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Abstract: We consider the problem of evolutionary self-organization of control strategies using the
example of speculative trading in a non-stationary immersion market environment. The main issue
that obstructs obtaining real profit is the extremely high instability of the system component of
observation series which implement stochastic chaos. In these conditions, traditional techniques
for increasing the stability of control strategies are ineffective. In particular, the use of adaptive
computational schemes is difficult due to the high volatility and non-stationarity of observation
series. That leads to significant statistical errors of both kinds in the generated control decisions. An
alternative approach based on the use of dynamic robustification technologies significantly reduces
the effectiveness of the decisions. In the current work, we propose a method based on evolutionary
modeling, which supplies structural and parametric self-organization of the control model.

Keywords: chaotic processes; control strategies; non-stationary environment; channel strategies;
observation series; numerical studies; dynamic stability
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1. Introduction

The problem of effective control in non-stationary immersion environments appears
in a large number of applications. They are meteorology, the control of turbulent hydrody-
namic flows, the stabilization of the state of non-stationary technological processes, asset
management in capital markets, etc. The intricacy here is due to the unstable nature of
the observed processes described by models of nonlinear chaotic dynamics [1–10]. Non-
stationarity means that different observations have means, variances, and covariances that
change over time. The non-stationary behavior can be a trend, a cycle, a random walk,
or a combination of these. Non-stationary data is generally unpredictable and cannot be
modeled or forecasted. Results obtained using non-stationary time series can be misleading
because they may indicate a relationship between two variables when in fact there is none.
For a better introduction to the subject, see the following Investopedia article [10].

High volatility and low predictability of chaotic processes significantly complicate the
effective use of well-known control stabilization techniques based on traditional methods
of adaptation and robustification. In particular, adaptive technologies turn out to be too
inertial to close the feedback loop in time. Increasing the sensitivity of feedback leads to a
high level of statistical errors of type II (“false alarms”). Robust control methods [11–15]
focused on solutions with reduced sensitivity to statistical and dynamic variations of
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the observed process in the conditions of a basic model significantly lose effectiveness
compared to optimal a posteriori versions.

A control strategy based on sequential dynamic optimization of the control model
in chaotic dynamics, as will be shown in this paper, also faces a number of well-known
problems. Here we have, for example, bruteforcing control parameter values with a
given step that determines the accuracy of the solution, exponential increasing amounts of
calculations with an increase in the number of model parameters. Taking into account the
high variability and unsteadiness of the observed process, the number of parameters of the
optimized control model should not exceed five or six even for modern techniques. Hence,
there is a need to study new techniques of sequential dynamic optimization of the control
model based on suboptimal computational schemes.

In this paper, we use an observation series of currency pairs in the Forex market as a
testing ground for studying the effectiveness and stability of control algorithms in chaotic
immersion environment. Dynamic chaos in an observation series violates the fundamental
premise of the repeatability of experiments under identical conditions. In particular, two
geometrically similar observation segments in conditions of chaos may have completely
different aftereffects [16,17]. As a result, traditional statistical data analysis technologies
and control algorithms based on them are ineffective. In our studies, the choice of channel
control strategies is determined primarily by their accessibility and interpretability.

This article considers the possibility of applying sequential optimization based on the
method of evolutionary modeling in conditions of stochastic market chaos [18–21] etc. The
method is based on the Darwinian concept of evolutionary self-organization and the theory
of random search.

2. Methods
2.1. Observation Model and Problem Statement

A significant difference between the presented work and traditional studies in the
field of asset management is their focus on the Wald’s additive observation model [22–24]

yk = xk + vk, k = 1, . . . , n (1)

where xk, k = 1, . . . , n is the system component used in the process of making management
decisions (i.e., open, close or retain current position), and vk, k = 1, . . . , n is the noise.

Currently, the prevailing point of view is that in market situations, the system compo-
nent xk in (1) is modeled as an output signal of a nonlinear system observed in the condi-
tions of non-stationary and non-Gaussian interference vk (dynamic chaos model) [5–13].
Lyapunov functions [25] and identification methods based on higher-order spectra [26] are
used in order to substantiate such problem statements. There is a large area of research on
the direct reconstruction of stochastic differential equations [27,28] for the model (1). Other
points of view are based on nonlinear transformations of the yk process, and, for example,
on investigating fractal properties of the process trajectory [29–31].

