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1. Introduction

The N dimensional Debye function, defined by the integral representation

DN(X) =
N

XN

∫ X

0

tN

et − 1
dt, |X| < 2π, Re N ≥ 1 (1)

play an important role in study of a variety of problems in statistical physics and solid state
physics, especially in calculations of heat capacity of solids. This function appeared first in
a model proposed by Debye [1] describing the heat capacity of a crystalline solid, which,
with some variations, is still used today [2,3]. This has created enough interest in their
evaluation for arbitrary values of N and the parameter X. (Section 8 contains an example
where X = ΘD/T, with ΘD as the Debye temperature, and T is the absolute temperature.)
The alternative expression for (1) (appearing in [4], ch. 27) :

DN(X) = N

(
1
N
− X

2(N + 1)
+

∞

∑
k=1

B2k
(2k + N)Γ(2k + 1)

X2k

)
, (2)

valid for |X| < 2π and N ≥ 1, comes from the expansion

t
et − 1

=
∞

∑
k=0

Bk
k!

tk, |t| < 2π (3)

where Bk are the Bernoulli numbers. The values B0 = 1, B1 = − 1
2 and the vanishing of Bk

for odd k ≥ 3, gives the representation

DN(X) = N

(
1
N
− X

2(N + 1)
+

∞

∑
k=1

B2k
(2k + N)Γ(2k + 1)

X2k

)
, (4)
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with the restrictions given in (1). The goal of this paper is to present some expressions for
DN(X) in terms of polylogarithm functions. These results are established by evaluating
the integral defining DN(X) by the method of brackets [5]. This is a relatively new method
of integration. Its basic rules are reviewed in Section 4. An alternative proof using the
Mellin–Barnes transformation is also given. The analytic expressions for DN(X), given
in [6], are may be reproduced by the formulas presented here. Numerical computation
of the Debye function appears in [7,8]. The direct calculation presented here involves
polylogarithms and it is simpler to compute for N ∈ N.

The method of brackets was developed in the context of calculations of multidimen-
sional definite integrals appearing in evaluation of Feynman diagrams. It consists of a
small number of heuristic rules that yield the evaluation of a wide range of integrals. These
rules admit an easy implementation in a computer algebra system. The reader will find
more details in [5,9–12].

The Debye function DN(X) is generalized by the introduction of a parameter α
as follows:

DN(α, X) =
N

XN

∫ X

0

tN

et − α
dt, for |α| ≤ 1, (5)

where X is restricted by |X| <
√

log2 |α|+ (Arg α)2, so as to have a continuous integrand.
This is referred to as the generalized Debye function.

The manipulation below shows how to express the case N = 1, with a notation
β ≡ ln α

t
et − α

=
t− β + β

α(et−β − 1)

=
1
α

1
t− β

[
(t− β)2

et−β − 1
+

β(t− β)

et−β − 1

]
=

1
α

1
t− β

[
(t− β)

∞

∑
k=0

Bk
k!
(t− β)k + β

∞

∑
k=0

Bk
k!
(t− β)k

]
(6)

=
1
α

1
t− β

[
∞

∑
k=0

Bk
k!
(t− β)k+1 + β + β

∞

∑
k=1

Bk
k!
(t− β)k

]

=
1
α

1
t− β

[
β +

∞

∑
k=0

(
Bk
k!

+
βBk+1
(k + 1)!

)
(t− β)k+1

]
.

Therefore,

D1(α, X) =
1
X

∫ X

0

t
et − α

dt

=
1

Xα

∫ X

0

[
β

t− β
+

∞

∑
k=0

(
Bk
k!

+
βBk+1
(k + 1)!

)
(t− β)k

]
dt,

where the only (possible) singular term is the first one

1
Xα

∫ X

0

β

t− β
dt. (7)

Observe that when X < ln α, there are no singularities, but for X > ln α the integrand is
singular, but it can be integrated in a sense of the principal value. The method of bracket
gives the same analytic result in both the cases.

The content of the paper is described next. Sections 2 and 3 describe analytic relations
between the Debye function and the polylogarithms appearing in the literature. Section 4
introduces the method of brackets. Section 5 uses this method to evaluate Debye functions
and their analytic expressions. In particular, expressions that are free of integral representa-
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tions are presented here, recovering those presented by [6]. These results are then used to
study the asymptotic behavior of these functions in limiting values of the temperature (the
relation of temperature T and the variable X is given in the previous section). Section 6 eval-
uates the generalized Debye function DN(α, X) using the Mellin–Barnes transformations
and Section 7 extends these calculations to N ∈ C. Section 8 uses these representations
to evaluate the internal energy and heat capacity in solids. The emphasis here is on the
new expression for Debye functions to show that the manipulation of them simplifies the
computation of the limits T → 0 and T → ∞ for temperature presented in [6].

Remark 1. The results given here complement a variety of analytic expressions for the Debye
function appearing in the literature. Kölbig considered in [13] the incomplete Riemann zeta function

A(s, λ) =
1

Γ(s)

∫ λ

0

xs−1 dx
ex − 1

, (8)

a function included in the NIST Handbook [14]. The relation to the Debye function is

DN(X) =
N

XN Γ(N + 1)A(N + 1, X). (9)

In [15] (p. 553, Equation (14)) Kölbig pointed out that

A)s, λ) = S1,s−1(1− e−λ), (10)

where

Sn,p(s) :=
(−1)n+p−1

(n− 1)!p!

