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Abstract: A spring-coupled three-link horizontal manipulator (STHM) is an underactuated me-
chanical system that possesses two control inputs and three degrees of freedom (DOF). This paper
discusses the stabilization control problem for this multi-DOF underactuated system. By using an
energy-absorbing idea, we design two types of virtual friction controllers: PsD controller and PD
controller. Additionally, the stability of the control system is analyzed based on Lyapunov theory
and LaSalle’s invariance principle. The design of the stabilizing controller in this paper makes good
use of the physical characteristics of the STHM system. The design process of the whole control
system is simple. Numerical examples demonstrate the validity and superiority of our developed
control strategy.

Keywords: underactuated manipulator; stabilization control; virtual friction; Lyapunov function;
LaSalle’s invariance principle
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1. Introduction

A mechanical system is called underactuated system if it has fewer actuators than
the degrees of freedom (DOF) [1]. Compared with the fully actuated mechanical systems,
the underactuated systems have advantages of low energy consumption, light weight and
flexible movement. These advantages make them widely used in daily life. However, the
reduction of actuators usually makes this kind of system has nonholonomic constraints [2].
Moreover, the system also has complex nonlinear dynamic behavior. As a result, the motion
control of the underactuated systems is difficult to solve. In the past few years, researchers
have conducted a lot of exploration and research on this problem [3,4].

The simplest underactuated system is a system that has two DOFs and has only one
control input. There are many examples of 2-DOF underactuated systems. That include
Acrobot and Pendubot [5,6], cart pendulum [7], TORA [8], inertia wheel pendulum [9],
Furuta pendulum [10] and so on. To solve the motion control problem for the 2-DOF
underactuated systems, many control strategies have been developed in the past three
decades. For example, a partial feedback linearization method in [11], an energy-based
method in [12], a sliding mode variable structure method in [13], an intelligent method
in [14].

As mentioned above, a lot of research has been done on the motion control of 2-DOF
underactuated mechanical systems. However, as we all know, most systems in natural life
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are multi-DOF systems. Therefore, it is of more practical significance to study the control
problems for multi-DOF underactuated systems. In recent years, the study on the control
of n-DOF (n ≥ 3) underactuated mechanical systems has become a research hotspot in the
nonlinear control field [15,16]. Among them, the control of an n-link (n ≥ 3) underactuated
manipulator has especially attracted researchers’ attention. For a manipulator system, the
addition of links makes it more flexible and practical. However, the nonlinear dynamic
behavior and nonholonomic constraints of the system also become more complex with
the increase of links. This increases the difficulty of designing the motion controller. To
solve this difficult problem, scholars have made a lot of in-depth exploration and presented
some useful control methods. These include an energy and posture method in [17], virtual
composite links in [18], and an intelligent control method in [19].

As a typical type of multi-link manipulator, the n-link (n≥ 3) underactuated horizontal
manipulator (UHM) is widely used in many fields. A UHM moves in a horizontal plane
and is not affected by gravity. Every point in the motion space is the equilibrium point
of the system, and the system is not local-linear controllable, is even not small-time-local
controllable [20] around any equilibrium point. These make the motion controller design
for a multi-link UHM very difficult. To easily solve the motion control of a three-link
UHM, an underactuated spring-coupled three-link horizontal manipulator (STHM) was
constructed by adding a spring around the passive joint in [21]. Because the price of
springs is low and the elastic force does not disappear in a non-gravity environment, the
STHM has wide application prospects in industrial production, outer space exploration,
surgical operations and other areas. The stabilizing control problem for the STHM has been
discussed in [21,22].

In this paper, we also concern the stabilizing control of the underactuated STHM
system. Two types of virtual friction stabilizing controllers (i.e., PsD controller and PD
controller) are presented by using an energy-absorbing idea. The stability analysis is carried
out by Lyapunov theory and LaSalle’s invariance principle. The developed controller
can effectively achieve the stabilizing control objective of the STHM. The effectiveness
and superiority of the presented controller are validated by numerical examples. The
contribution of this paper is reflected in the following aspects. First, an energy-absorbing
idea is used to design the stabilizing controller by analyzing the physical characteristics of
the STHM system. Second, the Lyapunov functions are constructed to prove the stability of
the closed-loop control system. Third, the expressions of the presented controller is simpler
than the existing control algorithms, which can save the storage space of the control system.
The rest of this paper is organized as follows. In Section 2, we introduce the mathematical
model of the STHM. In Section 3, the design of virtual friction stabilizing controller are
explained in detail. After that, numerical examples are presented in Section 4. Finally, the
concluding remarks are given in Section 5.

