρβT1 − d3d4en4τ4

k = 0.
Now, using the following equalities

ln
(

T(t− ψ)V(t− ψ)

TV

)
+ ln

(
L(t− τ3)

L

)
= ln

(
T1

T

)
+ ln

(
L(t− τ3)V1

L1V

)
+ ln

(
L1T(t− ψ)V(t− ψ)

LT1V1

)
,

ln
(

T(t− ψ)V(t− ψ)

TV

)
+ ln

(
I(t− τ4)

I

)
= ln

(
T1

T

)
+ ln

(
I(t− τ4)V1

I1V

)
+ ln

(
I1T(t− ψ)V(t− ψ)

IT1V1

)
,
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we obtain

dV1

dt
≤ −ρ

(
d1 − r +

rT1

Tmax

)
(T − T1)

2

T
+ ρβT1V1 − ρβT1V1

T1

T

− αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ L1T(t− ψ)V((t− ψ)

LT1V1
dψ +

αηe−n3τ3

α + d2
βT1V1F

− (1− η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ I1T(t− ψ)V(t− ψ)

IT1V1
dψ− αηe−n3τ3

α + d2
βT1V1F

I1L(t− τ3)

IL1

+
αηe−n3τ3

α + d2
βT1V1F + (1− η)βT1V1G− ρβT1V1

V1 I(t− τ4)

VI1
+ ρβT1V1

+ ρβT1V1 ln
(

T1

T

)
+

αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψ ln

(
L1T(t− ψ)V(t− ψ)

LT1V1

)
dψ

+ (1− η)βT1V1

∫ τ2

0
g(ψ)e−n2ψ ln

(
I1T(t− ψ)V(t− ψ)

IT1V1

)
dψ +

αηe−n3τ3

α + d2
βT1V1F ln

(
L(t− τ3)V1

L1V

)

+ (1− η)βT1V1G ln
(

I(t− τ4)V1

I1V

)
+

αηe−n3τ3

α + d2
βT1V1F ln

(
I(t− τ4)

I

)
+

d3uen4τ4

k

(
V1 −

d5

q

)
A.

(16)

By using the equality

ln
(

L(t− τ3)V1

L1V

)
+ ln

(
I(t− τ4)

I

)
= ln

(
I1L(t− τ3)

IL1

)
+ ln

(
V1 I(t− τ4)

VI1

)
,

and rearranging the R.H.S. of (16), we obtain

dV1

dt
≤ −ρ

(
d1 − r +

rT1

Tmax

)
(T − T1)

2

T
− ρβT1V1H

(
T1

T

)
− ρβT1V1H

(
V1 I(t− τ4)

VI1

)

− αηe−n3τ3

α + d2
βT1V1

∫ τ1

0
f (ψ)e−n1ψH

(
L1T(t− ψ)V(t− ψ)

LT1V1

)
dψ

− αηe−n3τ3

α + d2
βT1V1FH

(
I1L(t− τ3)

IL1

)

− (1− η)βT1V1

∫ τ2

0
g(ψ)e−n2ψH

(
I1T(t− ψ)V(t− ψ)

IT1V1

)
dψ

+
d3uen4τ4

k

(
V1 −

d5

q

)
A.

Since d1 − r + rT1
Tmax

> 0, then we obtain

d1 − r +
rd3d4en4τ4

kβTmaxρ
> 0 =⇒ d1 − r +

d5β

q
+

2rd3d4en4τ4

kβTmaxρ
> 0

=⇒ 2rd3d4en4τ4

kβTmaxρ
−
(

r− d1 −
d5β

q

)
> 0.
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Then, we note that

R1 ≤ 1⇐⇒ Tmax

2r

r− d1 −
d5β

q
+

√(
r− d1 −

d5β

q

)2
+

4rλ

Tmax

 ≤ d3d4en4τ4

kβρ

⇐⇒

√(
r− d1 −

d5β

q

)2
+

4rλ

Tmax
<

2rd3d4en4τ4

kβTmaxρ
−
(

r− d1 −
d5β

q

)

