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Abstract: This research analyses the performance of a perishable queueing-inventory system for
two commodities with optional customers demands. We assume in the article that all customers
who come to the system can only purchase the first item or the second item or service (they do not
purchase both items). This is the original aspect of the paper. We show the significance of the impact
of optional demands on the system’s performance, which is the purpose of the paper. In this system,
customers arrive, using the Markovian arrival process (MAP), to a demand for a single unit. The
system is composed of a waiting hall with a limited capacity of F. The arriving customer observes the
waiting hall is filled to capacity or the stock stage is zero, and they decide to leave the system. In the
steady-state case, the joint probability distribution for the first commodity, the second commodity,
and the number of customers in the system are computed using matrix geometric methods. We
evaluate diverse system performance measures. Finally, we provide a numerical illustration of the
optimal value for diverse parameters of the system, which highlights the results and implications of
the article.

Keywords: two commodity; (s, Q)-policy; Markovian arrival process; optional demands; perishable
inventory

MSC: 60J27; 90B05; 90B22

1. Introduction

One of the critical problems in an inventory system is having a large number of items
which can affect its integrated functioning. To avoid this problem, multiple commodity
systems are used. To manage such systems numerous models have been proposed with
various sorts of ordering policies. The joint ordering policy was introduced by [1] and
developed by [2]. A two commodity inventory system with zero lead time and with the
same demand process were inspected by [3,4], respectively. The authors of [5,6] analyzed a
joint ordering policy with a substitutable inventory system. A queueing-inventory system
can be manipulated according to a number of factors, such as arrival/service processes,
waiting hall capacity, service interruption, and vacation assumptions. See [7,8] review
articles and [9–19] articles for discussion of a two commodity queueing-inventory system.

A system needs to satisfy different kinds of customer demands to achieve profit.
Sometimes customers need only service without purchasing an item. For example, in a
mechanic shop, customers may come to repair their vehicle. Some customers come to the
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system with a required item—they only need service. Some customers come to the system
without items—they need service with the item. In a similar way, we can observe this sort
of circumstance in a tailoring shop, card printers, etc. In this circumstance, the system
provides the same services for both demands.

Motivated by practical situations that arise, we consider how arriving customers
may choose either service with or without an item. The present article also considers a
perishable (s, Q) queueing-inventory system for two commodities in which customers
arrive according to a Markovian arrival process (MAP) to a single unit or for service at a
certain time.

A MAP is a type of tractable class of the Markov renewal process. The arrival process
can be modified to be a renewal process by adjusting the MAP’s parameters. The MAP is
a diverse class of point processes that also includes the Poisson process. The purpose of
MAP is to generalize the Poisson process and create more flexibility for modeling purposes.
MAP may be used for both discrete and continuous time frames, but this paper focuses
only on continuous-time frames. An explanation of MAP is provided by [20]. The states
of the Markov chain are {1, 2, . . . y}. When the chain goes into the state u, 1 ≤ u ≤ y, it
remains with parameter mu for an exponential time. When the sojourn period is over, the
chain may shift to a transition until arrival occurs; then the chain goes into the state v with
the probability cuv, 1 ≤ v ≤ y, or if transition occurs without arrival, then the chain goes
into the state v with probability duv, 1 ≤ v ≤ y, u 6= v. When an arrival occurs, the chain
might return to the same state. We describe the square matrices D f , f = 0, 1, of size y by
[D0]uu = −mu and [D0]uv = muduv, u 6= v, [D1]uv = mucuv, 1 ≤ u, v ≤ y. χ represents the
continuous time Markov chain’s unique probability vector with an infinitesimal generator
matrix D(=D0 + D1), and χ is obtained from χD = 0, χe = 1.

Let ϕ represent the initial probability vector of the underlying MAP-based Markov
process. We have an independent arrival, the end of an interval with minimum k arrivals,
and the moment at which the system enters or exits a certain state, such as when a busy
period begins or ends, etc.; by choosing a suitable ϕ, we can obtain the kind of time. The
main purpose is that we obtain the unique probability vector of MAP by ϕ = χ. The
average arrival rate λ = χD1e provides the mean number of customers occurring per unit
time. The MAP-described point process is a special category of semi-Markov processes
with a transition probability matrix provided by∫ x

0
eD0tdtD1 = [I − eD0x](−D0)

−1D1, x ≥ 0.

