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Abstract: The strong predictable representation property of semi-martingales and the notion of
enlargement of filtration meet naturally in modeling financial markets, and theoretical problems
arise. Here, first, we illustrate some of them through classical examples. Then, we review recent
results obtained by studying predictable martingale representations for filtrations enlarged by means
of a full process, possibly with accessible components in its jump times. The emphasis is on the non-
uniqueness of the martingale enjoying the strong predictable representation property with respect to
the same enlarged filtration.
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1. Introduction

Since the seminal papers by Harrison and Pliska (see [1,2]) fixed a filtration F on
a probability space, the strong predictable representation property (from now on PRP) of a
F-semi-martingale X has become a fundamental topic in mathematical finance. In that
framework, X models the discounted risky asset price and F the available information on
the market. When the property holds, the payoff of any contingent claim can be written,
up to an additive constant, as integral with respect to X, and the market is complete, that
is, a perfect replication of all options is possible. The PRP is a notion widely studied in
stochastic analysis (see, e.g., [3–6]). As it is well-known, the PRP holds for a large class of
diffusions with jumps. The incompleteness of a market typically occurs when the original
complete model is altered, changing the information in one of two possible ways: by
considering an exogenous randomness in the dynamic of X, as in the case of stochastic volatility
models, or by assuming the point of view of an insider, i.e., adding new information to
that endowed by the asset price, as in the case of defaultable markets. In both cases, the
information grows. In mathematical terms, it amounts to consider a new filtration G
obtained by enlarging F (see [7,8], Chapter VI). In many cases, G turns out to be the union
of F with a filtration H. The filtration Hmodels the additional information due to the new
sources of uncertainty. Then, the first problem concerns the loss of the property of semi-
martingale for X as G-adapted process. If this is not the case, the second critical question is
about the maintenance of the PRP of X with respect to G. Finally, if the answer is negative,
the last question is whether there exists a semi-martingale enjoying the PRP with respect
to G and, eventually, which one it is. Translated into financial language, one asks if the
market under full information may be completed by considering additional assets. There
is a large literature, even recent, on these issues, which corresponds, respectively, to the
so-called hypothesis (H′) (see [9]), the stability of the PRP (see, e.g., [10,11]) and the martingales
representations (see, e.g., [12,13]).
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This note is a short introduction to the subject. Our purpose is twofold. On the one
hand, we aim to present, briefly and without claiming to be exhaustive, the variety of
situations that arise for a semi-martingale, in particular with respect to the PRP, when its
reference filtration is enlarged. On the other hand, we highlight the role of probability
measures in martingales representations for enlarged filtrations. To this end, we collect
some results published in separate papers but as part of the same specific ongoing re-
search (see [14–16]). The basic problem is the identification of a possibly multidimensional
martingale enjoying the PRP with respect to an enlarged filtration or, equivalently, the iden-
tification of a martingale, which drives the martingales representation for that filtration. The
filtration we refer to is the enlargement of the reference filtration F of a semi-martingale
that enjoys the PRP with respect to F by means of a non-trivial process with a deterministic
initial value. Therefore, this research does not deal with initial enlargement, which is the
expansion at any time through a unique random variable, while it includes the case of
progressive enlargement, which is expansion by means of the occurrence process of a random
time. The novelty concerns the great generality of the processes involved in the definition
of filtrations, which are not supposed to be quasi-left continuous, so that their jump times
may have accessible components. In fact, until recent years, most of the authors dealing
with martingale representations worked under hypotheses that exclude this possibility. In
progressive enlargement, the usual assumptions, such as Jacod’s condition with respect to
a non-atomic measure, make the random time totally inaccessible (see, e.g., [9]). However,
in mathematical finance, there is a growing interest in processes that jump on accessible
random times (see, e.g., [17,18]). It is important to stress that the focus here is exclusively on
the integrators of representations. More precisely, the problem of the explicit expressions of
the predictable integrands is not addressed, and only that of their existence and uniqueness
is studied. A key tool of the research is the invariance principle of PRP (see [12]). Roughly
speaking, by changing the probability measure into an equivalent one, a filtration is still represented,
but the driving martingale changes.