∫ 1

0
logn−1 u logp(1− xu)

du
u

(11)

is the Nielsen’s generalized polylogarithm. Therefore,

DN(X) =
N

XN Γ(N + 1)S1,N(1− e−X). (12)

On the other hand, it has been shown that [16] (p. 127, Equation (22)) and [17]

S1,p(z) = ζ(p + 1) +
p

∑
k=0

(−1)k−1

k!
Lip+1−k(1− z) logk(1− z). (13)

Thus

DN(X) =
N

XN Γ(N + 1)

[
ζ(N + 1) +

N

∑
k=0

(−1)k−1

k!
LiN+1−k(e−X) logk(e−X)

]
(14)

=
N

XN Γ(N + 1)

[
LiN+1(1)−

N

∑
k=0

Xk

k!
LiN+1−k(e−X)

]
.

The expressions above show that the main result stated in this paper may also be derived from
Kölbig’s work.

Remark 2. Alternative expressions for the Debye function are given by Kölbig in [15] in terms of
the incomplete Bose-Einstein function defined by

Bp(η, u) =
1

Γ(p + 1)

∫ u

0

xp dx
ex−η − 1

(15)

in the form

DN(α, X) =
N

αXN Γ(N + 1)BN(β, X). (16)
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Cvijovic [18] considered (14) in terms of the function

Fs(x) =
∫ x

0

tset dt
(et − 1)2 , x ≥ δ > 0, s > 1, (17)

and proved that

Fs(x) =
xs

1− ex + sΓ(s)A(s, x) (18)

with A defined in (10). The result [18] (p. 40, Equation (19))

F1(x)
n!

= ζ(n)−
n

∑
j=0

xj

j!
Lin−j(e−x), (19)

shows the relation between DN(X) and these special functions.

2. Debye Functions in Quantum Field Theory

Debye functions are closely related to polylogarithms. As mentioned in the Introduc-
tion, they have applications in quantum optics and are related to the Planck formula of the
black body radiation. The Debye functions frequently appears in Feynman diagrams with
quantized energy, so called sum-integral, in the finite temperature field theory. A typical
example is given by Tornheim sums, T(a, b, c), defined by

T(a, b, c) =
∞

∑
m=1

∞

∑
n=1

1
manb(m + n)c . (20)

References for these sums include [19,20], where they appear in the context of evaluating
classes of definite integrals, and [21] is a book with a good introduction to them, mostly
with a combinatorial and number-theoretical emphasis. These sums also provide a good
introduction to the theory of polylogarithms, which is the main function involved in the
result of this paper.

A direct manipulation provides

T(a, b, c) =
1

2πi
1

Γ(c)

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(c + z) ∑

m>0
∑
n>0

1
manb+c

(m
n

)z
dz (21)

=
1

2πi
1

Γ(c)

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(c + z)ζ(a− z)ζ(b + c + z)dz.

As an example, we reproduce the well-known result T(1, 1, 1) = 2ζ(3). This is obtained
in terms of the integral

T(1, 1, 1) =
∞

∑
m=1

∞

∑
n=1

1
mn(m + n)

=
1

2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)ζ(1− z)ζ(2 + z)dz.

On the line of integration the real part of the argument of ζ function is greater than 1
and, using the integral representation,

ζ(z)Γ(z) =
∫ ∞

0

tz−1

et − 1
dt, Re z > 1, (22)
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gives the representation of the Debye function in the limit X → ∞. A simple transformation
gives

T(1, 1, 1) =
1

2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)ζ(1− z)ζ(2 + z)dz

=
1

2πi

∫ −δ+i∞

−δ−i∞

Γ(1− z)Γ(2 + z)ζ(1− z)ζ(2 + z)
(−z)(1 + z)

dz

=
1

2πi

∫ ∞

0

udu
eu − 1

∫ ∞

0

dτ

eτ − 1

∫ −δ+i∞

−δ−i∞

1
(−z)(1 + z)

(u
τ

)z
dz

=
1

2πi

∫ ∞

0

udu
eu − 1

(∫ u

0
+
∫ ∞

u

)
dτ

eτ − 1

∫ −δ+i∞

−δ−i∞

1
(−z)(1 + z)

(u
τ

)z
dz

=
∫ ∞

0

udu
eu − 1

∫ u

0

dτ

eτ − 1

(u
τ

)−1
+
∫ ∞

0

udu
eu − 1

∫ ∞

u

dτ

eτ − 1
(23)

=
∫ ∞

0

du
eu − 1

∫ u

0

τdτ

eτ − 1
+
∫ ∞

0

udu
eu − 1

∫ ∞

u

dτ

eτ − 1

=
∫ ∞

0

τdτ

eτ − 1

∫ ∞

τ

du
eu − 1

+
∫ ∞

0

udu
eu − 1

∫ ∞

u

dτ

eτ − 1

= 2
∫ ∞

0

udu
eu − 1

∫ ∞

u

dτ

eτ − 1
= −2

∫ ∞

0

udu
eu − 1

ln
(
1− e−u)

= −2
∫ ∞

0

ue−u

1− e−u ln
(
1− e−u)du =

∫ ∞

0
ln2(1− e−u)du

=
∫ 1

0

ln2(1− t)
t

dt = 2ζ(3).

The equality in the penultimate line follows by integration by parts.
The Debye function appears in calculation of Tornheim sums at the intermediate steps

which are closely related to polylogarithms and ζ function. The reader is encouraged to
use this procedure for other evaluations.