For more information on MAP, readers can refer to [21–23]. Table 1 summarizes the
overview of literature review.

Table 1. Literature review overview.

Author(s) Poisson
Arrivals

MAP
Arrivals

Joint
Replenishment

Optional
Demand

Exponentially
Distributed
Lead Time

Perishable
Inventory

Balintfy [1] X X

Silver [2] X X

Krishnamoorthy [3] X X

Anbazhagan [4] X X X

Anbazhagan [5] X X X

Anbazhagan [6] X X X

Karthikeyan [7] X X

Krishnamoorthy [8] X

Sivakumar [9] X X X X

Benny [10] X

Ozkar [11] X X X X

Senthil Kumar [12] X
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Table 1. Cont.

Author(s) Poisson
Arrivals

MAP
Arrivals

Joint
Replenishment

Optional
Demand

Exponentially
Distributed
Lead Time

Perishable
Inventory

Sinu Lal [13] X X

Senthil Kumar [14] X X

Yadavalli [15] X X X

Nahmias [16] X

Murthy [17] X

Uzunoglu Kocer [18] X X X X

Jacob [19] X X X

Lucantoni [20] X

Latouche [21] X

Lee [22] X

Chakravarthy [23] X

This paper X X X X X

X Factors included in the research.

The findings of the above survey inspired our research, since, to our knowledge, there
has been little study into two commodities with three forms of service, which is a common
occurrence in business administration. Section 2 discusses the detailed description of our
model. In Section 3, we provide an analysis of our prescriptive model. Analysis of the
model’s steady-state is described in Section 4. In Section 5, we develop several aspects
of system performance for the steady-state case. In Section 6, the total expected cost rate
(TCR) is calculated. In Section 7, numerical examples are provided.

2. Model Narrations

A two-commodity perishable queueing-inventory system is considered. The system
has a maximum capacity of S1 items for the first commodity, and S2 items for the second
commodity. The system provides the finite waiting room size of F along with one getting
service. The customers show up as per MAP, with demand for a single unit. A single
item of the first commodity is required by the customer (i.e., a high quality and high price
item) with probability b1 or the second commodity (i.e., a normal quality and cheap price
item) with probability b2 or service only with probability b3. The server’s service is the
same for each demand. With parameter biµ, (i = 1, 2, 3), three different kinds of service
times are exponentially distributed. We take the parameter γ1 as the lifetime of the first
commodity and γ2 for the second commodity follows an exponential distribution. If both
stock levels are close to their respective reorder levels si(i = 1, 2), then an order is made
for both commodities. Qi(>si, i = 1, 2) units are considered the ordering quantity for the
i-th commodity. The lead time follows an exponential distribution with parameter β(>0).
The customer arrives during a stock-out period and the full system is considered to be lost.
Customers leave the system after receiving the required service performances of the item.

3. Analysis

We consider I(1)(t) to represent the number of items in the first commodity at time
t, I(2)(t) to represent the number of items in the second commodity at time t, N(t) to
represent the number of customers in the system at time t and J(t) to represent the phase of
the arrival process at time t. The Markov process

{(
I(1)(t), I(2)(t), N(t), J(t)

)
; t ≥ 0

}
with

discrete state space E = E1 × E2 × E3 × E4, where 0 ≤ E1 ≤ S1, 0 ≤ E2 ≤ S2, 0 ≤ E3 ≤ F,
1 ≤ E4 ≤ y.
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The infinitesimal generator matrix [W]ij =


Oi, j = i × 1, i = 1, 2, . . . S1

Pi, j = i, i = 0, 1, . . . S1

R, j = i + Q1, i = 0, 1, . . . s1

0, otherwise
where

[R]kl =

{
βIZ ⊗ Iy, l = k + Q2, k = 0, 1, . . . s2,
0, otherwise.

where, Z = F + 1

Here, i = 1, 2, . . . S1 and AZ =[aij]Z×Z =

{
1, if j = i− 1, i = 1, 2, . . . F
0, otherwise

[Oi]kl =

{
(iγ1 IZ + b1µAZ)⊗ Iy, l = k, k = 0, 1, . . . S2,
0, otherwise.