2. Mathematical Model of Underactuated STHM System

An underactuated spring-coupled three-link horizontal manipulator (STHM) is shown
in Figure 1, where the first joint is passive and others are active. It is clear that the STHM
is a 3-DOF underactuated system with two control inputs. For i = 1, 2, 3, the physical
meaning of parameters in Figure 1 are

mi: mass of the i− th link; Li: length of the i− th link;
Lci: distance from a pivot joint to the center of mass (COM) of the i− th link;
Ji: moment of inertia of the i− th link; k: the elastic coefficient of the spring;
qi(t): rotation angle of the the i− th link;
Fj(t): the input torque applied on the j− th joint (j = 2, 3).
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Figure 1. Spring-coupled three-link horizontal manipulator (STHM).

Assume that there is no friction at each point and that the spring is fully relaxed when
q1(t) = 0. So, the potential energy of the STHM system is P(q) = kq2

1/2. In addition, it

is not difficult to obtain the kinetic energy of the system as K
(
q,

.
q
)
=

.
qTD(q)

.
q/2, where

q = [q1, q2, q3]
T, D(q) =

[
Dij(q)

]
3×3 is the symmetric positive-definite inertia matrix, and

D11(q) = α1 + α2 + α4 + 2α5 cos(q2 + q3) + 2α3 cos q2 + 2α6 cos q3,
D12(q) = α2 + α4 + α3 cos q2 + α5 cos(q2 + q3) + 2α6 cos q3,
D13(q) = α4 + α5 cos(q2 + q3) + α6 cos q3,
D22(q) = α2 + α4 + 2α6 cos q3,
D23(q) = α4 + α6 cos q3,
D33(q) = α4,
α1 = J1 + m1L2

c1 + (m2 + m3)L2
1,

α2 = J2 + m2L2
c2 + m3L2

2,
α3 = (m2Lc2 + m3L2)L1, α4 = J3 + m3L2

c3,
α5 = m3L1Lc3, α6 = m3L2Lc3.

Select L
(
q,

.
q
)
= K

(
q,

.
q
)
− P(q) as the Lagrange function of the system. It gives the

following Euler–Lagrangian motion equations.

d
dt

[
∂L(q,

.
q)

∂
.
q1

]
− ∂L(q,

.
q)

∂q1
= 0,

d
dt

[
∂L(q,

.
q)

∂
.
q2

]
− ∂L(q,

.
q)

∂q2
= F2,

d
dt

[
∂L(q,

.
q)

∂
.
q3

]
− ∂L(q,

.
q)

∂q3
= F3.

It is equivalent to D11(q) D12(q) D13(q)
D12(q) D22(q) D23(q)
D13(q) D23(q) D33(q)

 ..
q1..
q2..
q3

+

 C11(q,
.
q) C12(q,

.
q) C13(q,

.
q)

C21(q,
.
q) C22(q,

.
q) C23(q,

.
q)

C31(q,
.
q) C32(q,

.
q) C33(q,

.
q)

 .
q1.
q2.
q3

+

 kq1
0
0

 =

 0
F2
F3

, (1)
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where

C11(q,
.
q) = −α5

[ .
q2 +

.
q3
]

sin(q2 + q3)− α3
.
q2 sin q2 − α6

.
q3 sin q3,

C12(q,
.
q) = −α5

[ .
q1 +

.
q2 +

.
q3
]

sin(q2 + q3)− α3
[ .
q1 +

.
q2
]

sin q2 − α6
.
q3 sin q3,

C13(q,
.
q) = −

[ .
q1 +

.
q2 +

.
q3
]
[α5 sin(q2 + q3) + α6 sin q3],

C21(q,
.
q) = α5

.
q1 sin(q2 + q3) + α3

.
q1 sin q2 − α6

.
q3 sin q3,

C22(q,
.
q) = −α6

.
q3 sin q3,

C23(q,
.
q) = −α6

[ .
q1 +

.
q2 +

.
q3
]

sin q3,
C31(q,

.
q) = α5

.
q1 sin(q2 + q3) + α6

[ .
q1 +

.
q2
]

sin q3,
C32(q,

.
q) = α6

[ .
q1 +

.
q2
]

sin q3, C33(q,
.
q) = 0.