3. Polylogarithms

In this section, we describe the basic definitions of polylogarithms. They will be
used in the calculations of the generalized Debye functions, as in [6]. The polylogarithm
function [22] is defined by

Lis(x) = ∑
k≥1

xk

ks , for |x| ≤ 1. (24)

The first few examples are given by

Li1(x) = ∑
k≥1

xk

k
= − ln(1− x),

Li2(x) = ∑
k≥1

xk

k2 =
∫ x

0

Li1(t)
t

dt = −
∫ x

0

ln(1− t)
t

dt, (25)

Li3(x) = ∑
k≥1

xk

k3 =
∫ x

0

Li2(t)
t

dt = −
∫ x

0

dt
t

∫ t

0

ln(1− u)
u

du.
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These expressions may be transformed to produce other useful relations,

Li3(x) = −
∫ x

0

dt
t

∫ t

0

ln(1− u)
u

du = −
∫ x

0

ln(1− u)
u

du
∫ x

u

dt
t

= ln x Li2(x) +
∫ x

0

ln(1− u) ln u
u

du

= ln x Li2(x) +
1
2

ln (1− x) ln2 x +
1
2

∫ x

0

ln2 u
1− u

du

= ln x Li2(x) +
1
2

ln (1− x) ln2 x +
1
2

∫ 1

1−x

ln2 (1− u)
u

du.

From here and (23), it follows that

ζ(3) = Li3(1) =
1
2

∫ 1

0

ln2 (1− u)
u

du.

A long list of evaluations of this type may be found in [23].

4. Basic of Method of Brackets

The method of brackets is a generalized version of the Negative Dimensional Inte-
gration Method (NDIM) [24–28], a technique developed to evaluate Feynman diagrams.
In quantum field theories, Feynman diagrams correspond to multi-variable integrals that
represent physical processes.

This method evaluates definite integrals in one or several dimensions over the interval
[0, ∞]. The procedure introduces the notion of a bracket and converts the integrand in a
series of brackets. The method contains a small number of heuristic rules which transform
the evaluation of an integral into the solution of a small linear system of equations. A
summary of these rules is presented below. More details may be found in [5,9,10,12].

Rule 0. For a ∈ C, the bracket associated to a is the divergent integral

〈a〉 =
∫ ∞

0
xa−1 dx. (26)

Rule 1. The expansion of an arbitrary function. The use of the method of brackets requires
to replace components of the integrand by their corresponding power series, that is, it is
required to represent an arbitrary function f (x) as:

f (x) = ∑
n

φnC(n)xβn+α, (27)

where C(n) are the coefficients in the expansion, α and β are arbitrary (complex) exponents
and φn is defined by:

φn =
(−1)n

Γ(n + 1)
. (28)

For multidimensional integrals one needs an expansion in several variables, such as

f (x1, x2) = ∑
n1

∑
n2

φn1 φn2 C(n1, n2) xβ1n1+α1
1 xβ2n2+α2

2 . (29)

The notation φ12 is frequently used for φn1 φn2 , with similar notation for a higher number
of indices.

Rule 2. Multinomial expansion. An expression of the form (A1 + · · ·+ Ar)µ often appears
in the evaluation of integrals. The bracket expansion

(A1 + · · ·+ Ar)
µ = ∑

n1

· · ·∑
nr

φn1 · · · φnr An1
1 · · · A

nr
r
〈−µ + n1 + · · ·+ nr〉

Γ(−µ)
,
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has been established in [5].

Rule 3: Eliminating integration symbols. Once the first two rules are applied, the integral is
converted into a bracket series. The evaluation of these series is described next.

Rule 4: Finding solutions. The result of applying the previous rules to an integral is that its
value is represented by a bracket series J. The rule to evaluate this series is given first in the
special case when number of sums and brackets is the same (this is the so-called index zero
case): the bracket series is now written as

J = ∑
n1

· · ·∑
nr

φn1 · · · φnr C(n1, · · · , nr)〈a11n1 + · · ·+ a1rnr + c1〉 · · · 〈ar1n1 + · · ·+ arrnr + cr〉.

The coefficient C(n1, · · · , nr) depends on the parameters of the integral and the index of
the sum {ni}, i = 1, · · · , r. The value of this multiple sum is declared to be

J =
1

|det(A)| Γ(−n∗1) · · · Γ(−n∗r ) C(n∗1 , · · · , n∗r ), (30)

where A = {aij} and the values
{

n∗i
}
(i = 1, · · · , r) are the solutions of the linear system

obtained by the vanishing of the brackets:
a11n1 + · · ·+ a1rnr = −c1

...
...

ar1n1 + · · ·+ arnr = −cr.

(31)

If the matrix A is not invertible and the number of sums is larger than the number
of brackets, there is an extension of the procedure described here to evaluate the integral.
Details may be found in [5,12].

5. The Debye Function DN(α, X) by the Method of Brackets

The Debye function has been defined by:

DN(X) =
N

XN

∫ X

0

tN dt
et − 1

, (32)

and the generalization considered here is defined by

DN(α, X) =
N

XN

∫ X

0

tN dt
et − α

. (33)

Here N is zero or a positive integer, X and α are positive parameters. The parameter α is
introduced here to find alternative expressions for these new functions.

5.1. A Bracket Series for DN(α, X)

The computation of a bracket series for DN(α, X) is described next. The first step is
the expansion of the denominator in the integrand according to Rule 2, to obtain:

DN(α, X) =
N

XN ∑
n1

∑
n2

φn1 φn2 (−1)n2 αn2〈1 + n1 + n2〉
∫ X

0
tNetn1 dt. (34)

The expansion of the exponential function is

etn1 = ∑
n3

1
n3!

tn3 nn3
1 = ∑

n3

φn3(−1)−n3 tn3 nn3
1 , (35)
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and replacing in (34) produces

DN(α, X) =
N

XN ∑
n1

∑
n2

∑
n3

φn1 φn2 φn3 (−1)n2−n3 αn2 nn3
1 〈1 + n1 + n2〉

∫ X

0
tN+n3 dt.