Here, BZ = [bij]Z×Z =

{
1, if j = i + 1, i = 0, 1, . . . F− 1
0, otherwise

CZ = [cij]Z×Z =

{
1, if j = i, i = F
0, otherwise

GZ = [gij]Z×Z =

{
1, if j = i, i = 0, 1, . . . F− 1
0, otherwise

HZ = [hij]Z×Z =

{
1, if j = i, i = 1, 2, . . . F
0, otherwise

For i = 0,

[Pi]kl =



(kγ2 IZ + b2µAZ)⊗ Iy, l = k− 1, k = 1, 2, . . . S2,(
b3µAZ ⊗ Iy

)
+ (BZ ⊗ D1) +

(
((GZ ⊗ D0)

+(CZ ⊗ D))−
((

IZ ⊗ βIy
)
+
(

HZ ⊗ (b3µ)Iy
)))

, l = k, k = 0,(
b3µAZ ⊗ Iy

)
+ (BZ ⊗ D1) + (((GZ ⊗ D0) + (CZ ⊗ D))

−
((

IZ ⊗ (β + kγ2)Iy
)
+
(

HZ ⊗ (b3µ + b2µ)Iy
)))

, l = k, k = 1, 2, . . . s2,(
b3µAZ ⊗ Iy

)
+ (BZ ⊗ D1) +

(
((GZ ⊗ D0) + (CZ ⊗ D))

−
((

IZ ⊗ (kγ2)Iy
)
+
(

HZ ⊗ (b3µ + b2µ)Iy
)))

, l = k,

k = s2 + 1, s2 + 2, . . . S2,

0, otherwise.

For i = 1, 2, . . . s1,

[Pi]kl =



(kγ2 IZ + b2µAZ)⊗ Iy, l = k− 1,

k = 1, 2, . . . S2,(
b3µAZ ⊗ Iy

)
+ (BZ ⊗ D1) +

(
((GZ ⊗ D0) + (CZ ⊗ D))

−
((

IZ ⊗ (β + iγ1)Iy
)
+
(

HZ ⊗ (b3µ + b1µ)Iy
)))

, l = k, k = 0,(
b3µAZ ⊗ Iy

)
+ (BZ ⊗ D1) +

(
((GZ ⊗ D0) + (CZ ⊗ D))

−
((

IZ ⊗ (β + iγ1 + kγ2)Iy
)
+
(

HZ ⊗ (b3µ + b1µ + b2µ)Iy
)))

, l = k,

k = 1, 2, . . . s2,(
b3µAZ ⊗ Iy

)
+ (BZ ⊗ D1) +

(
((GZ ⊗ D0) + (CZ ⊗ D))

−
((

IZ ⊗ (iγ1 + kγ2)Iy
)
+
(

HZ ⊗ (b3µ + b1µ + b2µ)Iy
)))

, l = k,

k = s2 + 1, . . . S2,

0, otherwise.

For i = s1 + 1, . . . S1,
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[Pi]kl =



(kγ2 IZ + b2µAZ)⊗ Iy, l = k− 1,

k = 1, 2, . . . S2,(
b3µAZ ⊗ Iy

)
+ (BZ ⊗ D1) +

(
((GZ ⊗ D0) + (CZ ⊗ D))

−
((

IZ ⊗ (iγ1)Iy
)
+
(

HZ ⊗ (b3µ + b1µ)Iy
)))

, l = k, k = 0,(
b3µAZ ⊗ Iy

)
+ (BZ ⊗ D1) +

(
((GZ ⊗ D0) + (CZ ⊗ D))

−
((

IZ ⊗ (iγ1 + kγ2)Iy
)
+
(

HZ ⊗ (b3µ + b1µ + b2µ)Iy
)))

, l = k,

k = 1, 2, . . . S2,

0, otherwise.