Sequential filtering of the initial observation series yk, k = 1, . . . , n is usually used to
isolate the system component xk, k = 1, . . . , n from (1) in real time. For this purpose, we
utilize an exponential filter [32]:

xk = αyk + (1 − α)y(k−1) = x(k−1) + α(yk − x(k−1)), k = 2, . . . , n (2)

with a discounting coefficient α ∈ [0.01, 0.3]. This range is our empirical finding for the
Forex market. Simultaneously, it is possible to select α adaptively so it better corresponds to
features of considered data. This filtering technique is not the best one, because an increase
in the smoothing effect with a decrease of α leads to a significant bias of the generated
estimates. However, it produces a satisfactory result for the considered examples, while
also providing simplicity of interpretation of the extracted system component.

Note that the conventional statistical observation model is based on the assumption
that its system component is an unknown deterministic process, and its noise component is
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a stationary random process with independent increments [33]. Such a model was used in
a wide class of trend analysis-based management strategies [34–37], though all of them are
not resistant to possible dynamic variations in the process of changing quotes. One of the
reasons for the unfeasible effectiveness of these trend indicators is the intrinsic inadequacy
of the statistical approach for a chaotic observation series.

The main difference of the proposed model (1) is that its system component xk,
k = 1, . . . , n is modeled as an oscillatory non-periodic process with a large number of
local trends. This description indicates the possibility of interpreting this process as an im-
plementation of the dynamic chaos model [5–13]. Its second distinctive feature is the noise
component vk, k = 1, . . . , n being interpreted as a non-stationary random process described
by an approximate Gaussian model with fluctuating parameters. In particular, correlations
and spectral characteristics of this process change significantly over time [23,24].

The indicated features of observation series described by (1) violate the conditions
of applicability of traditional statistical methods. In this case, numerical studies are the
only approach to analyze the effectiveness of the developed management strategies. The
statement of the asset management problem essentially coincides with the traditional
formalization of the task to maximize the gain in the process of trading or investing capital.

Let yk = xk + vk, k = 1, . . . , n be a sequence of observations corresponding to a given
time interval of asset management T = n∆t, where ∆t is the selected interval between time
counts. During the specified time, M operations are carried out in the trading process, each
being determined by their start and finish (kopen, kclose)j, j = 1, . . . , M.

The trading problem can be thus formulated as follows: select a management strategy
S and construct a sequence of actions uj, j = 1, . . . , M to obtain maximum profit G(S):

G(S) =
M

∑
j=1

uj(kclose)− uj
(
kopen

)
= max (3)

In the simplest case, each management strategy is defined by the rules that determine
the time of opening and closing a position (kopen, kclose)j, j = 1, . . . , M, and, in some cases,
the lot size. The sum of the operation results at the k-th step Gk(S) becoming smaller than
the trader’s available deposit G0 means the management process resulted in complete loss.

The approach to determining the start time of an operation (the so-called “position
opening”) is the defining characteristic of a management strategy. The operation can be
finished (a “position” can be “closed”) when a specified profit level (TP, “take profit”) or
loss level (SL, “stop loss”) is reached, or according to some different rules that could be
more flexible.

This paper examines the technique of sequential evolutionary self-organization of the
management strategy in the conditions of market chaos. Due to this, the simplest control
schemes are used as basic control strategies, which makes it easy to visualize and interpret
the obtained results. In particular, we used the so-called channel strategies [4,34–37]. Let
us consider the simplest approaches to constructing such a strategy.

2.2. Channel Asset Management Strategies

We have a series of the trading asset’s quote observations being modeled by (1).
Let us define a “channel” as a range of observation values constrained by yk = xk ± B,
k = 1, . . . , n [33]. Variations inside the channel |yk − xk| = |δyk| ≤ B, k = 1, . . . , n, are
fluctuations that do not contain an obvious trend, in which case, the process can be referred
to as a sideways trend or a flat. Channel width B can be selected depending on various
considerations. It usually lies in the range from sy to 3sy, where sy is the estimate of the
standard deviation (SD) δyk, k = 1, . . . , n. In general, the choice of channel width depends
on the nature of the data and the specificity of the selected management strategy. In some
cases, the channel width may be some variable value Bk = Bk(yk), k = 1, . . . , n.