The change of variables y = t/(X− t) converts the last integral to

∫ X

0
tN+n3 dt = XN+n3+1

∫ ∞

0

yN+n3

(y + 1)N+n3+2 dy, (36)

and the desired bracket series is∫ X

0
tN+n3 dt =

XN+n3+1

Γ(N + n3 + 2) ∑
n4

∑
n5

φn4 φn5〈N + n3 + 2 + n4 + n5〉〈N + n3 + n4 + 1〉.

This produces the final bracket series for DN(α, X) as

DN(α, X) = NX ∑
n1

· · ·∑
n5

φn1 · · · φn5 (−1)n2−n3 n
n3
1

Γ(N+n3+2)αn2 Xn3

×〈1 + n1 + n2〉〈N + n3 + 2 + n4 + n5〉〈N + n3 + n4 + 1〉.

(37)

An expression for the integral (33) is now obtained from (37). The method of brackets
yields four different series:

S1 = −NX
α ∑

n1≥0
∑

n2≥0

Γ(N + 1 + n2)

Γ(N + 2 + n2)

nn2
1

n2!

(
1
α

)n1

Xn2 , (38)

S2 = NX ∑
n1≥0

∑
n2≥0

(−1)n2 Γ(N + 1 + n2)

Γ(N + 2 + n2)

(1 + n1)
n2

n2!
αn1 Xn2 , (39)

S3 =
N

XN ∑
n1≥0

∑
n2≥0

(−1)n2 Γ(N + 1 + n2)

Γ(1− n2)

(1 + n1)
−1−N−n2

n2!
αn1

Xn2
, (40)

S4 = (−1)N N
XNα ∑

n1≥0
∑

n2≥0

Γ(N + 1 + n2)

Γ(1− n2)

n−N−1−n2
1

n2!

(
1
α

)n1

Xn2 . (41)

The influence of the parameter α is discussed first. The four solutions Sj are power
series in α or 1/α. This gives S1 and S4 as expansions in α in a neighborhood of infinity and
S2 and S3 as expansions in α in a neighborhood of zero. A similar situation occurs with the
parameter X. Each series represents the integral (33). Their analysis is described next.

1. The series S4 must be neglected because the term with n1 = 0 diverges.
2. The series S3 is naturally truncated at n2 = 0. Since this index is associated to the

powers of X−1, it represents an asymptotic approximation for case X >> 1. A detailed
study including condition α→ 1 yields:

S4 ≈
NΓ(N + 1)

XN ∑
n1≥0

1

(1 + n1)
N+1 =

NΓ(N + 1)
XN ζ(N + 1), (42)

where ζ(s) is the Riemann zeta function.
3. The series S1 and S2 are both convergent as power series in X. Both are expressions

for DN(α, X). It turns out that these are equivalent.
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5.2. Analysis of the Expressions Obtained Above
5.2.1. S1 as Solution

Rearranging the defining series produces a hypergeometric representation:

S1 = −NX
α ∑

n1≥0

(
α−1

)n1
∑

n2≥0

Γ(N + 1 + n2)

Γ(N + 2 + n2)

(Xn1)
n2

n2!
(43)

= − NX
α(N + 1) ∑

n1≥0

(
α−1

)n1
1F1

(
N + 1
N + 2

∣∣∣∣Xn1

)
.

The previous expression may be written as

S1 = −
(

N
N + 1

)
X
α
−
(

N
N + 1

)
X
α ∑

n1≥1

(
α−1

)n1
1F1

(
N + 1
N + 2

∣∣∣∣Xn1

)
, (44)

where the hypergeometric function 1F1 is known as the Kummer function. The relation

1F1

(
n

n + 1

∣∣∣∣−Z
)
=

n
Zn γ(n, Z), (45)

where γ(n, Z) is the incomplete Gamma function defined by the integral representation

γ(n, Z) =
∫ Z

0
tn−1e−t dt, (46)

finally produces an expression for S1 in terms of the incomplete gamma function.
In the important special case of n ∈ N, the function γ(n, Z) can be written as a

finite sum

γ(n, Z) = Γ(n)

[
1− e−Z

n−1

∑
k=0

Zk

k!

]
, (47)

and then

1F1

(
n

n + 1

∣∣∣∣−Z
)
=

Γ(n + 1)
Zn

[
1− e−Z

n−1

∑
k=0

Zk

k!

]
. (48)

The Formula (45) is now transformed to

1F1

(
N + 1
N + 2

∣∣∣∣Xn1

)
=

Γ(N + 2)

(−Xn1)
N+1

[
1− eXn1

N

∑
k=0

(−Xn1)
k

k!

]

= (−1)N+1 (N + 1)Γ(N + 1)
XN+1nN+1

1

[
1− eXn1

N

∑
k=0

(−Xn1)
k

k!

]
,

and the series S1 can be written as

S1 = −
(

N
N + 1

)
X
α
+ (−1)N NΓ(N + 1)

XNα ∑
n1≥1

(
α−1)n1

nN+1
1

[
1− eXn1

N

∑
k=0

(−Xn1)
k

k!

]
.

After some algebraic manipulations, the previous expression is written as

S1 = −
(

N
N + 1

)
X
α
+ (−1)N NΓ(N + 1)

XNα
×

 ∑
n1≥1

(
α−1)n1

nN+1
1

− ∑
n1≥1

[
eX

α

]n1

nN+1
1

N

∑
k=0

(−Xn1)
k

k!