4. Steady State Analysis

From the structure of W, the Markov process
{

I(1)(t), I(2)(t), N(t), J(t); t ≥ 0
}

on the

state space E is irreducible, and the limiting distribution Υ(i1, i2, i3, i4) = lim
t→∞

Pr[I(1)(t) =

i1, I(2)(t) = i2, N(t) = i3, J(t) = i4; I(1)(0), I(2)(0), N(0), J(0)], exists.
The limiting distribution Υ(i1, i2, i3, i4) is independent of the starting condition.
Take

Υ = (Υ(0), Υ(1), . . . , Υ(S1)),

where Υ(i1) = (Υ(i1, 0), Υ(i1, 1), . . . , Υ(i1, S2)), i1 = 0, 1, . . . , S1

Υ(i1, i2) = (Υ(i1, i2, 0), Υ(i1, i2, 1), . . . , Υ(i1, i2, F)), i2 = 0, 1, . . . , S2

Υ(i1, i2, i3) = (Υ(i1, i2, i3, 1), Υ(i1, i2, i3, 2), . . . , Υ(i1, i2, i3, y)), i3 = 0, 1, . . . , F

The steady-state probability vector Υ obtained from ΥW = 0, Υe = 1.

Theorem 1. The steady-state probability vector Υ for the Markov process whose rate matrix W is
given by

Υ(i1) = Υ(Q1)Ωi1 , i1 = 0, 1, . . . , S1

where

Ωi1 =



(−1)Q1−i1OQ1P
−1
Q1−1OQ1−1. . .Oi1+1P−1

i1
, i1 = 0, 1 . . . , Q1 − 1;

I, i1 = Q1;

(−1)2Q1−i1+1
S1−i1

∑
j=0

{
(OQ1P

−1
Q1−1OQ1−1 . . .Os1+1−jP−1

s1−j)

RP−1
S1−j(OS1−jP−1

S1−j−1OS1−j−1 . . .Oi1+1P−1
i1

)
}

, i1 = Q1 + 1, . . . , S1;

The following two equations can be used to arrive to Υ(Q1):

(i.e)Υ(Q1)

(
(−1)Q1

s1−1

∑
j=0

(OQ1P
−1
Q1−1OQ1−1 . . .Os1+1−jP−1

s1−j)RP
−1
S1−j

(OS1−jP
−1
S1−j−1

OS1−j−1 . . .OQ1+2P
−1
Q1+1

)OQ1+1 + PQ1 +{
(−1)Q1OQ1P

−1
Q1−1

OQ1−1 . . .O1P−1
0

}
R
)
= 0

and

Υ(Q1)

(
Q1−1

∑
i1=o

{
(−1)Q1−i1OQ1P

−1
Q1−1OQ1−1 . . .Oi1+1P−1

i1

}
+ I +

S1

∑
i1=Q1+1

{
(−1)2Q1−i1+1

S1−i1

∑
j=0

{
(OQ1P

−1
Q1−1OQ1−1 . . .Os1+1−jP−1

s1−j)

RP−1
S1−j(OS1−jP−1

S1−j−1OS1−j−1 . . .Oi1+1P−1
i1

)

}})
e = 1
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Proof. We know that

ΥW = 0 and Υe = 1.

The equation ΥW = 0 can be written as

Υ(i1 + 1)Oi1+1 + Υ(i1)Pi1 = 0, i1 = 0, 1, . . . Q1 − 1

Υ(i1 + 1)Oi1+1 + Υ(i1)Pi1 + Υ(i1 −Q1)R = 0, i1 = Q1 (1)

Υ(i1 + 1)Oi1+1 + Υ(i1)Pi1 + Υ(i1 −Q1)R = 0, i1 = Q1 + 1, Q1 + 2, . . . S1 − 1

Υ(i1)Pi1 + Υ(i1 −Q1)R = 0, i1 = S1.