The observation series value yk, k = 1, . . . , n that breaks out of the channel is inter-
preted as the emergence of a trend in some management strategies. In the case of managing
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assets according to the trend direction, such events give rise to a recommendation to open
a position in accordance with the sign of the channel boundary. Due to strong variability,
a trend is often considered to be present when the system component xk, k = 1, . . . , n
formed by the exponential filter (2) with a given level of smoothing quits the channel.
The values of the model parameters α, B, TP, SL are optional. Their selection depends
on the knowledge and intuition of the trader, and they fully determine the management
effectiveness. But it is often the case that intuition and other abilities of a human person
appear to be ineffective in trading. Therefore, there is a need for strictly formalized and
mathematically sound solutions.

We named the strategy of moving corresponding to the trend CSF (channel strategy
forward). The idea behind it is simple: open a position up or down when the process
breaks through the upper or lower bound of the channel respectively. The management
algorithm contains two rules: Open Up position at yk > xk + B or Open Dn at yk < xk − B.
Otherwise, a position will be opened at each step outside the channel. In this regard, the
more often used rules are based on determining the time of crossing the channel boundary
(yk−1 ≤ xk−1 + B) & (yk > xk + B) or (yk−1 ≥ xk−1 − B) & (yk < xk − B), k = 1, . . . , n.

In the simplest case, a position is closed either when the yclose > yopen + TP or = yclose
< yopen − SL levels are reached (at Open Up) or when yclose < yopen − TP or yclose > yopen +
SL (at Open Dn).

A more flexible control scheme allows for the obtaining of a model in which the
upper and lower bounds of the channel are evaluated separately. An example of the
implementation of the CSF management strategy for the Euro/Japanese Yen (EURJPY)
currency pair on an observation interval of 1440 min counts (one day) is shown in Figure 1.
In this case, the control model was defined by the parameters α = 0.04, B1 = 15, B2 = 15,
TP = 15, SL = 15. Blue diamonds indicate opening a position up, red diamonds denote
opening a position down, and circles are positions being closed.
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Figure 1. Example implementation of CSF on an observation interval of 1440 min counts.

Figure 2 presents management (3) effectiveness fluctuations in utilizing the channel
strategy for the selected example. For the parameters that were used for the control model,
the result turned out to be close to zero, and most of time during which trading was being
carried out, it was negative. Note that in most cases of direct use of the CSF strategy, the
result was negative.
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Figure 2. Performance of the CSF strategy for example in Figure 1.

Is it possible to achieve profit if there is a reliable forecast of the development of
the process? To answer this question, we use bruteforce posterior optimization of the
parameters of the management model M = {α, B1, B2, TP, SL}.

For each of the parameters, 15 iterations were carried out, starting from the val-
ues of M0 = {0.01, 10, 10, 10, 10}. The values of the iteration step, respectively, were
Step = {0.01, 1, 1, 1, 1}.

An example of the implementation of the CSF strategy with optimized parameter
values α* = 0.05, B1* = 10, B2* = 12, TP* = 18, SL* = 18 at the same observation interval is
presented in Figure 3. Note that this is the same EURJPY price history as in Figure 1, but the
opening and closing moments are different. Figure 4 presents the change in performance
during the use of CSF with optimized parameters. The management result for the day was
G = 248 p.
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It is not difficult to see that this result is unstable. The results of applying the CSF
strategy with the optimal parameters found for the next 10 days of management is shown
in Figure 5. The obtained values completely confirm the instability of the found solution.
None of the following nine days of observation produced a profitable result.
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Figure 5. Performance of applying the CSF strategy with parameters optimal for the first day to the
next nine days of management.

Comparing the results presented in Figure 6 with the dynamics of quotations of a
financial instrument at the same observation interval, we can draw another conclusion. The
structure of dynamics is more important than the degree of variability of the process. The
minimum loss corresponds to the eighth day of observation, the most similar in structure
to the first day for which the parameters of the control model were optimized. The worst
result corresponds to the last, 10th day, with its strongly pronounced trend.
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Thus, in order to preserve, even if not the best, but at least positive result, it is nec-
essary to significantly reduce the size of the time shift at which the optimal parameters
are reassessed. This requirement significantly reduces the feasibility of using optimization
based on bruteforcing optional parameters. The problem is that the number of calcula-
tions shows an exponential increase along with an increase in the number of optimized
parameters. It takes about 15 min on a 2.5 GHz 6-core INTEL Core i5 to optimize the model
with five parameters by bruteforce on an observation interval of one day. A model with six
parameters will take about 1.5 h.

