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Abstract: The focus of this paper is on the local stability of the traveling waves of reaction–diffusion
systems that describe host-tissue degradation by bacteria. On the one hand, we discuss the asymptotic
behavior of the solutions near the equilibrium points. On the other hand, the local stability of traveling
waves is proved by the spectrum method based on the appropriate weighted functional space.
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1. Introduction

In this paper, we mainly focus on the model for host-tissue degradation by bacteria
as follows {

ut = uxx − u + ω− γku(1−ω),

ωt = ku(1−ω),
(1)

with the initial data

u(x, 0) = u0(x) ≥ 0, ω(x, 0) = ω0(x) ≥ 0, ∀x ∈ R,

where u describes the concentration of degradative enzymes produced by the bacteria, and
1−ω corresponds to the volume fraction of the healthy tissue. In addition, it is generally
believed that the population density of bacteria is proportional to ω. Both γ and k are
positive constants, and k is the degradation rate of the tissue, which is usually very large in
practical applications. Hence, k is a key parameter.

The earliest study of this model can be traced back to [1], which consists of a reaction–
diffusion equation and an ordinary differential equation. This research predicted the wave
velocity of the traveling wave of bacteria entering the tissue, and the experiment results in
a matrix of proteins are consistent with this behavior. The background of bacterial infection
is introduced in [2]. Hilhorst et al. [3] demonstrated the existence and uniqueness of
solutions to this system and the convergence to a Stefan-like free boundary problem as the
degradation rate tends to infinity. Furthermore, they [4] proved the existence of monotone
traveling waves, established the conditions for nonlinear selection of the minimal wave
speed of the system, and at all sufficiently large degradation rates the minimal speed is
identical to the minimal speed of the limit problem. Recently, Zhang et al. [5] established
the linear selection condition of the minimal wave speed of the system by ingeniously
constructing upper and lower solutions, and verified some assumptions in the literature [4].

Through a simple calculation, it is easy to obtain that system (1) has two constant
equilibrium points e0 = (0, 0) and e1 = (1, 1). In addition, we can easily get that e0 is
unstable and e1 is stable. Therefore, system (1) is a monostable monotone system. In this
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paper, we are interested in the nonnegative traveling wave, connecting (0, 0) and (1, 1),
which possesses the wave profile as

u(x, t) = U(z), ω(x, t) = W(z), z = x− ct, (2)

where the wave speed c > 0. Combining (1) and (2), we can obtain the system about
(U, W)(z) as follows {

Uzz + cUz −U + W − γkU(1−W) = 0,

cWz + kU(1−W) = 0,
(3)

subject to the boundary conditions

(U, W)(−∞) = e1, (U, W)(+∞) = e0. (4)

Further, using the transformation (u, ω)(x, t) = (U, W)(z, t), system (1) is transformed
into the following system{

Ut = Uzz + cUz −U + W − γkU(1−W),

Wt = cWz + kU(1−W),
(5)

subject to
U(z, 0) = u0(z), W(z, 0) = ω0(z), ∀z ∈ R.

(U, W)(z) is also the steady-state of system (5).
The focus of our study is shifted to the local stability of the traveling wave. The

stability of traveling waves to a scalar partial differential equation has been well-studied.
For example, Gallay [6] proved nonlinear stability of the slowest monotonic frontier solution
based on a renormalization group method for parabolic equations. Tsai and Sneyd [7]
proved that the traveling wave front is stable, i.e., that any initial condition which vaguely
resembles a traveling wave front evolves to the unique wave front in a buffered systems.
By analyzing the position of the spectrum, the local stability of traveling waves of nonlinear
reaction–diffusion equations in different weighted Banach spaces is proved in [8]. Using the
upper and lower solutions method and a squeezing technique, Ma and Zhao [9] established
a global asymptotic stability with phase shift of the minimal speed of traveling wave
front for a class of monostable lattice equations. Wu and Xing [10] proved that the waves
with critical speed are locally asymptotically stable in some polynomially-weighted spaces
through Evans’s function method, proper spatial decomposition and detailed semigroup
decay estimation. The nonlinear stability of the traveling wave front of the time-delay
reaction–diffusion equation is studied and the traveling wave front is exponentially stable
to perturbations in some exponentially weighted L∞ space [11]. In recent years, Alhasanat
and Ou demonstrated the local stability of traveling waves of the Lotka–Volterra diffusion
model by using the spectrum method in [12]. Very recently, Wang et al. [13], applying the
squeeze theorem, proved the local stability of forced waves in a Lotka–Volterra competing
system under shifting environments. We remark that more stable results are referred
to [14–25].