A commonly discussed issue for the system (1) is to stabilize it at the origin equilibrium
point. In other words, the researchers focus on how to design the controllers F2 and F3 to

effectively stabilize (1) at x = [qT,
.
qT
]
T
= 0. We will explain in detail how to solve this

problem by using an energy absorption idea below.

3. Design of Virtual Friction Stabilizing Controllers

As a natural mechanical system, the STHM has two kinds of energy: kinetic energy
and elastic potential energy. Note that the system has no energy at the objective point x = 0.
Thus, it is reasonable to use an energy-absorbing controller to stabilize the system at the
objective point. From a physical point of view, this kind of control law can be called a
virtual friction control law. In this section, two types of virtual friction control laws called
PsD controller and PD controller are designed.

3.1. Design of PsD Controller

Note that the second joint and the third joint of the STHM are actuated. Moreover, the
angular velocities of these two joints are

.
q2 and

.
q3, respectively. According to the physical

definition of friction, we design a virtual friction control law to be

F2 = −r1
.
q2 − r2 sin q2, F3 = −r3

.
q3 − r4 sin q3, (2)

where ri > 0 (i = 1, 2, 3, 4) are constants. Next, we analyze the properties of the
closed-loop control system (1) and (2).

Theorem 1. The closed-loop system (1) and (2) has equilibrium points xe1 = [0, 0, 0, 0, 0, 0]T,
xe2 = [0, π, 0, 0, 0, 0]T, xe3 = [0, 0, π, 0, 0, 0]T, and xe4 = [0, π, π, 0, 0, 0]T. In addition, xe1 is
stable, xe2, xe3, xe4 are unstable.

Proof. Substituting (2) into (1) gives the closed-loop control system as

..
q = −D−1(q)C(q,

.
q)

.
q + D−1(q)

 −kq1
−r1

.
q2 − r2 sin q2

−r3
.
q3 − r4 sin q3

, (3)

where C(q,
.
q) =

[
Cij(q)

]
3×3. To obtain the equilibrium points of (3), letting

.
q =

..
q = 0

yields q1 = 0, sin q2 = 0, sin q3 = 0. This gives q1 = 0, q2 = 0 or π, q3 = 0 or π based on
the assumption that the rotation range of the periodic angle of the STHM is (−π, π]. As a
result, it is easy to obtain that the equilibrium points of (3) are xei(i = 1, 2, 3, 4).

In order to determine the stability of the equilibrium points, we linearize (3) around
xei(i = 1, 2, 3, 4). This gives the following four linear approximation matrices

Ai =

[
03×3 I3
A21i A22i

]
, i = 1, 2, 3, 4, . . . (4)
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where I3 is a 3× 3 identity matrix,

A21i = D−1(q)

 −k 0 0
0 −r2 cos q2 0
0 0 −r4 cos q3

∣∣∣∣∣∣
x=xei

, A22i = D−1(q)

 0 0 0
0 −r1 0
0 0 −r3

∣∣∣∣∣∣
x=xei

.

By using the Routh criterion, we verify that A1 is a stable matrix, A2, A3 and A4 are
unstable matrices. This tells us that xe1 is a stable equilibrium point, xe2, xe3, xe4 are unstable
equilibrium points. The proof is completed. �

Theorem 2. If the closed-loop system (1) and (2) does not moving from xej(j = 2, 3, 4) initially, it
asymptotically converges to the equilibrium point xe1.