Hence, there is a need to switch to suboptimal computational schemes for sequential
optimization, which significantly reduces the calculation time to a level that makes possible
real-time sequential data processing.

2.3. Features of Evolutionary Optimization for Chaotic Immersion Environments

In this paper, an algorithm based on the method of evolutionary modeling is proposed
as a suboptimal computational scheme for optimizing the management strategy [38]. Mod-
ern computing techniques and applications based on this method can be found in [39–46].
Unlike evolutionary modeling, evolutionary optimization of management strategies is not
interested in the degree of similarity of the mathematical model to the real data obtained
via monitoring the managed object and the parameters of the immersion environment.
Its task is to choose a management model that produces the best solution according to
(3). Genetic algorithms decrease the volume of computations by about 40% according to
estimates given in a number of referenced works.

At the same time, the control strategy itself, as a set of decision rules, can also be
modified. The implementation of nonparametric mutations of the management strategy
consists in choosing the structure of the model and management rules from the a priori
knowledge bank. As a set of decision rules is selected, the list of parameters to be changed,
their critical values and ranges of changes are modified. The advantage of this approach is
its feasibility. However, at the same time, the arbitrariness of machine choice is limited, and
there is no possibility of obtaining radically new strategies that are not provided by the
programmer. Any regularization and any set of restrictions can block access to unexpected
original solutions.
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Moreover, the complete removal of restrictions in the process of random modifications
of the structure of strategies leads to a huge number of meaningless decision rules. Wait-
ing for any reasonable solution to appear will take time comparable with real biological
evolution. At the same time, the question of artificial generation of management strategies
remains open.

Evolutionary technology, like the entire probabilistic-statistical paradigm, is implic-
itly oriented towards a comfortable hypothesis about the repeatability of experiments in
unchanging or slowly changing conditions. The transition to non-stationary, and even
chaotic processes, inevitably destroys the optimality of statistical solutions, including those
constructed via evolutionary modeling. However, chaos, in general, contains regularizing
effects that reduce the degree of total uncertainty. If evolutionary technology can identify,
at least not explicitly, and use such hidden patterns, then the task of constructing a win-
ning strategy may be feasible. In addition, using an evolutionary computational scheme
will help us answer the question of the fundamental admissibility of particular classes of
management strategies.

The paper uses the basic evolutionary modeling algorithm described in [31]. The return
to the original version of this concept is due to the fact that it does not introduce additional
restrictions on the mechanism of variability and leaves a wide range of opportunities
for its formation. For example, genetic algorithms are focused on the model of bisexual
reproduction, which is very important in the implementation of variability in biology.
However, for the models under consideration, there is no need to limit the process of
variability to the mechanisms of gene exchange. The same can be said about the method of
differential evolution. The formation of a new genome, as a mutant vector formed from
other parental genomes, also introduces unnecessary restrictions for this case.

In econometric models, one can make any modifications to the structure of genes if
they do not contradict common sense and the laws of the market. Therefore, it is reasonable
to use the computational scheme of evolutionary optimization, which corresponds to
the traditional concept of evolutionary modeling. At the same time, the mechanism of
variability is based on the well-known mechanism for extracting a random variable from
the range of permissible variations in genome parameters.

2.4. Algorithm of Evolutionary Optimization of the Management Model

Consider a set of ancestor strategies SA = {SA1, . . . , SANa} with Na elements, each of
which is defined by its structure R (the decision-making rule) and a set of corresponding
numerical parameters a, i.e., S = {R, a}. The effectiveness of a strategy Eff(s) is assessed via
applying it to the time series of observations Y(t), which together form an experimental
retrospective dataset. We introduce two nonlinear operators.