The paper is sectioned as follows. In Section 2 we introduce definitions and issues
related to the enlargement of the reference filtration of a semi-martingale. In Section 3, we
recall the notions necessary for dealing with martingale representations in the enlargement
of filtrations and, among others, the invariance principle of the PRP. In Section 4, we state
some auxiliary results of stochastic analysis central to the sequel. In Section 5, after giving
the common framework of the reported results, we exhibit two driving square-integrable
martingales with strongly orthogonal components, that is, two bases of square-integrable
martingales. In Section 6, we introduce the notion of martingale preserving measure and set
the problem of the explicit computation in our framework of a driving martingale under
the original probability measure. Finally, the last section is devoted to some comments and
to ideas for future research.

2. PRP and Enlargement of Filtration Trough Examples

Let T > 0 be a finite time horizon and let X = (Xt)t∈[0,T] be a special semi-martingale
on a probability space (Ω,F,F , P) with the filtration F under standard conditions (when
real, we denote that semi-martingale by X). Let us denote by P(X,F) the set of local
martingale measures for X on (Ω,FT) equivalent to P|FT .

Definition 1. X enjoys the strong predictable representation property with respect to F (F-PRP) if
there exists Q ∈ P(X,F) such that any real (Q,F)-local martingale can be written as m + ξ · X
where m is an F0-measurable random variable, ξ is an F-predictable process and ξ · X denotes the
(vector) stochastic integral of ξ with respect to X (see [19,20]).

One of the most celebrated results on PRP is the Second Fundamental Asset Pricing
Theorem. It states that the PRP is equivalent to the existence of a unique, modulo F0,
equivalent local martingale measure for X (see Proposition 3.1, page 34, in [10]). If the set
P(X,F) is a singleton, then F0 is the trivial σ-algebra (see Theorem, page 314, in [2]). This



Mathematics 2022, 10, 1783 3 of 12

result is usefully applied to pricing problems of mathematical finance, where the existence
of a local martingale measure for X equivalent to P is central to constructing optimal
strategies of investment. In this setting, the condition P(X,F) 6= ∅ guarantees that the
market we refer to is free from arbitrage (see [21]).

Definition 2. A filtration G = (Gt)t∈[0,T] on (Ω,F , P) is an enlargement of the filtration F if

Ft ⊂ Gt for all t ∈ [0, T] and Ft  Gt for some t ∈ [0, T].

The most popular kinds of enlargement of filtration in the literature date back to the
seminal paper of Ito and to the book of Jeulin (see [7,22]).

Definition 3. Let F, H and G be filtrations under standard conditions on a complete probability
space (Ω,F , P). Then, G is the enlargement of F by H when

Gt =
⋂
s>t
Fs ∨Hs, t ∈ [0, T] (1)

and
(i) if L is any random variable, G is called the initial enlargement of F by L when

Ht := σ(L), t ∈ [0, T];

(ii) if τ is any positive random variable, G is called the progressive enlargement of F by τ when

Ht := σ(τ ∧ t), t ∈ [0, T].

Given a non trivial enlargement G of F, it is natural to ask whether X enjoys the
G-PRP or, if not, whether it is possible to construct a possibly multidimensional G-local
martingale enjoying the G-PRP. By definition, the first question above makes sense if
P(X,G) 6= ∅. However, it is not always the case, as the following example shows.

Example 1. Let B = (Bt)t∈[0,1] be the restriction of a Brownian motion on the time interval
[0, 1] and let G be the initial enlargement of the natural filtration F of B by B1. Then, B is not a
G-martingale as easily follows by observing that, for any t ∈ (0, 1), E(B1 | Gt) = B1, and since,
the previous equality holds P-a.s., then P(X,G) = ∅ (see Section 4.1.1 in [23]). However, B is a
G-semi-martingale (see Proposition 4.1, page 70, in [23]).

The example suggests that, given an F-semi-martingale X, sometimes under enlarge-
ment at least the semi-martingale property for X is preserved, even if P(X,G) = ∅. This
fact is fundamental since as it is well-known the semi-martingale property is the core of the
stochastic integration theory as the most general stochastic integrator (see, e.g., Chapter II
in [8]). This is why the semi-martingale property is an essential feature of many processes in
applied probability and, in particular, in mathematical finance, where the risky asset prices
are modeled as semi-martingales. Nevertheless, under enlargement, the semi-martingale
property can disappear, as shown by the next two examples.