= −
(

N
N + 1

)
X
α
+ (−1)N NΓ(N + 1)

XNα
×

 ∑
n1≥1

(
α−1)n1

nN+1
1

−
N

∑
k=0

(−X)k

k! ∑
n1≥1

[
eX

α

]n1

nN+1−k
1

.



Mathematics 2022, 10, 1745 10 of 21

The polylogarithm function [22], defined in (24), is now used to obtain an expression
for the Debye function DN(α, X) in the form

DN(α, X) = −
(

N
N + 1

)
X
α

(49)

+ (−1)N NΓ(N + 1)
XNα

×
[

LiN+1

(
α−1

)
−

N

∑
k=0

LiN+1−k

(
eX

α

)
(−X)k

k!

]
.

This formula was first presented in [6].
In addition to this representation, the method of brackets produces a new expression

for the Debye function using the series S2. This is described next.

5.2.2. The Series S2: A New Solution

As in the computation of S1, the series defining S2 can be written as a sum of values of
the incomplete Gamma function:

S2 = NX ∑
n1≥0

∑
n2≥0

αn1
Γ(N + 1 + n2)

Γ(N + 2 + n2)

(−X)n2(1 + n1)
n2

n2!

=
N

N + 1
X ∑

n1≥0
αn1 1F1

(
N + 1
N + 2

∣∣∣∣− (1 + n1)X
)

(50)

=
N

XN ∑
n1≥0

αn1

(1 + n1)
N+1 γ(N + 1, (1 + n1)X),

and using (48), this becomes

S2 =
NΓ(N + 1)

XNα
×
[

∑
n1≥0

αn1+1

(1 + n1)
N+1 −

N

∑
k=0

Xk

k! ∑
n1≥0

[
αe−X]n1

(1 + n1)
N+1−k

]
. (51)

Proceeding as in the previous case, the Debye function DN(α, X) is now

DN(α, X) =
NΓ(N + 1)

XNα

[
LiN+1(α)−

N

∑
k=0

LiN+1−k

(
αe−X

)Xk

k!

]
. (52)

In summary, the method of brackets has produced two equivalent formulations of
the representation of the Debye function. The first one in (49), reproducing the solution
presented in [6] and the second expression, given in (52), is a new representation for
DN(α, X).

6. Debye Function DN(α, X) by Other Methods: Comparative Analysis

The representations of the generalized Debye function given in (49) and (52), are now
obtained by a direct calculation of the integral (25). This is exactly how (49) was obtained
in [6].

6.1. Formula via Definition of Polylogarithms

The formula is (52). It appears that it is easier to reproduce (52) than (49). Indeed,
write (in case of N = 0 formally)∫ 1

et − 1
dt = −

∫ 1
1− e−t de−t = ln(1− e−t) = −Li1

(
e−t). (53)

From (1) write the formal expression D0(X) = 0
[
Li1(1)− Li1

(
e−X)]. This expression

matches (52) for the case N = 0 and α = 1. Similarly we may reproduce the results in (49)
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for all the higher numbers of the index N. For example, for the case N = 1, the indefinite
integral involved is∫ t

et − 1
dt =

∫
t d ln(1− e−t) = t ln(1− e−t)−

∫
ln(1− e−t)dt

= t ln(1− e−t) +
∫ ln(1− e−t)

e−t de−t = −tLi1
(
e−t)− Li2

(
e−t).

Then (1) gives

D1(X) =
1
X

∫ X

0

t
et − 1

dt =
1
X
[
−tLi1

(
e−t)− Li2

(
e−t)]∣∣∣∣X

0
(54)

=
1
X

[
Li2(1)− XLi1

(
e−X

)
− Li2

(
e−X

)]
.

This expression coincides with (52) for the case N = 1 and α = 1. Similar arguments
proves (52) by induction on N, using (25).

Indeed, for the case N = 2,∫ t2

et − 1
dt =

∫
t d
[
−tLi1

(
e−t)− Li2

(
e−t)]

= −t
[
tLi1

(
e−t)+ Li2

(
e−t)]+ ∫ [

tLi1
(
e−t)+ Li2

(
e−t)]dt

= −t
[
tLi1

(
e−t)+ Li2

(
e−t)]− ∫ tLi1

(
e−t)+ Li2

(
e−t)

e−t de−t

= −t
[
tLi1

(
e−t)+ Li2

(
e−t)]− ∫ tdLi2

(
e−t)− Li3

(
e−t)

= −t
[
tLi1

(
e−t)+ Li2

(
e−t)]− tLi2

(
e−t)+ ∫

Li2
(
e−t)dt− Li3

(
e−t)

= −t2Li1
(
e−t)− 2tLi2

(
e−t)+ ∫ Li2

(
e−t)

e−t e−tdt− Li3
(
e−t)

= −t2Li1
(
e−t)− 2tLi2

(
e−t)− 2Li3

(
e−t).

In this case, (1) gives

D2(X) =
2

X2

[
−t2Li1

(
e−t)− 2tLi2

(
e−t)− 2Li3

(
e−t)]∣∣∣∣X

0

=
4

X2

[
Li3(1)− 1

2 X2Li1
(

e−X
)
− XLi2

(
e−X

)
− Li3

(
e−X

)]
.