1. The operator of variability and multiplication of strategies:

Var(SA) : SA =
{

SA1 , . . . , SANa

}
⇒

{
SD1 , . . . , SDND

}
: ND = kbNA, kb > 1

Here
{

SD1 , . . . , SDND

}
is a set of descendant strategies, each of which is created by

modifying one of the ancestor strategies, ND is the number of descendant strategies in one
generation, and kb > 1 is the multiplication coefficient of strategies. The union of ancestor
strategies and descendant strategies is a generation of size Ng = Na + Nd = Na (1 + kb):

SG =
{

SG1 , . . . , SGNg

}
=
{

SA1 , . . . , SANa

}
∪
{

SD1 , . . . , SDND

}
2. A selection operator that selects the “surviving” strategies from the generation SG ={

SG1 , . . . , SGNg

}
that become the ancestors of the next generation:

Sel
(

S1, . . . , SNg

)
=
{

S1, . . . , SNg

}
⇒

{
S〈1〉, . . . , S〈Na〉 : E f f

(
S〈1〉

)
≥ . . . ≥ E f f

(
S〈Na〉

)
≥ E f f

(
Sj
)
, ∀j > Na

}
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Let S0 = {K0, p0, a0} be a particular management strategy with the specified parame-
ters, adopted as the basic “parent strategy”. Then evolutionary optimization is reduced to
a cyclic execution of an operator sequence:

S0 ⇒ Var(S0) = SA =
{

S1, . . . , SNA

}
⇒ Var(SA) = SD =

{
S1, . . . , SND

}
⇑

Sel
(

S1, . . . , SNg

)
=
{

S1, . . . , SNg

}
⇐ SG = (SA) ∪ (SD)

(4)

where arrows denote the sequential order of operators. Since selection is carried out by
superiority, the optimality of the final solution is not guaranteed. However, it will be the
best of the whole set created during the implementation of evolutionary modeling.

The process of evolutionary optimization is obviously converging to more effective
strategies by virtue of its very construction. This is due to the fact that the new generation
always includes ancestor strategies in its composition. Consequently, the most effective
strategies in principle cannot be discarded by the accepted selection and selection procedure.
However, a high convergence rate cannot be expected due to the randomness of the
modification process. The convergence rate will be close to the convergence rate of a
random search, and depends on the size Ng of the generation being formed. It can be
assumed that the convergence rate will be higher if the multiplication coefficient kb is made
variable so that the number of descendant strategies Nd depends on the effectiveness of
parent strategies, i.e., Nd = k(Eff(Sa)), k > 1. In other words, a more effective ancestor can
produce more offspring. However, this statement requires additional verification.

Other regularization methods aimed at increasing the convergence rate of evolutionary
optimization are also possible.

2.5. Computational Aspects of the Evolutionary Optimization Algorithm

The functional structure of the algorithm of evolutionary optimization of management
strategies is shown in Figure 7. The sequence of evolution is represented by a diagram of a
process developing from the bottom up.

Let us consider the presented algorithm. At the preliminary stage, some basic strategy
(prototype) is formed. Its structure is chosen either randomly or based on existing a priori
experience in asset management. With the help of the variability mechanism, the basic
prototype strategy is modified, giving rise to parent strategies.

Then, in accordance with (4), the program loops for the number of successive genera-
tions, which are usually called epochs.

At the first step of this loop, the first generation of descendant strategies is formed us-
ing the variability generator, which, combined with their parents, form the first generation
of strategies SG. Furthermore, each of the first-generation strategies undergoes a testing by
being applied to a set of retrospective observations {Y(t), Y(t − Y)}, where T is the size of
the validation dataset. The created strategies are ranked by their effectiveness Eff (Si), i = 0,
. . . , Ng and a specified number Na of “surviving” strategies that are allowed for further
“reproduction” (modification) are selected. The selected strategies are the parents of a new
set of modified descendant strategies and together with them form the second generation.

Furthermore, the cycle is repeated until either a specified number of generations is
reached, or, according to some other criterion, for example, when the effectiveness of
management does not improve during a given number of epochs.

The variability mechanism used in the program randomly selects changes made to the
strategy from the following set of options:
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1. Small single changes. In the strategy undergoing modification, relatively small
changes are made to only one parameter (gene) selected by a random draw. The
size of the change range depends on the parameter. This one-time change does not
usually exceed 10% of the original value. The choice of the parameter is carried out
by a random draw, similar to how it happens in the Monte Carlo method.

2. Small group changes. They are carried out similarly to the previous case, but are
made to several gene parameters at once instead. Their amount and their numbers
are selected via a random draw.