Proof. We construct a Lyapunov candidate function as

VPsD = E + r2(1− cos q2) + r4(1− cos q3), (5)

where E =
( .

qTD(q)
.
q + kq2

1

)
/2 is the total energy of the STHM system. According to the

results in [22], we have
.
E =

.
q2F2 +

.
q3F3. Differentiating VPsD along the closed-loop system

(3) yields

.
VPsD =

.
E + r2

.
q2 sin q2 + r4

.
q3 sin q3

=
.
q2
[
−r1

.
q2 − r2 sin q2

]
+

.
q3
[
−r3

.
q3 − r4 sin q3

]
+ r2

.
q2 sin q2 + r4

.
q3 sin q3

= −r1
.
q2

2 − r3
.
q2

3 ≤ 0
(6)

In order to further analyze the final motion of the STHM under the operation of
the control law (2), we let

.
VPsD(x) ≡ 0. This gives that

.
q2 =

.
q3 = 0, VPsD, q2 and q3

are constants. From (5), we know that E is a constant. It follows from the second and
third equations of (1) that q1 is a constant. So, we get

.
q1 =

.
q2 =

.
q3 = 0. Substituting

it into (1) gives q1 = 0, sin q2 = 0, sin q3 = 0. According to the LaSalle’s invariance
principle, the closed-loop control system (3) converges to the maximum invariant set of
{xe1, xe2, xe3, xe4}. As mentioned in Theorem 1, xe2, xe3, and xe4 are unstable equilibrium
points. As a result, the closed-loop control system (3) finally converges to the stable
equilibrium point xe1 if the system’s initial condition is not equal to xej(j = 2, 3, 4). The
proof is completed. �

3.2. Design of PD Controller

Under the operation of the PsD controller in (2), the closed-loop control system has
four equilibrium points. In order to reduce the number of equilibrium points and to make
the analysis process simpler, a PD controller is designed to be

F2 = −µ1
.
q2 − µ2q2, F3 = −µ3

.
q3 − µ4q3, (7)

where µi (i = 1, 2, 3, 4) are positive constants. Submitting (7) into (1) gives the closed-loop
control system as

..
q = −D−1(q)C(q,

.
q)

 .
q1.
q2.
q3

+ D−1(q)

 −kq1
−µ1

.
q2 − µ2q2

−µ3
.
q3 − µ4q3

. (8)

It is easy to obtain that the system (8) has only one equilibrium point xe1. The linear
approximation model of (8) around the equilibrium point xe1 is

..
q = D−1(0)

 −k 0 0
0 −µ2 0
0 0 −µ4

 q1
q2
q3

+ D−1(0)

 0 0 0
0 −µ1 0
0 0 −µ3

 .
q1.
q2.
q3

. (9)



Mathematics 2022, 10, 1832 6 of 9

As a result, the linear approximation matrix of (9) is

B =

[
03×3 I3
B1 B2

]
, B1 = D−1(0)

 −k 0 0
0 −µ2 0
0 0 −µ4

, B2 = D−1(0)

 0 0 0
0 −µ1 0
0 0 −µ3

. (10)

It follows from Routh criterion that the matrix B is stable. This tells us that xe1 is a
stable equilibrium point of (8). The global stability analysis for xe1 is given in the following
theorem.

Theorem 3. The closed-loop control system (8) globally and asymptotically converges to the
equilibrium point xe1.

Proof. A Lyapunov candidate function for (8) is defined to be

VPD = E +
µ2

2
q2

2 +
µ3

2
q2

3. (11)

Differentiating VPD along (8) gives

.
VPD =

.
E + µ2

.
q2q2 + µ3

.
q3q3

=
.
q2
[
−µ1

.
q2 − µ2q2

]
+

.
q3
[
−µ3

.
q3 − µ4q3

]
+ µ2

.
q2q2 + µ4

.
q3q3

= −µ1
.
q2

2 − µ3
.
q2

3 ≤ 0.
(12)

By the similar proving procedures in the proof of Theorem 2, we can get q =
.
q = 0

from
.

VPD(x) ≡ 0. Thus, the system converges to the equilibrium point xe1 finally. The
proof is completed. �

Remark 1. As description in Theorem 2, the PsD controller in (2) is not really a global stabilizing
controller for (1) at xe1 since the initial position of the control system is not any point in motion
space. In contrast, the PD controller in (7) has no requirements for initial position. It can globally
stabilize the STHM at the objective position xe1 from any initial position.

Remark 2. This paper achieves the stabilization control of the STHM system based on an energy-
absorbing idea. We make good use of the physical properties of mechanical system to design the
stabilizing controller. The design process of the whole control system and the expressions of the
presneted controller are simpler than that in [21,22].