Example 2. Let B be a Brownian motion and let gt := sup{s ≤ t, Bs = 0}. Then, the Azéma
martingale ζ defined by ζt := sgn(Bt)

√
t− gt is a martingale with respect to its natural filtration

(see 4.3.8.1, page 243, in [24]). Moreover, it is not continuous at all, and therefore, it cannot be a
martingale with respect to the natural filtration of B. Denoting by F and H the natural filtrations
of ζ and B, respectively, since F ⊂ H (therefore, trivially H = F ∨H) then H can be interpreted
as an enlargement of F. However, P(ζ,H) = ∅. In fact, under equivalent changes of measure
H-martingales remain continuous processes as well as ζ a discontinuous process. It can be proved
that ζ is not even an H-semi-martingale (see Example 9.4.2.3, page 531, in [24]).
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Example 3. Let B be a Brownian motion and F its natural filtration. If G is the enlargement of F
defined by Gt := Ft+δ with δ a strictly positive constant, then B is not a G-semi-martingale (see
Example 1.19 (c), page 10, in [23]).

In financial applications, the stability of a semi-martingale property under enlargement,
i.e., the condition

(H′) any (P,F)-semi-martingale is a (P,G)-semi-martingale,

is a minimal requirement to work with. Assessing if (H′) holds and, eventually, what is
the G-semi-martingale decomposition of an F-semi-martingale, is a delicate matter in the
literature (see, e.g., the seminal paper [9]). A sufficient condition for (H′) is hypothesis
(H) or equivalently immersion of F in G under P, usually denoted by F ↪→

P
G, which is the

condition

(H) any (P,F)-martingale is a (P,G)-martingale.

As proved by Bremaud and Yor, the immersion property strongly affects the relationship
between the two involved filtrations. The following implication holds (see Theorem 3,
page 284, in [25]).

Proposition 1. If F ↪→
P
G then Ft = Gt ∩ FT for any t ∈ [0, T].

Remark 1. If F ↪→
P
G and A ∈ Gt but A /∈ Ft, for some t ∈ [0, T], then A /∈ FT .

There is an easy relationship between F-PRP of X and immersion property (H). Fixed
Q ∈ P(X,G), if X enjoys the F-PRP under P, then by the Second Fundamental Asset Pricing
Theorem, it follows that Q|FT = P|FT . Therefore, any (Q,F)-local martingale is a (P,F)-
local martingale and, in particular, a stochastic integral with respect to X, and then, it is
also a (Q,G)-local martingale.

Proposition 2. If X enjoys the F-PRP then F ↪→
Q
G for any Q ∈ P(X,G).

The next corollary follows by previous result joint with Proposition 1 and Remark 1.
It allows checking directly from filtrations if P(X,G) is a void set, and therefore, G-PRP
cannot hold.

Corollary 1. Let X enjoy the F-PRP. If there exists t ∈ [0, T] such that Ft 6= Gt ∩FT or if it holds
FT = GT , then P(X,G) = ∅.

The second implication can be rephrased, saying that if the reference market is com-
plete, adding information without changing the payoff’s set generates arbitrage opportunities. This
principle could be used for dealing quickly with Example 1, where F1 = G1 and also
Gt ∩ F1 = Ft ∨ σ(B1) 6= Ft, for any t ∈ [0, 1].

Now suppose that X enjoys the F-PRP and P(X,G) 6= ∅. To our knowledge, there
are no general results in the literature to the question about maintenance of the PRP with
respect to G. The PRP stability, in the sense that X remains the process that drives the G-
martingale’s representation, has been proved, under suitable assumptions, by Amendinger
and by Grorud and Pontier in the case of initial enlargement (see Theorem 4.2, page 106,
in [26], Proposition 5, page 1012, in [11]). In the same framework under weaker conditions
and with a different methodology, Fontana in [27] showed a more general result identifying
driving martingales possibly different from X. Therefore, under initial enlargement, PRP
stability could fail. Furthermore, when the enlargement starts from a trivial σ-algebra,
the PRP is generally not preserved.
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Proposition 3. (Proposition 3.1, page 5, in [14])
Assume that X enjoys the F-PRP and G0 is trivial. If the set

{t ∈ [0, T] : Ft  Gt}

has a minimum, then X does not enjoy the G-PRP.