3. Strong single mutation or parametric mutation. The gene number is selected via a
random draw. Usually, the number of mutations in a generation is small, and the
probability of their occurrence does not exceed 2–3%. The size of the change field
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also depends on the parameter, usually a single mutation can reach 30–50% of the
original value.

4. Strong group changes are similar to the previous case, but are made immediately in
several parameters, as in case 2.

5. Structural (nonparametric) mutations. The parent strategy with some relatively small
probability (usually less than 0.01) may undergo nonparametric mutation. In this case,
the number of genes in the original genome may change, or, in a more radical case,
the management strategy itself may be completely modified. The most rational way
in this case consists of randomly choosing a management strategy from an a priori
created knowledge base.

It should be expected that such mutations will be quite constructive, since the strategies
included in the data bank, to one degree or another, have already been pre-selected by at
least the common sense of their developer. For example, there is a transition from a channel
strategy to management based on trend analysis, etc. However, this approach limits the
evolution to the level of the programmer’s constructive imagination.

A more radical approach consists in stochastic synthesis of new strategies using
artificial intelligence technologies. In this case, the evolution program gets out of the
strict control of the developer not only at the parametric, but also at the structural level.
This approach, in theory, enables the generation of completely new, unexpected solutions.
However, in most cases, such mutations will generate ineffective strategies that will be
immediately eliminated by the selection mechanism, without generating variants of man-
agement strategies in the next generation. In this regard, it may make sense to deliberately
preserve such mutations for a given number of epochs and allow them to generate variants
of descendants in a mutant zoo.

The selection mechanism, as already noted, ranks a set of strategies according to their
effectiveness, and selects among them the best strategies that become the parents of the next
generation. It is important to note the principle of incomplete or open solutions, meaning
that at each cycle of selection, not the only best option is selected, but a group of strategies
is as well. This approach allows us to come to the best solution along a chain consisting of
intermediate options other than optimal, which is especially important when searching for
effective management strategies in chaotic immersion environments.

3. Results

As an example of the implementation of the evolutionary optimization method, con-
sider the asset management task based on the CSF management strategy. In order to be able
to compare with the best solution found by bruteforce, we will consider the same one-day
observation interval as in the examples shown in Figures 1–4. As optimization parameters
(the genome) we will use M = {α, B1, B2, TP, SL}. From the above optimization example
(Figures 3 and 4) it follows that the best parameters of the control model are α* = 0.05,
B1* = 10, B2* = 12, TP* = 18, SL* = 18.

Figure 8 shows an example of CSF implementation with evolutionary optimization of
the management model for 10 epochs. The best result was 177 points with the parameters
of the model being α* = 0.05, B1* = 12, B2* = 12, TP* = 15.5, SL* = 14.8. The convergence to
the found result is shown in Figure 9.

The dependence of the effectiveness of the CSF strategy during the epoch is shown in
Figure 10.

The plots show that the obtained result, as expected, is inferior to the gain obtained
by bruteforce. However, this search only took 0.26 s with the same CPU and with the
observation interval the same as in the example with bruteforce optimization, and half of
this time was spent on the implementation and output of graphics.

The question arises of how much the quality of management can be improved by
increasing the number of epochs. Figures 11 and 12 show changes in the effectiveness of the
best versions of the management model obtained during, 50 and 200 iterations, respectively.
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The gain in the above examples reached, 197 p. and 203 p., respectively, did not
achieve the effectiveness of bruteforce (248 p). However, the time spent was 0.203 s in the
first case, and 0.541 s in the second. A further search for the best option was quite slow,
and this can be seen from the section of the horizontal line in Figure 12, starting from about
70 epochs. Increasing the number of epochs to 500 increased the profit to only 209 p., and
spending to 1.17 s.
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Note that in the considered examples, a simplified version of the variability operator
was used. For example, structural mutation was not used at all. However, even in the
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proposed case, it becomes possible to conclude that this algorithm is suitable for sequential
optimization with new data arriving every 0.5–1 s.

4. Discussion

The chaotic dynamics of quotations, characteristic for electronic capital markets, ob-
struct the effective use of traditional methods of increasing the stability of management
strategies. As shown in the examples in Figures 5 and 6, the parameters that are optimal
for a given day of observing the dynamics of quotations on the very next day lead to an
unpredictable loss. In this regard, the management model should be dynamically corrected
as new results of monitoring the market situation become available.