⇐⇒ 4rλ

Tmax
<

4r2d2
3d2

4e2n4τ4

k2β2T2
maxρ2 −

4rd3d4en4τ4

kβTmaxρ

(
r− d1 −

d5β

q

)

⇐⇒ rλ <
r2d2

3d2
4e2n4τ4

k2β2Tmaxρ2 −
r2d3d4en4τ4

kβρ
+

rd1d3d4en4τ4

kβρ
+

rd3d4d5en4τ4

kqρ

⇐⇒ λke−n4τ4 ρ

d3d4
+

r
β
−
(

d1

β
+

rd3d4en4τ4

kβ2Tmaxρ

)
<

d5

q

⇐⇒ V1 <
d5

q
.

Thus, dV1
dt ≤ 0 when R1 ≤ 1 and d1 − r + rT1

Tmax
> 0. Moreover, dV1

dt = 0 when
T = T1, L = L1, I = I1, V = V1 and A = 0. Thus, the largest invariant subset of M1 ={
(T, L, I, V, A) | dV1

dt
= 0

}
is M′1 = {SS1}. By LIP [60], SS1 is GAS when R1 ≤ 1 < R0

and d1 − r + rT1
Tmax

> 0.

The following result illustrates that when R1 > 1 and d1 − r + rT2
Tmax

> 0, COVID-19
infection with active antibody immunity is always established, regardless of the initial
conditions.

Theorem 4. The steady state SS2 of system (1)–(5) is GAS whenR1 > 1 and d1 − r + rT2
Tmax

> 0.

Proof. Define a Lyapunov function V2(T, L, I, V, A) as

V2 = ρT2H
(

T
T2

)
+

αe−n3τ3

α + d2
L2H

(
L
L2

)
+ I2H

(
I
I2

)
+

d3en4τ4

k
V2H

(
V
V2

)
+

d3uen4τ4

kq
A2H

(
A
A2

)
+ U2(t),

where

U2(t) =
αηe−n3τ3

α + d2
βT2V2

∫ τ1

0
f (ψ)e−n1ψ

∫ t

t−ψ
H
(

T(φ)V(φ)

T2V2

)
dφdψ

+ (1− η)βT2V2

∫ τ2

0
g(ψ)e−n2ψ

∫ t

t−ψ
H
(

T(φ)V(φ)

T2V2

)
dφdψ

+ αe−n3τ3 L2

∫ t

t−τ3

H
(

L(φ)
L2

)
dφ + d3 I2

∫ t

t−τ4

H
(

I(φ)
I2

)
dφ.

We have V2(T, L, I, V, A) > 0 for all T, L, I, V, A > 0, and V2(T2, L2, I2, V2, A2) = 0.
Then, we have



Mathematics 2022, 10, 1857 16 of 28

dV2

dt
=ρ

(
1− T2

T

)
Ṫ +

αe−n3τ3

α + d2

(
1− L2

L

)
L̇ +

(
1− I2

I

)
İ +

d3en4τ4

k

(
1− V2

V

)
V̇

+
d3uen4τ4

kq

(
1− A2

A

)
Ȧ +

dU2(t)
dt

.

=ρ

(
1− T2

T

)[
λ− d1T + rT

(
1− T

Tmax

)
− βTV

]

+
αe−n3τ3

α + d2

(
1− L2

L

)[
η
∫ τ1

0
f (ψ)e−n1ψβT(t− ψ)V(t− ψ)dψ− (α + d2)L

]

+

(
1− I2

I

)[
(1− η)

∫ τ2

0
g(ψ)e−n2ψβT(t− ψ)V(t− ψ)dψ + αe−n3τ3 L(t− τ3)− d3 I

]