The equations, except (1), can be solved recursively, yielding

Υ(i1) = Υ(Q1)Ωi1 , i = 0, 1, . . . , S1

where

Ωi1 =



(−1)Q1−i1OQ1P
−1
Q1−1OQ1−1. . .Oi1+1P−1

i1
, i1 = 0, 1 . . . , Q1 − 1;

I, i1 = Q1;

(−1)2Q1−i1+1
S1−i1

∑
j=0

{
(OQ1P

−1
Q1−1OQ1−1 . . .Os1+1−jP−1

s1−j)

RP−1
S1−j(OS1−jP−1

S1−j−1OS1−j−1 . . .Oi1+1P−1
i1

)
}

, i1 = Q1 + 1, . . . , S1;

After placing the value of Ωi1 in (1) and in the normalizing condition, we acquire
Υ(Q1)

(i.e)Υ(Q1)

(
(−1)Q1

s1−1

∑
j=0

(OQ1P
−1
Q1−1OQ1−1 . . .Os1+1−jP−1

s1−j)RP
−1
S1−j

(OS1−jP−1
S1−j−1OS1−j−1 . . .OQ1+2P−1

Q1+1)OQ1+1 + PQ1 +{
(−1)Q1OQ1P

−1
Q1−1OQ1−1 . . .O1P−1

0

}
R
)
= 0

and

Υ(Q1)

(
Q1−1

∑
i1=o

{
(−1)Q1−i1OQ1P

−1
Q1−1OQ1−1 . . .Oi1+1P−1

i1

}
+ I +

S1

∑
i1=Q1+1

{
(−1)2Q1−i1+1

S1−i1

∑
j=0

{
(OQ1P

−1
Q1−1OQ1−1 . . .Os1+1−jP−1

s1−j)

RP−1
S1−j(OS1−jP−1

S1−j−1OS1−j−1 . . .Oi1+1P−1
i1

)

}})
e = 1

5. System Performance Measures

In this division, we surmise a few performance measures in the system.

5.1. Mean Inventory Level

Let MI(1) and MI(2) be the mean inventory levels of the first and second commodities,
respectively, in a steady state, which can be expressed as

MI(1) =
S1
∑

i1=1
i1

(
S2
∑

i2=0

F
∑

i3=0
Υ(i1, i2, i3)

)
e
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MI(2) =
S2
∑

i2=1
i2

(
S1
∑

i1=0

F
∑

i3=0
Υ(i1, i2, i3)

)
e

5.2. Mean Reorder Rate

In a stable state, the MR represents the mean reorder rate. The joint inventory level
decreases to (s1, s2) or (s1, i2), i2 < s2 or (i1, s2), i1 < s1 if once service is performed, or if
any of the (si + 1), i = 1, 2 items are perishable.

MR = (s1 + 1)γ1
s2
∑

i2=0

F
∑

i3=0
Υ(s1 + 1, i2, i3)e + (s2 + 1)γ2

s1
∑

i1=0

F
∑

i3=0
Υ(i1, s2 + 1, i3)e

+ b1µ
F
∑

i3=1

s2
∑

i2=0
Υ(s1 + 1, i2, i3)e + b2µ

F
∑

i3=1

s1
∑

i1=0
Υ(i1, s2 + 1, i3)e.

5.3. Mean Perishable Rate

Let MP1 and MP2 be the mean perishable rates of the first and second commodity,
respectively, in a steady state and are given by

MP1 =
S1
∑

i1=1

S2
∑

i2=0

F
∑

i3=0
i1γ1Υ(i1, i2, i3)e

MP2 =
S1
∑

i1=0

S2
∑

i2=1

F
∑

i3=0
i2γ2Υ(i1, i2, i3)e.

6. Cost Analysis

For the total expected cost function per unit time, we have evaluated the cost aspects
listed below.

CCi : Carrying cost of i-th commodity per unit time (i = 1, 2)
CS: Setup cost per order
CP1 : First-commodity perishable cost per item per unit time
CP2 : Second-commodity perishable cost per item per unit time

The total expected cost function is given by

TC(S1, s1, S2, s2, F) = CC1 MI(1) + CC2 MI(2) + CS MR + CP1 MP1 + CP2 MP2

where MI(i) , MR and MPi (i = 1, 2) are given in Section 5.