As proved by the following counterexample given in the setting of weak Brownian
filtrations, the statement is false when the set {t ∈ [0, T] : Ft  Gt} does not have a
minimum (see Section 6.1, page 104, in [28]).

Example 4. Let B be a Brownian motion and let G be its natural filtration. Consider the processes
X :=

∫ ·
0 sgn(Bs)dBs with natural filtration F and Z := sgn(B·) with natural filtration H. Then,

G can be represented as an enlargement of F by H. Moreover, X enjoys both the F-PRP and the
G-PRP. Actually, F coincides with the natural filtration of the process |B| and differs from G at any
time different from zero, so that the set {t ∈ [0, T] : Ft  Gt} does not have a minimum.

Our presentation suggests that with a fixed semi-martingale X, there are no general
conditions that guarantee the PRP of X with respect to some reference filtration A. In any
case, when the PRP holds A it is not necessarily the natural filtration of X nor is it unique. The
last observation is reinforced by the last two examples of this section.

Example 5. (Example 23.11, page 279, in [29])
Let W, V be independent Brownian motions, then X =

∫ ·
0 WsdVs does not enjoy the PRP

with respect to its natural filtration FX . This is derived easily from the following observations. Since
the quadratic variation process of X coincides with the process

∫ ·
0 W2

s ds, then W2 turns out to be
FX-adapted and so (W2

t − t)t≥0 is not only an FW-martingale but also an FX-martingale. If X
enjoyed the PRP with respect to FX , then a predictable process φ would exist such that at any time t

W2
t − t =

∫ t

0
φsdXs =

∫ t

0
φsWsdVs.

This is impossible since (W2
t − t)t≥0 and V are strongly orthogonal martingales.

Example 6. (Section 5 in [30])
Let us consider the space of continuous functions C([0, T]) with the Borel σ-algebra B(C([0, T]))

endowed by the uniform distance and a probability space (S,S , µ). Let Ω be the measurable
space C([0, T]) × S with the product σ-algebra F := B(C([0, T])) ⊗ S and general element
ω := (ω0, η). Define on Ω, for any fixed t, the application Xt(ω) := ω0(t). Fix η ∈ S and choose
on C([0, T]) the functions (σt(·, η))t∈[0,T] and (βt(·))t∈[0,T] such that the stochastic differential
equation driven by the Brownian motion W

dXt = σt(X, η)dWt + βt(X)dt, X0 = x (2)

admits a unique weak solution. Let Pη be the corresponding distribution on (C([0, T]),B(C([0, T])).
Set on (Ω,F ) the probability measure P defined by the rule

P(dω0, dη) := Pη(dω0)µ(dη).

The diffusion X enjoys the FX ∨ σ(G)-PRP where G is the projection on S, that is, G(ω) := η,
but at the same time, FX-PRP fails.

3. Driving Martingales in Enlargement of Filtration: Preliminaries

The results presented in the rest of the paper are obtained by assuming in a sense the
point of view of an insider of a financial market. In order to develop hedging strategies
he must know which risky assets complete his market. In mathematical terms, he needs a
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driving local martingale under the risk neutral measure. In this regard, the first fundamental
result is the general principle of invariance of the PRP by equivalent change of measures
presented in this section (see Proposition 4 below).