+
d3en4τ4

k

(
1− V2

V

)[
ke−n4τ4 I(t− τ4)− d4V − uAV

]
+

d3uen4τ4

kq

(
1− A2

A

)
[qAV − d5 A]

+ ρβTV − αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψβT(t− ψ)V(t− ψ)dψ

− (1− η)
∫ τ2

0
g(ψ)e−n2ψβT(t− ψ)V(t− ψ)dψ

+
αηe−n3τ3

α + d2
βT2V2

∫ τ1

0
f (ψ)e−n1ψ ln

(
T(t− ψ)V(t− ψ)

TV

)
dψ

+ (1− η)βT2V2

∫ τ2

0
g(ψ)e−n2ψ ln

(
T(t− ψ)V(t− ψ)

TV

)
dψ

+ αe−n3τ3

(
L− L(t− τ3) + L2 ln

(
L(t− τ3)

L

))
+ d3

(
I − I(t− τ4) + I2 ln

(
I(t− τ4)

I

))
.

(17)

Summing the terms of Equation (17), we obtain

dV2(t)
dt

= ρ

(
1− T2

T

)[
λ− d1T + rT

(
1− T

Tmax

)]
+ ρβT2V

− αηe−n3τ3

α + d2

∫ τ1

0
f (ψ)e−n1ψ L2βT(t− ψ)V(t− ψ)

L
dψ + αe−n3τ3 L2

− (1− η)
∫ τ2

0
g(ψ)e−n2ψ I2βT(t− ψ)V(t− ψ)

I
dψ− αe−n3τ3

I2L(t− τ3)

I
+ d3 I2 −

d3d4en4τ4

k
V

− d3
V2 I(t− τ4)

V
+

d3d4en4τ4

k
V2 +

d3uen4τ4

k
V2 A− d3d5uen4τ4

kq
A− d3uen4τ4

k
A2V +

d3d5uen4τ4

kq
A2

+
αηe−n3τ3

α + d2
βT2V2

∫ τ2

0
f (ψ)e−n1ψ ln

(
T(t− ψ)V(t− ψ)

TV

)
dψ

+ (1− η)βT2V2

∫ τ2

0
g(ψ)e−n2ψ ln

(
T(t− ψ)V(t− ψ)

TV

)
dψ + αe−n3τ3 L2 ln

(
L(t− τ3)

L

)

+ d3 I2 ln
(

I(t− τ4)

I

)
.

(18)
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The steady state conditions at SS2 are given by

λ = d1T2 − rT2

(
1− T2

Tmax

)
+ βT2V2,

αe−n3τ3 L2 =
αηe−n3τ3

α + d2
FβT2V2,

d3 I2 = ρβT2V2,

d3 I2 =
d3d4en4τ4

k
V2 +

d3uen4τ4

k
A2V2,

V2 =
d5

q
.

and we obtain

λ− d1T + rT
(

1− T
Tmax

)
= (T2 − T)

(
d1 − r +

rT2

Tmax
+

rT
Tmax

)
+ βT2V2.

By using the above conditions, the derivative in (18) is transformed into

dV2
dt
≤ −ρ

(
d1 − r +

rT2
Tmax

)
(T − T2)

2

T
+ ρβT2V2 − ρβT2V2

T2
T

+

(
ρβT2 −

d3d4en4τ4

k
− d3uen4τ4

k
A2

)
V

− αηe−n3τ3

α + d2
βT2V2

∫ τ1

0
f (ψ)e−n1ψ L2T(t− ψ)V(t− ψ)

LT2V2
dψ +

αηe−n3τ3

α + d2
βT2V2F

− (1− η)βT2V2

∫ τ2

0
g(ψ)e−n2ψ I2T(t− ψ)V(t− ψ)

IT2V2
dψ− αηe−n3τ3

α + d2
βT2V2F

I2L(t− τ3)

IL2

+
αηe−n3τ3

α + d2
βT2V2F + (1− η)βT2V2G− ρβT2V2

V2 I(t− τ4)