7. Numerical Illustration

The convexity of the TCR is demonstrated using numerical examples. We presume
the below numerical example: The arrival process is hyper-exponential. As a MAP, its
parameters are given by (D0,D1) where

D0 =

(
−10 0

0 −1

)
and D1 =

(
9 1

0.9 0.1

)
Let F = 6, s1 = 3, s2 = 2, β = 0.45, µ = 1.6, γ1 = 0.7, γ2 = 0.5, b1 = 0.4, b2 = 0.32, b3 = 0.28;
CC1 = 1.4, CC2 = 1.35, CP1 = 1.28, CP2 = 2.7, CS = 1;

Furthermore, let TC′(S1, S2) = TC(S1, 3, S2, 2, 6).
This gives the expected cost rate for different values of S1 and of S2.
In Table 2, we present the TC′(S1, S2) values. Here, the row minimum is represented

in boldface and the column minimum is underlined. A convex function of (S1, S2) is
TC′(S1, S2), and the optimum at (S1, S2) = (21, 16).
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Table 2. TCR as a function of S1 and S2.

S1/S2 13 14 15 16 17

20 0.95816 0.93312 0.91461 0.91429 0.99542

21 0.93239 0.78797 0.66773 0.56698 0.68216

22 0.92900 0.86021 0.85043 0.84890 0.90087

23 0.98022 0.94679 0.90740 0.90105 0.90133

24 1.10383 0.96021 0.94100 1.48230 1.49438

Let S2 = 12, s1 = 2, s2 = 1, β = 1.4, µ = 1.7, γ1 = 1.01, γ2 = 0.05, b1 = 0.4, b2 = 0.32,
b3 = 0.28; CC1 = 1.1, CC2 = 0.35, CP1 = 1.28, CP2 = 2.78, CS = 1.76;

Furthermore, let TC′(S1, F) = TC(S1, 2, 12, 1, F).
This provides the TCR for different values of S1 and of F.
In Table 3, we present the TC′(S1, F) values. Here, the row minimum is represented in

boldface and the column minimum is underlined. A convex function of (S1, F) is TC′(S1, F),
and the optimum at (S1, F) = (7, 6).

Table 3. TCR as a function of S1 and F.

S1/F 5 6 7 8 9

5 0.8065 0.7642 0.7512 1.1471 1.3590

6 0.7631 0.6991 0.7172 1.1319 1.3489

7 0.8025 0.6944 0.7081 1.1281 1.3487

8 0.8277 0.7062 0.7073 1.1225 1.3438

9 0.8376 0.7136 0.7114 1.1232 1.3430

10 0.8413 0.7165 0.7137 1.1246 1.3434

11 0.8426 0.7176 0.7146 1.1254 1.3439

Let S1 = 6, s1 = 2, s2 = 3, β = 1.4, µ = 1.7, γ1 = 1.01, γ2 = 0.05, b1 = 0.4, b2 = 0.32,
b3 = 0.28; CC1 = 1.1, CC2 = 0.35, CP1 = 1.13, CP2 = 2.78, CS = 2.5;

Furthermore, let TC′(S2, F) = TC(6, 2, S2, 3, F).
This provides the TCR for different values of S2 and of F.
The TC′(S2, F) values are presented in Table 4. The optimal cost for each S2 and F

are displayed in boldface and underlined, respectively. A convex function of (S2, F) is
TC′(S2, F), and the optimum takes place at (S2, F) = (13, 8).

Table 4. TCR as a function of S2 and F.

S2/F 5 6 7 8 9

12 0.76205 0.72886 0.72567 0.71925 0.84315

13 0.69172 0.63563 0.63280 0.58965 0.61770

14 0.73478 0.65798 0.64908 0.59718 0.61275

15 0.81303 0.69213 0.66818 0.60717 0.62222

16 0.81599 0.76243 0.73614 0.71850 0.73127

Let F = 4, S2 = 18, s2 = 2, β = 0.3, µ = 1.7, γ1 = 1.01, γ2 = 0.05, b1 = 0.4, b2 = 0.32,
b3 = 0.28; CC1 = 1.09, CC2 = 0.35, CP1 = 1.28, CP2 = 2.78, CS = 1.77;

Furthermore, let TC′(S1, s1) = TC(S1, s1, 18, 2, 4).
This provides the TCR for different values of S1 and of s1.
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In Table 5, we present the TC′(S1, s1) values. Here, the row minimum is represented in
boldface and the column minimum is underlined. A convex function of (S1, s1) is TC′(S1, s1),
and the optimum takes place at (S1, s1) = (19, 5).