This expression coincides with (52) when N = 2 and α = 1. The case of general N is
handled in a similar manner.
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6.2. Formula via the Mellin–Barnes Transformation

The formula is (52). The calculation via Mellin–Barnes transformation is simpler.
Apply this transformation to represent the Debye function D1 as

D1(X) =
1
X

∫ X

0

t
et − 1

dt =
1
X

∫ X

0

te−t

1− e−t dt

=
1
X

1
2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)

∫ X

0
te−t(−e−t)zdtdz

=
1
X

1
2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)z

∫ X

0
t
(
e−t)z+1dtdz

= − 1
X

1
2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)z

[
t
(
e−t)z+1

z + 1
+

(
e−t)(z+1)

(z + 1)2

]∣∣∣∣X
0

dz

=
1
X

1
2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)z

 1
(z + 1)2 −

X
(
e−X)z+1

z + 1
−
(
e−X)(z+1)

(z + 1)2

dz.

The method of residues is now used to produce

1
2πi

∫ −δ+i∞

−δ−i∞

Γ(−z)Γ(1 + z)
z + 1

xz+1dz = ln(1 + x) = −Li1(−x) (55)

1
2πi

∫ −δ+i∞

−δ−i∞

Γ(−z)Γ(1 + z)
(z + 1)2 xz+1dz = −Li2(−x) (56)

and this yields

D1(X) =
1
X

1
2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)

− (−1)z+1

(z + 1)2 +
X
(
−e−X)z+1

z + 1

(
−e−X)(z+1)

(z + 1)2

dz

=
1
X

[
Li2(1)− XLi1

(
e−X

)
− Li2

(
e−X

)]
.

This result coincides with (54).
For the arbitrary N ∈ N the calculation is a simple generalization of N = 1. This is

presented next:

DN(X) =
N

XN

∫ X

0

t
et − 1

dt =
1
X

∫ X

0

tNe−t

1− e−t dt

=
N

XN
1

2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)

∫ X

0
tNe−t(−e−t)zdtdz

=
N

XN
1

2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)z

∫ X

0
tN(e−t)z+1dtdz

=
N

XN
1

2πi

∫ −δ+i∞

−δ−i∞

Γ(−z)Γ(1 + z)
(z + 1)N+1 (−1)z

∫ X(z+1)

0
τNe−τdτdz.

Observe that in the last line above, the path of integration is arbitrary subject to the condition
connecting the upper and lower limits of the integral. In the case N ∈ N, the integrand has
no branch points. Using the incomplete gamma function (46), it follows that
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N
XN

1
2πi

∫ −δ+i∞

−δ−i∞

Γ(−z)Γ(1 + z)
(z + 1)N+1 (−1)zγ(N + 1, X(z + 1))

=
N

XN
Γ(N + 1)

2πi

∫ −δ+i∞

−δ−i∞

Γ(−z)Γ(1 + z)
(z + 1)N+1 (−1)z ×[

1− e−X(z+1)
N

∑
k=0

(X(z + 1))k

k!

]
dz (57)

=
N

XN
Γ(N + 1)

2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)z ×[

1
(z + 1)N+1 − e−X(z+1)

N

∑
k=0

Xk

k!(z + 1)N+1−k

]
dz

=
NΓ(N + 1)

XN

[
LiN+1(1)−

N

∑
k=0

LiN+1−k

(
e−X

)Xk

k!

]
.

The result is now obtained from the formula

1
2πi

∫ −δ+i∞

−δ−i∞

Γ(−z)Γ(1 + z)
(z + 1)n xz+1dz = −Lin(−x) (58)

Thus, the combination of polylogarithms in this the last line of (57) just reproduces the
formula for the incomplete gamma function (46).

6.3. Formula via Definition of Polylogarithms

A direct calculation of polylogarithms and Mellin–Barnes transformations is now used
to reproduce (49). The version in (49) is more difficult to obtain and it is the only one
found in [6]. The equivalence of the two formulations (49) and (52) is presented in two
different ways.

Consider first the direct calculation. Using the Mellin–Barnes transformation in the
case N = 0 it follows that D0(X) is given by∫ 1

et − 1
dt = −

∫ [ 1
et +

1
1− et

]
det

= −t + ln(1− et) (59)

= −t− Li1(et).

From (1) we have a formal expression D0(X) = 0
[
Li1(1)− X− Li1

(
eX)]. This agrees

with (49) for the case N = 0 and α = 1, via (25). The results in (49) also extend to higher
numbers N. For example, for N = 1, the corresponding indefinite integral is

∫ t
et − 1

dt = −
∫ tet

(1− et)et dt = −
∫ [ 1

et +
1

1− et

]
tetdt

= − t2

2
+
∫

t d ln(1− et) = − t2

2
+ t ln(1− et)−

∫
ln(1− et)dt

= − t2

2
+ t ln(1− et)−

∫ ln(1− et)

et det

= − t2

2
− tLi1

(
et)+ Li2

(
et).
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Then (1) implies

D1(X) =
1
X

∫ X

0

t
et − 1

dt =
1
X

[
− t2

2
− tLi1

(
et)+ Li2

(
et)]∣∣∣∣X

0

=
1
X

[
−X2

2
− Li2(1)− XLi1

(
eX
)
+ Li2

(
eX
)]

,

confirming (49) for N = 1 and α = 1. An induction procedure extends the result to arbitrary
N ∈ N.

6.4. Formula via the Mellin–Barnes Transformation

The formula is (49). The calculation via Mellin–Barnes transformation is simpler than
in the previous case. The D1(X) Debye function is represented as

D1(X) =
1
X

∫ X

0

t
et − 1

dt = − 1
X

∫ X

0

t
1− et dt

= − 1
X

1
2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)

∫ X

0
t
(
−et)zdtdz

=
1
X

1
2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)z+1

∫ X

0
t
(
et)zdtdz

=
1
X

1
2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)z+1

[
tetz

z
− etz

z2

]∣∣∣∣X
0

dz

=
1
X

1
2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)z+1

[
XeXz

z
− eXz

z2 +
1
z2

]
dz.