Although there has been a success in studying the existence of traveling waves and the
selection of linear and nonlinear the minimal wave speed for the model (1), less attention
has been paid to the stability of traveling waves. In this paper, we will study the local
stability of traveling waves of the model (1). Inspired by references [6–13], we choose to
use the spectrum method to prove local stability of traveling waves, where the greatest
difficulty lies in ensuring that the largest real part of spectrum λ is less than zero. In order
to solve this problem, we discuss it through four steps. First, the generation of spectrum
problem is mainly based on small perturbations to the traveling wave solutions. Second,
we turn it into this problem of the essential spectrum under the weighted functional space.
Third, according to the classical spectrum theory, it is transformed into the problem of



Mathematics 2022, 10, 1805 3 of 10

the intersection of algebraic curves with a real axis. Finally, we take full advantage of the
characteristics of the equation to analyze the size of eigenvalues and obtain the result of
local stability.

The rest of this paper is organized as follows. In Section 2, we study the local asymp-
totic behavior of traveling waves. Then, the local stability of the traveling wave is shown in
Section 3.

2. Local Asymptotic Behavior at Unstable Point

In this section, we mainly focus on the local asymptotic behavior of traveling wave
(U, W)(z) near unstable point (0, 0).

We are interested in the asymptotic behavior of traveling waves for system (3) as
z→ +∞. Let

(U, W)(z) ∼ (ζ1e−µz, ζ2e−µz), (6)

where ζ1, ζ2, µ are positive constants. By substituting (6) into (3), and then linearizing the
system, we have

M(µ)

[
ζ1
ζ2

]
=

[
0
0

]
, (7)

where M(µ) is a 2× 2 matrix given by

M(µ) =

[
µ2 − cµ− (1 + γk) 1

k −cµ

]
. (8)

Then µ satisfies the characteristic equation

µ3 − cµ2 − µ(1 + γk) +
k
c
= 0. (9)

Assuming that µ1, µ2, µ3 are three roots of Equation (9), respectively, according to the
relationship between roots and coefficients, we get

µ1 + µ2 + µ3 = c > 0, µ1µ2µ3 = − k
c
< 0. (10)

Letting g(µ) = µ3 − cµ2 − µ(1 + γk) + k
c , then we get g(0) = k

c > 0 and g(−∞) < 0.
Therefore, there exists a negative root µ3 < 0 for Equation (9), and the other two roots
satisfy the following equation

µ2 + (µ3 − c)µ− k
cµ3

= 0. (11)

Further, we can get the two roots as

µ1 =
(c− µ3)−

√
(c− µ3)2 + 4k

cµ3

2
, µ2 =

(c− µ3) +
√
(c− µ3)2 + 4k

cµ3

2
. (12)

By [4], for all γ, k system (3) possesses monotone traveling waves if and only if
c ≥ cmin ≥ c0, where cmin is the minimal wave speed and c0 is the linear speed. According
to Lemma 2.2 in [5], for µ0 = µ1 = µ2, µ0 and c0 must satisfy the following equations

c0µ0 = −(1 + γk) +
√
(1 + γk)2 + 3k,

3µ2
0 = −(1 + γk) + 2

√
(1 + γk)2 + 3k.

(13)
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When c ≥ c0, µ1 and µ2 are the real numbers, then we have µ3 < 0 < µ1 < µ2. When
z→ +∞, the asymptotic behavior of the traveling wave (U, W)(z) can be expressed as:(

U(z)
W(z)

)
∼ C1

(
ζ1(µ1)
ζ2(µ1)

)
e−µ1z + C2

(
ζ1(µ2)
ζ2(µ2)

)
e−µ2z, (14)

for constants C1 > 0, or C1 = 0 with C2 > 0. In particular, the eigenvectors corresponding
to eigenvalues µi(i = 1, 2) can be expressed as(

ζ1(µi)
ζ2(µi)

)
=

(
cµi
k

)
. (15)

Theorem 1. For any c > c0, when z → +∞, the wavefront U(z) has the following asymptotic
behavior:

U(z) ∼ C1e−µ1z, C1 > 0. (16)

Before stating the results of local stability, we need to make a notation.