Table 5. TCR as a function of S1 and s1.

S1/s1 2 3 4 5 6 7 8

18 0.67208 0.66955 0.65955 0.65436 0.65222 0.65190 0.65216

19 0.65650 0.65287 0.65073 0.64893 0.64894 0.65007 0.65168

20 0.66838 0.65296 0.65385 0.65768 0.66257 0.66786 0.67321

21 0.70294 0.70154 0.66367 0.66487 0.67006 0.68021 0.69014

22 0.78844 0.77510 0.76728 0.76571 0.68173 0.68243 0.69431

Let F = 5, S1 = 12, s1 = 2, β = 0.37, µ = 0.3, γ1 = 1.01, γ2 = 0.05, b1 = 0.4, b2 = 0.32,
b3 = 0.28; CC1 = 1.1, CC2 = 0.35, CP1 = 1.28, CP2 = 2.78, CS = 1.77;

Furthermore, let TC′(S2, s2) = TC(12, 2, S2, s2, 5).
This provides the TCR for different values of S2 and of s2.
The TC′(S2, s2) values are presented in Table 6. The optimal cost for each S2 and s2

are displayed in boldface and underlined, respectively. A convex function of (S2, s2) is
TC′(S2, s2), and the optimum takes place at (S2, s2) = (16, 3).

Table 6. TCR as a function of S2 and s2.

S2/s2 2 3 4 5 6

15 0.58260 0.57920 0.57942 0.58109 0.59306

16 0.58204 0.57138 0.57226 0.58004 0.58615

17 0.58123 0.58038 0.58045 0.59580 0.60113

18 0.59235 0.58550 0.58857 0.59855 0.60828

19 0.67502 0.59628 0.59979 0.60156 0.60891

The impact of the second commodity perishable rate (γ2) on the TCR is shown in
Figure 1 via three curves which relate to γ1 = 1, 1.03, 1.05. We discovered that the TCR
diminishes whenever the perishable rate of the first commodity (γ1) and the perishable
rate of the second commodity (γ2) increase.

Figure 1. TC versus γ2. S1 = 19, S2 = 18, F = 4, s1 = 5, s2 = 2, β = 0.3, µ = 1.7, α = 0.01; b1 = 0.4,
b2 = 0.32, b3 = 0.28, CC1 = 1.09, CC2 = 0.35, CP1 = 1.28, CP2 = 2.78, CS = 1.77.
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The outcome of the replenishment rate (β) on the TCR is depicted in Figure 2 via
three curves which relate to (µ) = 1.75, 1.8, 1.85. We discovered that the TCR diminishes
whenever the service rate (µ) and the replenishment rate (β) increase.

Figure 2. TC versus µ. S1 = 19, S2 = 18, F = 4, s1 = 5, s2 = 2, γ1 = 1.01, γ2 = 0.05, α = 0.01; b1 = 0.4,
b2 = 0.32, b3 = 0.28, CC1 = 1.09, CC2 = 0.35, CP1 = 1.28, CP2 = 2.78, CS = 1.77.

In Tables 7–9, we demonstrate the outcome of the setup cost CS and the carrying cost
of the first commodity CC1 , and, similarly, the second commodity CC2 on the optimal point
(S∗1 , s∗1) and the corresponding TCR TC′. The other parameters and cost values are S1 = 19,
S2 = 18, F = 4, s1 = 5, s2 = 2, γ1 = 1.01, γ2 = 0.05, α = 0.01; b1 = 0.4, b2 = 0.32, b3 = 0.28,
CC1 = 1.09, CC2 = 0.35, CP1 = 1.28, CP2 = 2.78, CS = 1.77;

Table 7. Impact of CC1 and CC2 costs on the optimal values.