The formulae below can be obtained using residue calculations:

1
2πi

∫ −δ+i∞

−δ−i∞

Γ(−z)Γ(1 + z)
z

xzdz = ln x− ln(1 + x) (60)

1
2πi

∫ −δ+i∞

−δ−i∞

Γ(−z)Γ(1 + z)
z2 xzdz =

1
2

ln2 x + ζ(2) + Li2(−x) (61)

and this yields

D1(X) = − 1
X

1
2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)

[
X
(
−eX)z

z
−
(
−eX)z

z2 +
(−1)z

z2

]
dz

=
1
X

[
−X

[
ln(−eX)− ln(1− eX)

]
+

1
2

ln2(−eX) + ζ(2) + Li2
(

eX
)

−1
2

ln2(−1)− 2ζ(2)
]
=

1
X

[
−X

[
ln(−1) + X− ln(1− eX)

]
+X ln(−1) +

X2

2
− ζ(2) + Li2

(
eX
)]

=
1
X

[
−X2

2
+ X ln(1− eX)− ζ(2) + Li2

(
eX
)]

=
1
X

[
−X2

2
− XLi1

(
eX
)
− Li2(1) + Li2

(
eX
)]

.

This proves the equivalence of (49) and (52). In (49) there are no divergent series
appearing making this a more convenient form.
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7. Debye Function DN(X) for Complex N via Mellin–Barnes Transform

Section 6.2 shows that the simplest analysis when N ∈ N is via the Mellin–Barnes trans-
formation of the integrand in (1). From the beginning of the proof (as in the expression (57))
it becomes clear that (52) is controlled by the incomplete gamma function. The goal of this
section is to extend these arguments to N ∈ C, beginning by establishing representations
for DN(X) via Mellin–Barnes integrals. The Debye function has been defined for ReN ≥ 1.
An extension to N ∈ C is presented next.

The analysis of DN(X) for N ∈ C proceeds via Mellin–Barnes transformations, as
in the case N ∈ N. Section 6.1 shows that the definitions of polylogarithm is enough to
reproduce (52) by the method of brackets. On the other hand, the Mellin–Barnes transfor-
mation succeeds for N ∈ N, since it reduces to the integration of elementary functions of
the incomplete gamma function. Therefore, instead of obtaining an infinite series in X, as
appearing in the original representation with coefficients involving Bernoulli numbers, the
results is now expressed as a finite combination of polylogarithmic functions. This section
verifies that a similar phenomenon occurs for N ∈ C.

The analysis of the Debye function requires some representations of the incomplete
gamma function. These are presented next.

7.1. ζ Function as Mellin–Barnes Transform of the Debye Function

Consider first the Mellin–Barnes representation for the incomplete gamma function.
Starting with the first line in (57) as before, rewrite the incomplete gamma function in terms
of the Kummer function using (45). This justifies the first line of (57), now with N ∈ C. It
follows that

N
XN

1
2πi

∫ −δ+i∞

−δ−i∞

Γ(−z)Γ(1 + z)
(z + 1)N+1 (−1)zγ(N + 1, X(z + 1))

=
N

XN
1

2πi

∫ −δ+i∞

−δ−i∞

Γ(−z)Γ(1 + z)
(z + 1)N+1 (−1)z (X(z + 1))N+1

N + 1
× 1F1

(
N + 1
N + 2

∣∣∣∣−X(z + 1)
)

(62)

=
NX

N + 1
1

2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)z

1F1

(
N + 1
N + 2

∣∣∣∣−X(z + 1)
)

= NX
(

1
2πi

)2 ∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)z

∫ −ε+i∞

−ε−i∞

Γ(−u)(X(z + 1))u

N + 1 + u
du,

using the standard Mellin–Barnes representation of the Kummer function [29],

1F1

(
a
c

∣∣∣∣x) =
Γ(c)
Γ(a)

∫ −ε+i∞

−ε−i∞
dz

Γ(a + z)Γ(−z)
Γ(c + z)

(−x)z

=
Γ(c)
Γ(a)

∮
C

dz
Γ(a + z)Γ(−z)

Γ(c + z)
(−x)z (63)

=
∞

∑
k=0

(a)k
(c)k

xk

k!
.

The contour contains the vertical line, infinitesimally close to the imaginary axis (ε, δ
are small positive real numbers) and it is closed at complex infinity in order to satisfy
the standard convergence conditions. See [30] (Section 2.4) for details. Now, taking into
account that Re N ≥ 1 in DN(X), the last line of (62) is transformed as
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NX
(

1
2πi

)2 ∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)zdz

×
∫ −ε+i∞

−ε−i∞

Γ(−u)(X(z + 1))u

N + 1 + u
du

= NX
(

1
2πi

)2 ∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)zdz

×
∫ −2+ε+i∞

−2+ε−i∞

Γ(−u)(X(z + 1))u

N + 1 + u
du

= NX
(

1
2πi

)2 ∫ −2+ε+i∞

−2+ε−i∞

Γ(−u)Xudu
N + 1 + u

(64)

×
∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)z(z + 1)udz

=
NX
2πi

∫ −2+ε+i∞

−2+ε−i∞

Γ(−u)Xu

N + 1 + u

(
∞

∑
k=1

ku

)
du

=
NX
2πi

∫ −2+ε+i∞

−2+ε−i∞

ζ(−u)Γ(−u)Xu

N + 1 + u
du

=
NX
2πi

∮
ζ(−u)Γ(−u)Xu

N + 1 + u
du

This contour should be closed to the right complex infinity and the residue calculus
due to gamma function in the numerator results in the initial series (1) because the Bernoulli
numbers are related to the values of ζ function at the negative integers. The only residue
due to ζ function is responsible for the first term in the classical series (1).