Notation: Lp(R) is the integrable functions of Lebesgue space defined on the real number
field. The asymptotic behavior of traveling wave (U, W)(z) is exponentially decaying. To
judge the rate of exponential decay, we need to introduce a weighted functional spaces Lp

w,
which is defined as

Lp
w = { f (z) : w(z)−1 f (z) ∈ Lp(R), p ≥ 1}. (17)

In addition, we also require its norm to satisfy condition

‖ f (z)‖Lp
w
=

{∫ +∞

−∞
w(z)−1| f (z)|pdz

} 1
p
, (18)

where 1
w(z) is the weight function, and its expression is

w(z) =

{
1, z ≤ z0,

e−α(z−z0), z > z0,
(19)

where α and z0 are constants and α is related to the rate of exponential decay.

3. Main Results

In this section, we will state our main results and give the proof of the local stability.

Theorem 2. (Local Stability) For any c > c0, if parameter α ∈ (
√

k
c ,
√

1 + γk) is true, the
wavefront (U, W)(z) is locally stable in the weighted functional space Lp

w.

The detailed proof is mainly divided into the following four steps:
Step 1: Added a small perturbation to the traveling wave. We set{

U(z, t) = U(z) + δφ1(z)eλt,

W(z, t) = W(z) + δφ2(z)eλt,
(20)

where φ1 and φ2 are real functions, δ� 1, λ is a parameter. Substituting (20) into (5), and
then linearizing the system, we get the following spectrum problem:

λΦ = ΘΦ := N(z)Φ′′ + cΦ′ + J(z)Φ, (21)
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where

Φ = (φ1, φ2)
T , N(z) =

[
1 0
0 0

]
, J(z) =

[
−1 + (W − 1)γk 1 + γkU
−k(W − 1) −kU

]
. (22)

Next, we need to know the sign of the maximum real part of the spectrum λ with
operator Θ. At this point, the local stability of traveling waves can be transformed to
investigate the spectrum problem(λ) in Lp

w which is defined in Section 2.
Step 2: Spectrum problem(λ) in the weighted functional space Lp

w. Next, we set

Φ =

(
φ1
φ2

)
=

(
wΨ1
wΨ2

)
. (23)

Substituting (23) into (21), a new spectrum problem in the weighted functional space
Lp

w is obtained as
λΨ = ΘwΨ := N(z)Ψ′′ + O(z)Ψ′ + P(z)Ψ, (24)

where N(z) is defined in (22), and other matrices are shown as follows

Ψ = (Ψ1, Ψ2)
T , O(z) =

[
c + 2 w′

w 0
0 c

]
,

P(z) =

[
w′′
w + c w′

w − 1 + γk(W − 1) 1 + γkU
−k(W − 1) c w′

w − kU

]
.

(25)

In order to apply the spectrum method, we need to select an appropriate constant α
such that the matrices O(z) and P(z) are bounded. Clearly, we can get

lim
z→+∞

(1 + γkU) = 1, lim
z→+∞

−k(W − 1) = k,

lim
z→−∞

(1 + γkU) = 1 + γk, lim
z→−∞

−k(W − 1) = 0.
(26)

It is easy to check that the matrices O(z) and P(z) are bounded. In the weighted
functional space Lp

w, if the maximum real part of the eigenvalue of the essential spectrum
of operator Θw is less than zero, we can obtain the main result of the local stability of the
traveling wave.

Step 3: The essential spectrum of the operator Θw.

Lemma 1. Define the algebraic curves

S± := {λ | det(−τ2N + iτO± + P± − λI) = 0,−∞ < τ < +∞}, (27)

where O± and P± are the limits of O(z) and P(z) at z→ ±∞. If parameter α ∈ (
√

k
c ,
√

1 + γk)
is true, the essential spectrum of operator Θw is contained in the union of regions inside or on the
curves S+ and S− which are on the left-half complex plane.