For the ease of the reader, we recall basic notations and definitions on a general
filtered standard probability space (Ω,A = (At)t∈[0,T],A, R), where T is a finite time
horizon. We denote byM(R,A) the set of (R,A)-martingales (M0(R,A) when the initial
value is null) and byMloc(R,A) (Mloc,0(R,A)) the set of (R,A)-local martingales. Anal-
ogously, M2(R,A) (M2

0(R,A)) is the set of square-integrable (R,A)-martingales, and
M2

loc(R,A) (M2
loc,0(R,A)) is its localization.M2(R,A) is a Hilbert space with the inner

product (Zi, Zj)→ ER[Zi
TZj

T ] (see page 28 in [3]).
Given two local martingales Z and Z′, we denote by [Z, Z′] their quadratic covariation

process and by 〈Z, Z′〉R,A their sharp bracket process (for definitions and existence’s conditions,
we refer to Chapter VII in [31]).

We refer to [19] for the definition of the vector stochastic integral and its relation with
the componentwise stochastic integral. We recall that they coincide when the components of
the integrator are pairwise strongly orthogonal local martingales (see Theorem 3.1, page 57,
in [19]).

Following Chapter 4 in [3], we denote by Z2(µ) the stable subspace ofM2(R,A) gener-
ated by the multidimensional locally square-integrable local martingale µ, that is

Z2(µ) = {ξ • µ, ξ ∈ L2(µ, R,A)},

where L2(µ, R,A) is the set of A-predictable r-dimensional processes ξ such that

ER
[∫ +∞

0
ξ∗t Ct ξt dBt

]
< +∞,

with Bt := ∑r
i=1〈µi, µi〉t and (Ct)ij := d〈µi ,µj〉t

dBt
, i, j ∈ (1, . . . , r).

Finally, we refer to Definition 1 and the subsequent remark for the notion of PRP of a
semi-martingale S. From now on, when P(S,A) = {Q}, we will take the memory of the
measure Q saying, more precisely, that S enjoys the (Q,A)-PRP.

Let S enjoy the (Q,A)-PRP. For a probability measure Q̃ locally equivalent to Q, set

ηt :=
dQ̃
dQ

∣∣∣
At

, t ≤ T.

Then, η = (ηt)t∈[0,T] is a positive (Q,A)-martingale and the following invariance
principle of the PRP holds.
Proposition 4. (Lemma 2.5, page 4247, in [12])

Assume that for any component Si of S there exists 〈η, Si〉Q,A. Set

S̃i
t := Si

t −
∫ t

0

1
η−s

d〈η, Si〉Q,A
s .

Then, S̃ enjoys the (Q̃,A)-PRP.

As a consequence, the following proposition holds.

Proposition 5. (Proposition 2.2, page 6, in [15])
Let S = S0 + µ + V be a square-integrable special semi-martingale on (Ω,A,A, R).

If P(S,A) = {PS}, so that A0 is trivial and S enjoys the (PS,A)-PRP, then µ enjoys the (R,A)-
PRP.

Let us introduce the definition of strong orthogonality of local martingales.
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Definition 4. The A-local martingales Z = (Z1, . . . , Zr) and Z′ = (Z′1, . . . , Z′s) are strongly
orthogonal if and only if, for all i = 1, . . . , r, and j = 1, . . . , s, the process ZiZ′j is an A-local
martingale with null initial value.

Starting from the previous definition, we present finally the notion of basis of a filtration.

Definition 5. An (R,A)-basis of local martingales is a vector of pairwise orthogonal local martin-
gales which enjoys the (R,A)-PRP.

4. PRP of Locally Square-Integrable Local Martingales: Strong Orthogonality, Stable
Subspaces and Independence

Strong orthogonality of locally square-integrable local martingales and stable sub-
spaces are related notions as explained by the following result.

Proposition 6. (Lemma 3.2, page 7, and Remark 3.2, page 8, in [15])
(i) If µ and µ′ are strongly orthogonal locally square integrable A-local martingales, then, for any ξ
in L2(µ, R,A) and any η in L2(µ′, R,A), the real A-local martingales ξ • µ and η • µ′ are strongly
orthogonal.
(ii) Moreover, let µi = (µi

1, . . . , µi
ri
), i = 1, . . . , d, be d pairwise strongly orthogonal locally square

integrable A-local martingales. Then, denoting by ν the vector (µ1, . . . µd), it holds (the symbol ⊕
denotes the direct sum of orthogonal subspaces)

Z2(ν) = ⊕d
i=1Z2(µi).