At the same time, the most powerful optimization tool based on bruteforce incurs
significant time costs even for modern high-performance processors. This is due to the
fact that the time complexity here is described by a power function with an increase in
the number of iteration steps, and by an exponential function with an increase in the
number of model parameters. As a result, even with a relatively simple model with five to
six parameters, the required computational resources exceed the capabilities of modern
processors. At the same time, increasing the time interval between successive calculations of
the best parameters is unacceptable, given that the dynamics of market assets is absolutely
non-inertial and can be discontinuous even within one minute of observation. Due to this,
we proposed an optimization of the management model based on evolutionary modeling.

We analyzed the effectiveness of this approach using the example of real data obtained
by monitoring the currency exchange market. The results of numerical studies have
shown that maximum gain decreased by about 15–20% compared to the result obtained by
bruteforcing parameter values. At the same time, the number of operations decreased to
such a level that model parameters can be optimized even with a one-second interval of
monitoring results.

It is important to note that the potential of evolutionary optimization is by no means
exhausted by the version of its implementation considered in the paper. First of all,
the above example did not use structural mutations. In essence, we are talking about
utilizing qualitatively different strategies, which can give a result that significantly exceeds
the mechanistic optimization based on bruteforcing parameter values. Moreover, new
opportunities arise, such as artificial intelligence technologies: the computer independently
generates management strategies that are not contained in the a priori knowledge base.

The second point related to the advantage of using evolutionary optimization is due
to the fact that the drawing of parameter values is carried out on a scale of counts close
to continuous. The discreteness is essentially determined only by the mantissa of the bit
grid. This means that the conducted adjustment is finer than that obtained with a fixed
iteration step. The advantage of fine-tuning is due to the extremely high sensitivity of the
management result to variations in the values of the model parameters, which is generally
characteristic of a chaotic series of observations.

It should be noted that we used a very simple channel strategy as a demonstration
example in this work. This was done in order to ensure the clarity and interpretability of
the results. However, in practice, such strategies are not used as is, because in most cases
they only lead to loss.

In [33] it was shown that for almost any variations of the observed dynamic process,
profitable solutions exist for this class of strategies. However, their implementation requires
fine-tuning, minor deviations from which, as follows from the theory of dynamic chaos,
lead to loss. Nevertheless, with a small time shift of observation series relative to the
optimization tuning interval, the positive gain on average is preserved. This means that
it is fundamentally possible to build a dynamic self-adjusting asset management system.
One of the variants of such a solution is considered in this paper.

Other formulations of asset management tasks that also use genetic algorithms for
optimization can be seen, for example, in [47,48]. At the same time, various algorithms
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based on random search in some cases lead to completely unexpected and, often, anti-
intuitive results [49,50].

A development of these studies being focused on constructing a dynamic self-adjusting
asset management system with an increased level of resistance to variations in the dynamic
and statistical characteristics of observation series implies considering the following points:

• the study of potential characteristics of self-adjusting asset management systems for
various sets of dynamic properties of observation intervals of chaotic processes;

• the development of a knowledge base of management strategies and its application
for implementing structural mutations of the management model in the mechanism of
variability of the evolutionary optimization algorithm;

• the development of randomized synthesis of management strategies using multi-
expert data analysis [51];

• the use of composite algorithms combining the capabilities of robustification and
adaptation in management decision-making.

• the effectiveness of the application of evolutionary optimization in markets and peri-
ods that differ in the degree of market efficiency within the Efficient Market Hypothesis
(EMH) [52]. It is supposed that the greatest profit can be made in a highly inefficient
market. At the same time various exchange markets all have multifractal structural
properties with different levels in the sample and sub-samples that cause inefficiency
with different levels in these foreign exchange markets [30]. Another work reveals
that the efficiency of the cryptocurrency markets varies over time, which is consistent
with adaptive market hypothesis (AMH) [53]. The question about the level of current
market inefficiency which is acceptable for self-adjusting asset management systems
needs to be investigated.

• the use of external add-ons that carry information exogenous to technical analysis on
expected trends of the considered financial instrument and market mood in general.

• The outlined issues constitute the subject of our further research.
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