VI2
+ ρβT2V2

+
αηe−n3τ3

α + d2
βT2V2

∫ τ1

0
f (ψ)e−n1ψ ln

(
T(t− ψ)V(t− ψ)

TV

)
dψ

+ (1− η)βT2V2

∫ τ2

0
g(ψ)e−n2ψ ln

(
T(t− ψ)V(t− ψ)

TV

)
dψ +

αηe−n3τ3

α + d2
βT2V2F ln

(
L(t− τ3)

L

)

+
αηe−n3τ3

α + d2
βT2V2F ln

(
I(t− τ4)

I

)
+ (1− η)βT2V2G ln

(
I(t− τ4)

I

)
.

From the steady-state conditions of SS2, we have

ρβT2 −
d3d4en4τ4

k
− d3uen4τ4

k
A2 = 0.

Now, using the following equalities

ln
(

T(t− ψ)V(t− ψ)

TV

)
+ ln

(
L(t− τ3)

L

)
= ln

(
T2

T

)
+ ln

(
L(t− τ3)V2

L2V

)
+ ln

(
L2T(t− ψ)V(t− ψ)

LT2V2

)
,

ln
(

T(t− ψ)V(t− ψ)

TV

)
+ ln

(
I(t− τ4)

I

)
= ln

(
T2

T

)
+ ln

(
I(t− τ4)V2

I2V

)
+ ln

(
I2T(t− ψ)V(t− ψ)

IT2V2

)
,

we obtain
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dV2

dt
≤ −ρ

(
d1 − r +

rT2

Tmax

)
(T − T2)

2

T
+ ρβT2V2 − ρβT2V2

T2

T

− αηe−n3τ3

α + d2
βT2V2

∫ τ1

0
f (ψ)e−n1ψ L2T(t− ψ)V((t− ψ)

LT2V2
dψ +

αηe−n3τ3

α + d2
βT2V2F

− (1− η)βT2V2

∫ τ2

0
g(ψ)e−n2ψ I2T(t− ψ)V(t− ψ)

IT2V2
dψ− αηe−n3τ3

α + d2
βT2V2F

I2L(t− τ3)

IL2

+
αηe−n3τ3

α + d2
βT2V2F + (1− η)βT2V2G− ρβT2V2

V2 I(t− τ4)

VI2
+ ρβT2V2

+ ρβT2V2 ln
(

T2

T

)
+

αηe−n3τ3

α + d2
βT2V2

∫ τ1

0
f (ψ)e−n1ψ ln

(
L2T(t− ψ)V(t− ψ)

LT2V2

)
dψ

+ (1− η)βT2V2

∫ τ2

0
g(ψ)e−n2ψ ln

(
I2T(t− ψ)V(t− ψ)

IT2V2

)
dψ +

αηe−n3τ3

α + d2
βT2V2F ln

(
L(t− τ3)V2

L2V

)

+ (1− η)βT2V2G ln
(

I(t− τ4)V2

I2V

)
+

αηe−n3τ3

α + d2
βT2V2F ln

(
I(t− τ4)

I

)
.

By using the equality

ln
(

L(t− τ3)V2

L2V

)
+ ln

(
I(t− τ4)

I

)
= ln

(
I2L(t− τ3)

IL2

)
+ ln

(
V2 I(t− τ4)

VI2

)
,

and rearranging the R.H.S. of dV2
dt , we obtain

dV2

dt
≤ −ρ

(
d1 − r +

rT2

Tmax

)
(T − T2)

2

T
− ρβT2V2H

(
T2

T

)
− ρβT2V2H

(
V2 I(t− τ4)

VI2

)

− αηe−n3τ3

α + d2
βT2V2

∫ τ1

0
f (ψ)e−n1ψH

(
L2T(t− ψ)V(t− ψ)

LT2V2

)
dψ

− αηe−n3τ3

α + d2
βT2V2FH

(
I2L(t− τ3)

IL2

)

− (1− η)βT2V2

∫ τ2

0
g(ψ)e−n2ψH

(
I2T(t− ψ)V(t− ψ)

IT2V2

)
dψ.