Proof. Next, we will adopt the idea of classification to prove the above lemma in two cases.
Case 1: When z→ +∞, substituting (19) and (26) into (25), it is easy to get

O+ =

[
c− 2α 0

0 c

]
, P+ =

[
α2 − cα− 1− γk 1

k −cα

]
. (28)

Solving the equation det(−τ2N + iτO+ + P+ − λI) = 0, we obtain∣∣∣∣ −τ2 + (c− 2α)iτ + α2 − cα− 1− γk− λ 1
k ciτ − cα− λ

∣∣∣∣ = 0. (29)
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Define the functions as{
Γ1 := −τ2 + α2 − cα− 1− γk + (c− 2α)τi = A + Bi,

Γ2 := −cα + cτi = C + Di,
(30)

then we can get the two roots of Equation (29) as

λ1,2 =
1
2

[
(Γ1 + Γ2)±

√
(Γ1 − Γ2)2 + 4k

]
. (31)

By applying the formula

Re(
√

a + bi) = ±

√
a +
√

a2 + b2

2
, (b 6= 0), (32)

the expressions of Re(λ1) and Re(λ2) are as follows
Re(λ1) =

A + C
2

+
1
2

Re
{√

[(A− C)2 − (B− D)2 + 4k] + 2(A− C)(B− D)i
}

,

Re(λ2) =
A + C

2
− 1

2
Re
{√

[(A− C)2 − (B− D)2 + 4k] + 2(A− C)(B− D)i
}

.
(33)

To prove the local stability, we require that the real parts of the eigenvalues λ1 and
λ2 are less than zero. Therefore, we can assume that Re(λmax) = max{Re(λ1), Re(λ2)}.
Combining (32) and (33) to get the expression of Re(λmax) as follows

Re(λmax) =
A + C

2
+

√
2

4

√
F2 − G2 + 4k +

√
[F2 + G2 + 4k]2 − 16kG2, (34)

where F = A− C and G = B− D. Because of −16kG2 < 0 and
√

a2 + b2 ≤ |a|+ |b|, a
simple calculation leads to

Re(λmax) <
A + C

2
+
|A− C|

2
+
√

k. (35)

Further, A is a quadratic function with respect to τ, and C is a negative constant. In
order for the real part of eigenvalue λmax to be less than zero, (35) needs to satisfy the
following inequalities {

A < C,

Re(λmax) < 0.
(36)

Thus, by (30) and (36), it follows that{
− τ2 + α2 − cα− 1− γk < −cα,
√

k− cα < 0,
(37)

where −∞ < τ < +∞. For the first inequality of (37), we need α2 − cα− 1− γk < −cα to
hold true. By a simple calculation, we have

√
k

c
< α <

√
1 + γk. (38)

Hence, the algebraic curve S+ = {λ1 | −∞ < τ < +∞} ∪ {λ2 | −∞ < τ < +∞} is
on the left-half complex plane.
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Case 2: When z→ −∞, substituting (19) and (26) into (25), it is easy to get

O− =

[
c 0
0 c

]
, P− =

[
−1 1 + γk
0 −k

]
. (39)

Similarly, solving the equation det(−τ2N + iτO− + P− − λI) = 0, we have

λ3 = −τ2 − 1 + cτi, λ4 = −k + cτi. (40)

To make the real part of the two eigenvalues λ3 and λ4 less than zero, k > 0 needs to
be satisfied, and it is a natural fact. Therefore, the algebraic curve S− = {λ3 | −∞ < τ <
+∞} ∪ {λ4 | −∞ < τ < +∞} is also on the left-half complex plane.

From the above analysis, we know that the essential spectrum of operator Θw is on
the left-half complex plane.

Finally, we will need to check the sign of the principal eigenvalue in the point
spectrum (21) to guarantee locally stable of the traveling waves.

Step 4: Sign of the principal eigenvalue in the point spectrum.
Next, we will discuss the asymptotic behavior of traveling waves of system (3) as

z→ −∞. Let
(U, W)(z) ∼ (1− ζ3eµz, 1− ζ4eµz), (41)

where ζ3, ζ4, µ are positive constants. By substituting (41) into (3), and then linearizing the
system, we have

E(µ)
[

ζ3
ζ4

]
=

[
0
0

]
, (42)

where E(µ) is a 2× 2 matrix given by

E(µ) =
[

µ2 + cµ− 1 1 + γk
0 cµ− k

]
. (43)

Suppose µi(i = 4, 5, 6) is the eigenvalues of matrix (43). According to Vieta Theorem,
it is easy to know that these three eigenvalues are two positive numbers and one negative
number. Further, by a simple calculation, we have

µ4 =
−c +

√
c2 + 4

2
, µ5 =

−c−
√

c2 + 4
2

, µ6 =
k
c

. (44)

Without loss of generality, we assume that µ5 < 0 < µ4 < µ6, then the asymptotic
behavior of traveling waves is as follows:(

U(z)
W(z)

)
∼
(

1
1

)
− C3

(
ζ3(µ6)
ζ4(µ6)