Remark 2. By the previous result, joint with the comment to Corollary 11.4, page 340, in [3], it
follows that ν = (µ1, . . . µd) is a (R,A)-basis of locally square-integrable local martingales if and
only if

M2
0(R,A) = ⊕d

i=1Z2(µi).

The next result points out the equivalence between independence and strong orthog-
onality of locally square-integrable local martingales enjoying the PRP, extending in this
way a well-known property of the Brownian setting.

Proposition 7. (Lemma 3.3, page 8, in [15])
Let B and B′ standard filtrations with BT ,B′T ⊂ A. Let ν = (ν1, . . . , νr) be a locally

square-integrable (R,B)-local martingale and let ν′ = (ν′1, . . . , ν′s) be a locally square-integrable
(R,B′)-local martingale, with Tν0ν′

0 ≡ 0.
Denote by

[ν, ν′]V any sort order of
(
[νi, ν′j ], i = 1, . . . , r, j = 1, . . . , s

)
.

(i) If B and B′ are independent, then ν and ν′ are strongly orthogonal and the rs-dimensional
B∨B′-local martingale [ν, ν′]V has locally square-integrable components.
(ii) If ν and ν′ are strongly orthogonal, ν enjoys the (R|BT ,B)-PRP and ν′ enjoys the (R|B′T ,B′)-
PRP, then B and B′ are independent if and only if ν and ν′ are strongly orthogonal B ∨ B′-local
martingales.

In fact, the PRP for both ν and ν′ is needed to state the previous proposition, as the
following example shows.

Example 7. Let W, V be mutually independent Brownian motions, and let FW and FV be their
natural filtrations. Set X =

∫ ·
0 WsdVs. Then, X and W are G-strongly orthogonal martingales,

with G := FW ∨ FV , but their natural filtrations are not independent. This could be expected since,
in Example 5, the martingale X does not enjoy PRP with respect to its natural filtration.
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5. Bases of Square-Integrable Martingales

In the light of Remark 2, bases of (locally) square-integrable (local) martingales play
an important role, first of all because they guarantee the existence and uniqueness of the
predictable integrands in the representation of any fixed local martingale. Now, in great
generality, we present two bases of this kind for the same enlarged filtration.

On a probability space (Ω,F , P) let F and H be two filtrations under standard con-
ditions. Consider two càdlàg processes X = (Xt)t∈[0,T] and Y = (Yt)t∈[0,T] such that X
is a special square-integrable F-semi-martingale in Rm and Y a special square-integrable
H-semi-martingale in Rn with standard decompositions

X = M + A, Y = N + B.

Denote by [M, N]V any sort order of
(
[Mi, N j], i = 1, . . . , m, j = 1, . . . , n

)
and by [X, Y]V

any sort order of
(
[Xi, Y j], i = 1, . . . , m, j = 1, . . . , n

)
. Let us introduce the following condi-

tion.
(A1) P(X,F) = {PX}, P(Y,H) = {PY}.
Proposition 5 implies that under previous conditions, M enjoys the (P,F)-PRP and N

enjoys the (P,H)-PRP.
Let G be the filtration defined as in (1). The heuristic of the first result relies on Ito’s

formula. If J ∈ L2(Ω,FT , P), K ∈ L2(Ω,HT , P), E[J] = E[K] = 0 and P-a.s.

J =
∫ T

0
Φs dMs K =

∫ T

0
Ψs dNs,

then JK ∈ L2(Ω,GT , P) and P-a.s.

JK =
∫ ∞

0
Ks−Φs dMs +

∫ ∞

0
Js−Ψs dNs +

∫ ∞

0
Ks− Js−ΦsΨs d[M, N]s.

Theorem 1. (Theorem 3.5, page 12, in [15])
Let assumption (A1) be in force. If M and N are strongly orthogonal G-martingales, then

(i) FT andHT are P-independent;
(ii) G satisfies usual conditions;
(iii) the triplet (M, N, [M, N]V) is a (P,G)-basis of martingales.