We see that
dV2

dt
≤ 0 when R1 > 1 and d1 − r +

rT2

Tmax
> 0. Moreover,

dV2

dt
= 0

when T = T2, L = L2, I = I2, and V = V2. The solutions of system (1)–(5) tend toward

M′2, the largest invariant subset of M2 = {(T, L, I, V, A, C) | dV2

dt
= 0}. For each element

in M′2, we have V = V2 and then V̇ = 0, and from Equation (4), we have 0 = V̇ =
ke−n4τ4 I2 − d4V2 − uAV2, which gives A(t) = A2. It follows that M′2 = {SS2}. By LIP [60],
SS2 is GAS whenR1 > 1 and d1 − r + rT2

Tmax
> 0.
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5. Numerical Simulations

In this section, we execute numerical simulations to enhance the results of Theorems 2–4.
Moreover, we study the impact of time delays on the dynamical behavior of the system. Let
us take a particular form of the probability distributed functions as

f (ψ) = δ(ψ− ψ1), g(ψ) = δ(ψ− ψ2),

where δ(.) is the Dirac delta function. When τi → ∞, i = 1, 2, we have∫ ∞

0
f (ψ)dψ = 1,

∫ ∞

0
g(ψ)dψ = 1.

We have ∫ ∞

0
δ(ψ− ψi)e−niψdψ = e−niψi , i = 1, 2.

Moreover,∫ ∞

0
δ(ψ− ψi)e−niψT(t− ψ)V(t− ψ)dψ = e−niψi T(t− ψi)V(t− ψi), i = 1, 2.

Hence, model (1)–(5) becomes

Ṫ(t) = λ− d1T(t) + rT(t)
(

1− T(t)
Tmax

)
− βT(t)V(t), (19)

L̇(t) = ηβe−n1ψ1 T(t− ψ1)V(t− ψ1)− αL(t)− d2L(t), (20)

İ(t) = (1− η)βe−n2ψ2 T(t− ψ2)V(t− ψ2) + αe−n3τ3 L(t− τ3)− d3 I(t), (21)

V̇(t) = ke−n4τ4 I(t− τ4)− d4V(t)− uA(t)V(t), (22)

Ȧ(t) = qA(t)V(t)− d5 A(t). (23)

The threshold parametersR0 andR1 of model (19)–(23) are given by

R0 =
kβe−n4τ4 T0

d3d4

(
αηe−n3τ3

α + d2
e−n1ψ1 + (1− η)e−n2ψ2

)
, (24)

R1 =
kβe−n4τ4 T2

d3d4

(
αηe−n3τ3

α + d2
e−n1ψ1 + (1− η)e−n2ψ2

)
. (25)

To solve system (19)–(23) numerically, we use the MATLAB solver dde23 (see the
Appendix A). Without loss of generality, let us consider for simplicity that ψ1 = ψ2 = τ3 =
τ4 = τ. The values of the parameters of model (19)–(23) are chosen as λ = 0.11, r = 0.01,
Tmax = 13, η = 0.5, α = 4.08, k = 0.25, u = 0.05, d1 = 0.01, d2 = 10−3, d3 = 0.05, d4 = 4.36,
d5 = 0.04, n1 = 10−3, n2 = 0.11, n3 = 1, and n4 = 1. The remaining parameters of the
model will be varied. We have chosen the parameters of the model in order to perform the
numerical simulations. This is because the difficulty of obtaining real data from COVID-19
patients; however, if one has real data, then the parameters of the model can be estimated
and the validity of the model can be established. To illustrate our global stability results
provided in Theorems 2–4, we show that, from any chosen initial states (any disease stage),
the solution of the system will converge to one of the three steady states of the system.
Therefore, we select three different sets of initial conditions for system (19)–(23):