Remark 3. From the expression of the PsD controller in (2), there are four control parameters that
we need to choose, i.e., ri (i = 1, · · · , 4). According to the above analysis results, the closed-loop
control system (1) and (2) is asymptotically stable at xe1 if ri> 0 (i = 1, · · · , 4) and the initial
condition is not equal to xej(j = 2, 3, 4). In this paper, we choose the stabilization time of the control
system as the optimal performance index. In order to ensure the good performance of the closed-loop
system, we search for the optimal control parameters through the following steps: (1) Select a fixed
set of constants r2 and r4; (2) Select a set of optimal constants r1 and r3 to minimize the stabilization
time of the control system. For the case of PD controller in (7), we can use the same method of
selecting ri (i = 1, · · · , 4) to select the optimal control parameters µi (i = 1, · · · , 4).
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4. Numerical Simulations

To demonstrate the validity of the above theoretical analysis results, we used Simulink
in MATLAB to build the numerical simulation model. Both the mechanical parameters and
the initial condition of the STHM were chosen as in [22]

m1 = 1.258 kg, m2 = 5.686 kg, m3 = 2.162 kg, k = 5 N/m,
L1 = 0.34 m, L2 = 0.29 m, L3 = 0.52 m,
Lc1 = 0.17 m, L2 = 0.145 m, L3 = 0.26 m,
J1 = 0.0121 kg ·m2, J2 = 0.0398 kg ·m2, J3 = 0.0487 kg ·m2,

(13)

[q1, q2, q3,
.
q1,

.
q2,

.
q3]

T
= [π, 0, π/3, 0, 0, 0]T. (14)

We chose the control parameters of the PsD controller in (2) to be r1 = 3, r2 = 1, r3 = 3,
r4 = 1. The simulation results of the closed-loop control system (1) and (2) are shown in
Figure 2. Note that the STHM system can be stabilized at the origin equilibrium point
by the PsD controller. By this controller, the stabilization time of the control system is
less than 20 s and the absolute value of input torque is less than 6 Nm. As shown in the
Figure 3 of [22], the stabilization time is about 25 s and the maximum absolute input value
of torque is 10 Nm. The comparison shows the advantages of the developed PsD controller
in this paper.

For the PD controller in (7), the control parameters were selected to be µ1 = 1, µ2 = 0.5,
µ3 = 2.5, µ4 = 5. By this controller, the system (1) can also be stabilized at the origin point.
The stabilization time of the closed-loop system (1) and (7) is about 10 s. Moreover, the
absolute value of input torque is less than 4.5 Nm. These show that the control system’s
performance by the PD controller is better than that by the PsD controller. In addition, we
compare the simulation results in Figure 3 with the results in [21]. In the Figure 3 of [21],
the stabilization time is about 12 s and the maximum absolute value of input torque is
greater than 60 Nm. Moreover, the motion trajectory of the STHM system in [21] is not as
smooth as that in Figure 3. Obviously, the performance of the control system in [21] is far
from good as that in here. These show the superiority of our proposed PD controller.
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Figure 2. Simulation results for the control system (1) and (2).

In order to verify the effectiveness of the PD controller in an actual environment, we
carried simulation experiments with the white noise (peak value: ±0.15) in the measured
.
q and with parameter uncertainties (mi(i = 1, 2, 3) is 10% smaller than its nominal value,
Ji(i = 1, 2, 3) is 10% larger than their nominal values). In this case, the proposed PD
controller is still effective (see Figure 4).
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5. Conclusions

In this paper, the stabilization control problem for an underactuated spring-coupled
three-link horizontal manipulator (STHM) was discussed. By analyzing the physical
characteristics of this mechanical system, an energy-absorbing idea was used to design two
types of virtual friction stabilizing controllers, i.e., PsD controller and PD controller. The
PsD controller can stabilize the STHM at the origin from an initial position in the whole
motion space except for three equilibrium points. In contrast, the PD controller can globally
stabilize the STHM at the objective position. Simulation results demonstrate the validity
and superiority of our developed control strategy. In the future, we will deeply study
how to extend the energy-absorbing idea to the motion control of a spring-coupled n-link
(n ≥ 4) horizontal manipulator. Moreover, the design of disturbance observer and robust
stabilizing controller for the STHM will also be further discussed on the base of the research
results in this paper.
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