)
eµ6z − C4

(
1
0

)
eµ4z, (45)

for constants C3 > 0, or C3 = 0 with C4 > 0. In particular, the eigenvector corresponding
to the eigenvalue µ6 can be expressed as(

ζ3(µ6)
ζ4(µ6)

)
=

(
−(1 + γk)

µ2
6 + cµ6 − 1

)
. (46)

To check the sign of the principal eigenvalue in the point spectrum (21), we need to
consider the related linear partial differential system

ut = N(z)uzz + cuz + J(z)u, (47)

where u(z, t) = (u1(z, t), u2(z, t))T . For the solution semiflow Pt = u(z, t, φ) with any given
initial data φ ∈ Lp, we denote the solution of (47) by eλtΦ. Therefore, we can easily verify
that Pt is compact and strongly positive. From the Krein–Rutman theorem in [26], we know
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that Pt has a simple principal eigenvalue λMAX with a strongly positive eigenvector, and
all other eigenvalues must satisfy |eλt| < eλMAX t.

Next, we will discuss the range of eigenvalue λ. On the contrary, if neither λ = 0 nor
λ > 0 holds, then the results of locally stable can be obtained.
Case 1. When λ = 0.

By using Theorem 1 for any c > c0 as z→ +∞, we have (U, W)(z) ∼ (C1e−µ1z, C1e−µ1z).
Therefore, it is easy to verify that λ = 0 is the eigenvalue of (21), and the corresponding
strong positive eigenvector is (−U′(z),−W ′(z)). Moreover, if (38) holds, we can infer
that µ1 < α < µ2. In this case, we can easily verify the strong positive eigenvector
(−U′(z),−W ′(z)) is not in the weighted functional space Lp

w.
Case 2. When λ > 0.

To verify whether this situation exists, we first consider the asymptotic behavior of
Φ(z) as z → +∞ and z → −∞. Assuming Φ(z) ∈ Lp

w, this yields the smallest positive
eigenvalue of Φ(z) greater than α.

For z → +∞, Φ(z) = (−U′(z),−W ′(z)) is the positive solution of (47) and we have
Φ(z) > Φ(z).

For z → −∞, suppose that Φ(z) has asymptotic behavior similar to keµz for some
positive numbers k and µ. By substituting it into the spectrum problem (24), we obtain the
characteristic equation in eigenvalue λ as follows∣∣∣∣ µ2 + cµ− 1− λ 1 + γk

0 cµ− k− λ

∣∣∣∣ = 0. (48)

If we use µ̃i(i = 4, 5, 6) to denote the three roots of (48), then their expressions are as
follows

µ̃4 =
−c +

√
c2 + 4(1 + λ)

2
, µ̃5 =

−c−
√

c2 + 4(1 + λ)

2
, µ̃6 =

k + λ

c
. (49)

When λ > 0, we can compare the relationship between µi(i = 4, 6) and µ̃i(i = 4, 6),
and it is easy to obtain their relations as µ4 < µ̃4, µ6 < µ̃6. In other words, we can know
that the positive root of µ̃ gets bigger as λ increases.

Assuming µ̃6 > µ̃4 > 0 holds, when z→ −∞, from (45), we can get Φ(z) ∼ K1eµ6z and
Φ(z) ∼ K1eµ̃6z. Therefore, we have Φ(z) > Φ(z). Similarly, if the assumption µ̃4 > µ̃6 > 0
holds, we can also obtain Φ(z) > Φ(z).

By choosing k̃ large enough, we have k̃Φ(z) ≥ |Φ(z)|. Further, applying the com-
parison principle to system (47), we can obtain k̃Φ(z) ≥ |Φ(z)|eλt, which contradicts
λ > 0.

The above analysis implies that the real parts of all eigenvalues λ of (21) should be
negative for Φ(z) ∈ Lp

w. Summarizing the above four steps, we can get the result of the
local stability of the traveling waves. The proof is complete.

4. Conclusions

To reveal the dynamical behaviors of traveling waves in models of host-tissue degra-
dation by bacteria, we investigate the local stability of traveling wave solutions by choosing
appropriate weighted functional space and applying spectrum methods. For one thing, our
results are novel for the local stability of the traveling wave solution of this model. For
another, from an application point of view, our research methods can be generalized to
some models related to Aedes aegypti (see, e.g., [27,28]). Next, we will further consider
other types stabilization of traveling waves of this model or generalize this approach to
other models.
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