CC1 /CC2 0.33 0.34 0.35 0.36 0.37
21 5 21 5 21 5 21 5 21 5

1.07 0.50896 0.54967 0.59039 0.63110 0.67181
21 5 21 5 21 5 19 5 19 5

1.08 0.54520 0.58592 0.62663 0.66310 0.69720
19 5 19 5 19 5 19 5 19 5

1.09 0.58074 0.61483 0.64893 0.68303 0.71713
15 5 15 5 15 5 15 5 15 5

1.10 0.60066 0.63476 0.70296 0.73706 0.76484
15 5 15 5 15 5 15 4 15 4

1.11 0.64349 0.71233 0.72289 0.78482 0.81679

Table 8. Impact of CC1 and CS costs on the optimal values.

CC1 /CS 1.75 1.76 1.77 1.78 1.79
20 5 20 5 20 5 20 5 20 5

1.07 0.59257 0.59342 0.59426 0.59510 0.59594
20 5 20 5 20 5 20 5 20 5

1.08 0.62292 0.62377 0.62461 0.63245 0.64230
20 5 20 5 19 5 19 5 19 5

1.09 0.63327 0.63412 0.64893 0.66241 0.67195
19 5 15 5 15 5 15 5 15 5

1.10 0.68520 0.68919 0.69501 0.69591 0.69821
18 5 15 5 15 5 15 4 15 4

1.11 0.68663 0.69770 0.69877 0.69950 0.70116
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Table 9. Impact of CC2 and CS costs on the optimal values.

CC2 /CS 1.75 1.76 1.77 1.78 1.79
20 6 20 6 20 6 20 6 20 5

0.33 0.57182 0.57566 0.57950 0.58934 0.59919
20 5 20 5 20 5 20 5 20 5

0.34 0.61555 0.61629 0.61723 0.62607 0.62692
19 5 19 5 19 5 19 5 19 5

0.35 0.65187 0.65578 0.64893 0.66758 0.67748
19 5 15 5 15 5 15 5 15 5

0.36 0.69012 0.69336 0.70359 0.71081 0.73876
18 5 15 5 15 5 15 4 15 4

0.37 0.73502 0.75162 0.78509 0.79530 0.79741

From the Tables 7–9, we discover the monotonic behavior of (S∗1 , s∗1) as detailed below:
In Table 7, the TCR increases whenever both the carrying cost of the first commodity

CC1 and the second commodity CC2 increases. In Table 8, the TCR increases when the
carrying cost of the first commodity CC1 and CS both increase. Similarly, Table 9 shows that
the TCR increases whenever the carrying cost of the second commodity CC2 and CS both
increase. In addition, (S∗1 , s∗1) monotonically decrease for all the Tables 7–9. The carrying
cost, as well as the set-up cost, are components of the TC function, so, whenever the holding
cost and setup cost increase, the total cost value also increases.

Furthermore, acquiring a significant amount of inventory increases a company’s
carrying costs, whereas ordering smaller amounts of items more regularly increases a
company’s setup costs. However, we want to minimize both costs so the TC is determined
to do this work.

8. Conclusions

In this article, we studied a two-commodity inventory system that consists of a fi-
nite waiting hall. We investigated performance analyses of a perishable (s, Q) queueing-
inventory system of two commodities with optional demands from customers. To obtain
either a single item or only service without items, customer arrivals are analyzed using the
MAP. We also obtained a steady-state vector. Furthermore, the outcomes were exemplified
with numerical patterns to determine the convexity of the TCR. Similarly, we provided a nu-
merical illustration that depicts the effect of the service rate on the inventory system’s TCR.
In the numerical illustration, it is shown that the TCR diminishes because the service rates
and replenishment rates are increased. The model describes the contribution of customers’
optional demands to the two-commodity system. We believe that the model portrayed and
the investigation described have implications for a range of modern organisations since
there are various kinds of customer demands, such as service requests without items. In
the future, our proposed model can be used to explore more conditions, such as service
and lead times under PH distribution, to assess whether customer arrivals might follow
a batch Markovian arrival process, and to determine whether the server might also work
under a vacation policy.
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Notations
0 Zero matrix with appropriate dimension.
e Column vector of 1’s with appropriate dimension.
I Identity matrix of appropriate order.
[W]ij Entry at (i,j)th position of a matrix W.
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