Initial-1 : (T(κ), L(κ), I(κ), V(κ), A(κ)) =(10, 0.007, 1, 0.04, 8),

Initial-2 : (T(κ), L(κ), I(κ), V(κ), A(κ)) =(8, 0.008, 1.1, 0.05, 10),

Initial-3 : (T(κ), L(κ), I(κ), V(κ), A(κ)) =(6, 0.009, 1.2, 0.06, 12),

where κ ∈ [−τ, 0].
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5.1. Stability of Steady States

In this subsection, we address the stability of the three steady states with τ = 0.1,
while β and q are varied.

Scenario 1 (Stability of SS0): β = 0.05 and q = 0.1. Using these values, we compute
R0 = 0.5874 < 1 and R1 = 0.2291 < 1. According to Theorem 2, SS0 is GAS and SARS-
CoV-2 is predicted to be completely cleared from the body. From Figure 1, we see that
the numerical results confirm the results of Theorem 2. We note that the concentration of
healthy epithelial cells is increased and converges to its normal value T0 = 11.9583, while
the concentrations of latent infected cells, active infected cells, SARS-CoV-2 particles, and
antibodies are decaying and tend toward zero. In this situation, the virus particles will be
eliminated from the body.
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Figure 1. Solutions of system (19)–(23) with three initial conditions whenR0 ≤ 1. (a) Healthy epithe-
lial cells; (b) latent infected cells; (c) active infected cells; (d) SARS-CoV-2 particles; (e) antibodies.
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Scenario 2 (Stability of SS1): β = 0.13 and q = 0.1. This gives R0 = 1.5273 > 1,
R1 = 0.2622 < 1, and d1 − r + rT1

Tmax
= 0.006 > 0. According to Theorem 3, SS1 is GAS.

From Figure 2, we can see that there is agreement between the numerical and theoretical
results of Theorem 3. In addition, the solutions of the system converge to the steady state
SS1 = (7.8298, 0.0077, 1.19, 0.0617, 0). In such a case, SARS-CoV-2 exists but with an inactive
antibody immune response.

0 100 200 300 400 500 600 700 800 900 1000

6

6.5

7

7.5

8

8.5

9

9.5

10

(a)

0 200 400 600 800 1000 1200

4

5

6

7

8

9

10
10

-3

(b)

0 200 400 600 800 1000 1200

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

(c)

0 200 400 600 800 1000 1200

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

(d)

0 50 100 150 200 250 300

0

2

4

6

8

10

12

(e)

Figure 2. Solutions of system (19)–(23) with three initial conditions when R1 ≤ 1 < R0 and

d1 − r +
rT1

Tmax
> 0. (a) Healthy epithelial cells; (b) latent infected cells; (c) active infected cells;

(d) SARS-CoV-2 particles; (e) antibodies.
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Scenario 3 (Stability of SS2): β = 0.13 and q = 0.9. These values giveR0 = 1.5273 > 1,
R1 = 1.1212 > 1, and d1− r+ rT2

Tmax
= 0.0068 > 0. According to Theorem 4, SS2 is GAS. Further,

the solutions of the system converge to the steady state SS2 = (8.7786, 0.0062, 0.9604, 0.0444,
10.567). In this situation, SARS-CoV-2 exists with active antibody immunity (Figure 3).
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Figure 3. Solutions of system (19)–(23) with three initial conditions whenR1 > 1 and d1− r+
rT2

Tmax
>

0. (a) Healthy epithelial cells; (b) latent infected cells; (c) active infected cells; (d) SARS-CoV-2 particles;
(e) antibodies.