Following Remark 2, the last point may be expressed by

M2
0(P,G) = Z2(M)⊕Z2(N)⊕Z2([M, N]V). (3)

A recursive application of previous equality allows to derive a martingales repre-
sentation result for F1 ∨ . . . ∨ Fd, where Fi, i = 1, . . . , d, are filtrations contained in F
satisfying usual conditions, and there exist M1, ..., Md càdlàg real processes such that
Mi, for all i = 1, . . . , d, is a square-integrable Fi-martingale. The filtration ∨d

i=1F
i may be

considered without loss of generality as the enlargement of F1 by means of the union of
remaining filtrations.

Corollary 2. (Theorem 3.5, page 12, in [15])
Assume that P(Mi,Fi) = {P|F i

T
}, i = 1, . . . , d.

If, for any k ∈ (2, . . . , d) and i1 < i2 < . . . < ik, the iterated covariation process is Mi1,...ik

recursively defined by
Mi1,...ik := [Mi1,...ik−1 , Mik ]

is a ∨d
i=1F

i-martingale, then
(i) F 1

T , . . . ,F d
T are P-independent;

(ii) ∨d
i=1F

i satisfies the usual conditions;
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(iii) if Z2,i1,...ik denotes the stable subspace generated by Mi1,...ik , then

M2
0

(
P,∨d

i=1F
i
)
= ⊕d

k=1 ⊕i1<...<ik Z
2,i1,...ik .

Remark 3. It may be worth noting that some of the subspaces in the direct sum above may be void
or, equivalently, that some of the covariation processes may be null. Analogously, in the setting of
the theorem, it may be [M, N] ≡ 0. Regarding this, we recall the formula

[M, N]t = 〈Mc, Nc〉t + ∑
s≤t

∆Ms∆Ns,

where Mc and Nc are the continuous local martingale part of M and N, respectively, (see Proposition
9.3.4.6, page 524, in [24]). Therefore, the covariation process in our framework vanishes if and only
if M and N have no accessible common jump times.

The drawback of Theorem 1 is that M and N in many situations of interest are not ob-
servable quantities, while X and Y are. Therefore, it is more convenient using Proposition 4
to derive a driving process in terms of X and Y. Let us introduce the Radon–Nikodym
derivatives

LX
t :=

dPX

dP

∣∣∣
Ft

, LY
t :=

dPY

dP

∣∣∣
Ht

, t ∈ [0, T] (4)

and consider the following condition.
(A2) LX and LY are locally bounded processes.

Theorem 2. (Theorem 3.5, page 12, in [15])
Let assumptions (A1) and (A2) be in force. If M and N are strongly orthogonalG-martingales

and Q is the probability measure on (Ω,GT) defined by

dQ
dP

:= LX · LY, (5)

then
(i) FT andHT are Q-independent;
(ii) the triplet (X, Y, [X, Y]V) is a (Q,G)-basis of martingales.

The last point can also be rephrased saying that every element Z ∈ M2(Q,G) can be
represented Q-a.s. as

Z = Z0 + ηZ • X + θZ • Y + ζZ • [X, Y]V,

where ηZ ∈ L2(X, Q,G), θZ ∈ L2(Y, Q,G), ζZ ∈ L2([X, Y]V, Q,G) are uniquely defined.

6. One More Driving Martingale

The hypothesis of (P,G)-strong orthogonality for M and N, in force above, can be
weakened by assuming that there exists a martingale preserving decoupling measure, which is
a probability measure P∗ on (Ω,GT) such that

(i) P∗ is equivalent to P|GT ;

(ii) FT andHT are P∗-independent;

(iii) P|FT = P∗|FT and P|HT = P∗|HT .
In this case, Theorem 1 holds replacing P with P∗. Analogously, Theorem 2 holds

replacing Q with Q∗ defined by

(LX)∗t :=
dPX

dP∗
∣∣∣
Ft

, (LY)∗t :=
dPY

dP∗
∣∣∣
Ht

, t ∈ [0, T],
dQ∗

dP∗
:= (LX)∗ · (LY)∗.
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Remark 4. The measure P∗ has been introduced by different authors working with initial and pro-
gressive enlargement (see, e.g., [11,26,32,33]). The existence of P∗ is guaranteed by the decoupling
condition

(D) there exists a probability measure equivalent to P|GT under which FT and HT are inde-
pendent.