5.2. Effect of the Time Delay on the SARS-CoV-2 Dynamics

In this subsection, we explore the impact of time delays τ on the stability of the steady
states. We note from Equations (24) and (25) that the parameters R0 and R1 rely on the
delay parameter τ, which causes a significant change in the stability of the system. To
clarify this situation, we choose β = 0.13, q = 0.9, and τ is varied. Moreover, we consider
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the initial state initial-3. Figure 4 shows the influence of the time delay on the solution of the
system. We notice that as time delay τ is increased, the number of healthy epithelial cells
is increased, while the numbers of latent infected cells, active infected cells, SARS-CoV-2
particles, and antibodies are decreased. Now, let us writeR0 andR1 as

R0(τ) =
kβe−n4τT0

d3d4

[
αηe−n3τ

α + d2
e−n1τ + (1− η)e−n2τ

]
,

R1(τ) =
kβe−n4τT2

d3d4

[
αηe−n3τ

α + d2
e−n1τ + (1− η)e−n2τ

]
.
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Figure 4. Solutions of system (19)–(23) under the influence of the time delay τ. (a) Healthy epithelial
cells; (b) latent infected cells; (c) active infected cells; (d) SARS-CoV-2 particles; (e) antibodies.
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We see that R0 and R1 are decreasing functions of τ. Let τcr0 and τcr1 be such
that R0(τcr0) = 1 and R1(τcr1) = 1. Using the values of the parameters, we obtain
τcr0 = 0.380835 and τcr1 = 0.174848. Therefore, we have the following cases:

(i) if τ ≥ 0.380835, thenR0 ≤ 1 and SS0 is GAS;
(ii) if 0.174848 ≤ τ < 0.380835, then R1 ≤ 1 < R0 and 0.006753 ≤ d1 − r + rT1

Tmax
<

0.009199 and SS1 is GAS;
(iii) if 0 ≤ τ < 0.174848, then R1 > 1 and d1 − r + rT1

Tmax
= 0.006753 > 0 and SS2 is

GAS. We can see from the above argumentation that increasing time delay values can have
the same impact as antiviral treatment.

6. Conclusions and Discussion

In this paper, we formulate a COVID-19 infection model with distributed and discrete
delays and an antibody immune response. Four time delays are included in the model: a
delay in the formation of latent infected cells, a delay in the formation of active infected
cells, a delay in the activation of latent infected cells, a maturation delay of new SARS-
CoV-2 particles. We consider a logistic term for the healthy epithelial cells. We prove the
nonnegativity and boundedness of the solutions. We calculate all steady states and establish
that their existence is governed by two threshold parameters: the basic reproduction
numberR0 and the antibody immune response activation numberR1. The global stability
of all steady states of the model is investigated by constructing Lyapunov functions and
LaSalle’s invariance principal. We prove the following:

• The healthy steady state SS0 always exists and it is GAS whenR0 ≤ 1. This leads to
the situation of an individual without SARS-CoV-2 infection.

• The infected steady state with an inactive antibody immune response SS1 exists if
R0 > 1 and d1 − r + rT1

Tmax
> 0. It is GAS when R1 ≤ 1 < R0 and d1 − r + rT1

Tmax
> 0.

This represents the situation of SARS-CoV-2 infection in a patient with an inactive
immune response.

• The infected steady state with active antibody immune response SS2 exists and it is
GAS whenR1 > 1 and d1 − r + rT2

Tmax
> 0. This leads to the situation of SARS-CoV-2

infection in a patient with an active immune response.

We performed numerical simulations for the model and found that both the numerical
and theoretical results are consistent. We studied the effect of time delays on the global
dynamical properties of the model. We note thatR0 is a decreasing function on time delays
τ1, τ2, τ3, and τ4. When all other parameters are fixed and delays are sufficiently large,R0
becomes less than one, which makes the healthy steady state SS0 globally asymptotically
stable. From a biological viewpoint, time delays play positive roles in the SARS-CoV-2
infection process in order to eliminate the virus. Sufficiently large time delays slow down
SARS-CoV-2’s development, and SARS-CoV-2 is controlled and disappears. This offers
some suggestions on new drugs to prolong the time for the formation of latent infected
epithelial cells, the time for the formation of active infected epithelial cells, the time for the
activation of latent infected epithelial cells, or the time for SARS-CoV-2 particles to mature
(infectious).

The model investigated in this work can be developed by (i) using real data to estimate
the parameters’ values and examine the validity of the model, (ii) considering the diffusion
of SARS-CoV-2 particles and cells [61,62], (iii) expanding it to a multiscale model to obtain
a deeper understanding of the SARS-CoV-2 dynamics [63,64], (iv) incorporating the role of
CTLs in killing the active infected cells. If we consider system (1)–(5) under the effect of
CTL immunity, system (1)–(5) is extended to the following model:
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Ṫ(t) = λ− d1T(t) + rT(t)
(

1− T(t)
Tmax

)
− βT(t)V(t),

L̇(t) = η
∫ τ1

0
f (ψ)e−n1ψβT(t− ψ)V(t− ψ)dψ− αL(t)− d2L(t),

İ(t) = (1− η)
∫ τ2

0
g(ψ)e−n2ψβT(t− ψ)V(t− ψ)dψ + αe−n3τ3 L(t− τ3)− d3 I(t)−ωI(t)C(t),

V̇(t) = ke−n4τ4 I(t− τ4)− d4V(t)− uA(t)V(t),

Ȧ(t) = qA(t)V(t)− d5 A(t),

Ċ(t) = σI(t)C(t)− d6C(t),

where C(t) represents the concentration of CTLs at time t. The active infected cells are
killed by CTLs at rate ωCI. The terms σCI and d6C refer to the proliferation and death rates
of CTLs, respectively. Studying the SARS-CoV-2 dynamics model with such extensions is
left to future work.
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Appendix A

MATLAB scripts
function H = COVID (t,y,Z)
global lambda beta eta tau1 tau2 tau3 tau4 alpha d1 d2 d3 d4 d5 r k u q n1 n2 n3 n4

Tmax
ylag1 = Z (:,1); ylag2 = Z (:,2); ylag3 = Z (:,3); ylag4 = Z (:,4);
H=zeros (5,1);
H (1)=lambda-d1*y (1)+r*y (1)*(1-y (1)/Tmax)-beta*y (1)*y (4);
H (2)=eta*beta*exp (-n1*tau1)*ylag1 (1)*ylag1 (4)-(alpha+d2)*y (2);
H (3)=(1-eta)*beta*exp (-n2*tau2)*ylag2 (1)*ylag2 (4)+alpha*exp (-n3*tau3)*ylag3 (2)-

d3*y (3);
H (4)=k*exp (-n4*tau4)*ylag4 (3)-d4*y (4)-u*y (4)*y (5);
H (5)=q*y (4)*y (5)-d5*y (5);
end
Main Programm
global lambda beta eta tau1 tau2 tau3 tau4 alpha d1 d2 d3 d4 d5 r k u q n1 n2 n3 n4

Tmax
caseNumber=3;
j=1;
if caseNumber==1
beta=0.05;
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q=0.1;
end
if caseNumber==2
beta=0.13;
q=0.1;
end
if caseNumber==3
beta=0.13;
q=0.9;
end
%===== Fixed data =======
lambda=0.11; r=0.01; Tmax=13; eta=0.5; alpha=4.08; k=0.25; u=0.05; d1=0.01; d2=1e-3;

d3=0.05; d4=4.36; d5=0.04; n1=0.001; n2=0.11; n3=1; n4=1;
%==== Delay parameters =====
tau1=0.1; tau2=0.1; tau3=0.1; tau4=0.1;
%===Initial conditions =====
a0=10;b0=0.007;c0=1.;d0=0.04;e0=8;
sol12 = dde23 (’COVID’,[tau1 tau2 tau3 tau4],[a0; b0; c0; d0; e0], [0 1200]);
figure (1)
pp0=plot (sol12.x, sol12.y(j,:));
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