In the case of progressive enlargement, that is, when Ht := σ(τ ∧ t) for all t ∈ [0, T] (see
Definition 3) and the martingale N coincides with the H-compensation of the sub-martingale Iτ≤·,
the condition is verified under the so-called density hypothesis for τ, that is P(τ ∈ dx | Ft)� dx
for all t, joint with hypothesis (H) (see Theorem 6.1, page 1030, [34]). For the reader’s convenience,
we recall that theH-compensation of Iτ≤· enjoys theH-PRP (see Theorem 7.2.5.1, page 416, in [24]).

Summarizing the above discussion, if the measure P∗ exists, or equivalently condition
(D) holds, then (M, N, [M, N]V) and (X, Y, [X, Y]V) are two driving martingales, respec-
tively, under P∗ and Q∗.

In general, P∗ is different from P|GT and, since the two measures are equivalent, Proposition 4
suggests how to compute a third driving martingale for G, this time under P. When
[M, N]V ≡ 0, a possible solution is the pair of G-martingales whose components are
defined by

Mi
t−
∫ t

0

1
η−s

d〈η, Mi〉P∗ ,Gs , i = 1, ..., m,

N j
t−
∫ t

0

1
η−s

d〈η, N j〉P∗ ,Gs , j = 1, ..., n

where η stays for
P|GT
dP∗ . Then, this result easily follows.

Theorem 3. Assume (A1), (D) and hypothesis (H). Let P|GT 6= P∗ and [M, N]V ≡ 0. Denote by
N′ the martingale part of the Doob–Meyer decomposition of the (P,G)-semi-martingale N. Then,
the pair (M, N′) enjoys the (P,G)-PRP.

We conclude this note with a toy example.
Let M := W + Hη where W is a standard Brownian motion, and Hη , the compensated

occurrence process of a random variable η with values in the set {1, 2, 3}. Let τ be a random
time with values in the set {2, 4}, such that W is independent of (η, τ), and the joint law
pη,τ of (η, τ) is strictly positive on the set {1, 2, 3} × {2, 4}. Assume also

P(τ = 2 | η = 2) = P(τ = 2 | η 6= 1) = P(τ = 2 | η = 3).

Let H and N be defined as in Remark 4. If we denote by F the natural filtration of M,
then we are in the framework of previous results. In this case, the covariation process is not
null, and more precisely,

[M, N]t = ∆M2∆N2I2≤t.

We refer to [16] for the explicit computation of a driving martingale forG under P. The
result is the triplet of square-integrable martingales defined at time t by

Wt + Iη≤t − P(η = 1)I1≤t − P(η = 2 | σ{η = 1})I2≤t − Iη=3I3≤t,

Iτ≤t − P(τ = 2 | σ{η = 1})I2≤t − Iτ=4I4≤t,(
Iτ=2,η=2 − P(τ = 2)Iη=2 − Iτ=2P(η = 2|σ{η = 1}) + P(τ = 2)P(η = 2|σ{η = 1})

)
I2≤t.

7. Conclusions

A problem arising in the enlargement of filtration is the identification of a martingale
that drives martingale representations. There are no general rules providing a solution,
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but the answer depends both on the considered enlargement and on the probability mea-
sure one works with. The hypothesis of the existence of a decoupling measure for the
reference filtration and the one that generates the enlargement (here, hypothesis (D)) allows
solving the problem in many cases not considered so far in the literature. In this work,
after collecting some results obtained by the authors on this subject, a new theorem devoted
to martingales representation under the original measure P is stated (see Theorem 3).

Theorem 3 of this note gives immediately the integrators in the classic Kusuoka’s
martingales representation for the progressively enlarged Brownian filtration (see [35] and Theo-
rem 7.5.5.1, page 432, in [24]). Kusuoka’s result has been the guiding example for many
contributions to martingale representations in the case of progressive enlargement by a
random time with the avoidance property (see, e.g., [32–34,36,37]).

The objects of ongoing research are martingale representations results under assump-
tions weaker than those in Theorem 3 and their applications to problems of stochastic
optimal control arising in finance, in the same line, among others, of [38,39].
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