Thus, for (64) we may write

NX
2πi

∫ −2+ε+i∞

−2+ε−i∞

ζ(−u)Γ(−u)Xu

N + 1 + u
du = 1 + NX

∞

∑
k=0

ζ(−k)(−X)k

(N + 1 + k)k!

= 1 + NX
∞

∑
k=0

Bk+1Xk

(N + 1 + k)(k + 1)!

= 1− NX
2(N + 1)

+ N
∞

∑
k=1

B2kX2k

(2k + N)(2k)!
.

This produces an integral representation of the Debye function as a Mellin–Barnes
transformation

NX
2πi

∫ −2+ε+i∞

−2+ε−i∞
ζ(−u)

Γ(−u)Xu

N + 1 + u
du = DN(X). (65)

It is now shown that (65) may be transformed to the initial definition of the Debye function:

NX
2πi

∫ −2+ε+i∞

−2+ε−i∞

ζ(−u)Γ(−u)Xu

N + 1 + u
du =

NX
2πi

∫ −2+ε+i∞

−2+ε−i∞

Xudu
N + 1 + u

∫ ∞

0

τ−u−1

eτ − 1
dτ

=
NX
2πi

∫ −2+ε+i∞

−2+ε−i∞

du
N + 1 + u

(∫ X

0
+
∫ ∞

X

)
τ−1dτ

eτ − 1

(
X
τ

)u

= NX
∫ X

0

τ−1dτ

eτ − 1

(
X
τ

)−N−1

=
N

XN

∫ X

0

τNdτ

eτ − 1
.
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7.2. Mellin–Barnes Transform of the Kummer Function Series

Finally, the Kummer function 1F1

(
N+1
N+2

∣∣∣∣−X(z + 1)
)

in (62) is replaced by the

series (63)

NX
N + 1

1
2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)z

1F1

(
N + 1
N + 2

∣∣∣∣−X(z + 1)
)

dz

= NX
1

2πi

∫ −δ+i∞

−δ−i∞
Γ(−z)Γ(1 + z)(−1)z

∞

∑
k=0

(−X(z + 1))k

(N + 1 + k)k!
dz

to obtain a final representation for DN(X) valid for N ∈ C.
However, this process involves divergent sums coming from the z-integration. In this

intermediate step, the divergent sums may be combined into a finite sum and the initial
result (2) in terms of Bernoulli numbers is recovered. In the integral (64) this divergent sum
was regularized by shifting the contour to the left in the complex plain of the Mellin–Barnes
integral representation of the Kummer function (63). Further shifting the vertical line part
of the contour in (64) produces analytic continuation of the result, giving an expression for
DN(X) on the whole complex plane.

7.3. ζ Function in Terms of Integral over Hankel Contour

The polylogarithms and the ζ function may be represented in terms of Hankel contour
integrals for arbitrary values of their arguments. Deformations of the vertical lines of the
Mellin–Barnes contours to Hankel contours are useful in the transforming the contour
integrals appearing in the solution of the integro-differential equations in QCD [29]. In
other words, the Hankel contours may be deformed to vertical lines in order to obtain the
Barnes integrals from integrals over contours of different shapes [29].

The classical representation

ζ(z)Γ(z) =
i

2 sin πz

∮
H

(−w)z−1

ew − 1
dw (66)

= −Γ(z)Γ(1− z)
2πi

∮
H

(−w)z−1

ew − 1
dw,

valid for arbitrary z ∈ C should be compared with (22). This last representation has
restrictions on the arguments. The well-known identity for the gamma function,

Γ(z)Γ(1− z) =
π

sin πz
z /∈ Z (67)

was used in (66). The identity for the polylogarithm with an arbitrary index in which the
integration over Hankel contour is invoked, is

LiN

(
e−β
)

= −Γ(1− N)

2πi

∮
H

(−w)N−1

ew+β − 1
dw,

here N ∈ C/N, and β is arbitrary real positive. This type of integral representations
produces an alternative proof of (65):
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NX
2πi

∫ −2+ε+i∞

−2+ε−i∞

ζ(−u)Γ(−u)Xu

N + 1 + u
du

= − NX
(2πi)2

∫ −2+ε+i∞

−2+ε−i∞

Γ(−u)Γ(1 + u)Xu

N + 1 + u
du
∮

H

(−w)−u−1

ew − 1
dw

= − NX
(2πi)2

∮
H

(−w)−1

ew − 1
dw

∫ −2+ε+i∞

−2+ε−i∞

Γ(−u)Γ(1 + u)
N + 1 + u

(
−X

w

)u
du

= −NX
2πi

∮
H

(−w)−1

ew − 1
dw

[
1
N

(
−X

w

)−1
+

∞

∑
k=0

1
N + 1 + k

(
X
w

)k
]

(68)

= − 1
2πi

∮
H

1
ew − 1

dw− NX
2πi

∞

∑
k=0

(−X)k

N + 1 + k

∮
H

(−w)−1−k

ew − 1
dw

= − 1
2πi

∮
H

1
ew − 1

dw + NX
∞

∑
k=0

ζ(−k)(−X)k

(N + 1 + k)Γ(k + 1)

= 1 + NX
∞

∑
k=0

Bk+1Xk

(N + 1 + k)(k + 1)!

= 1− NX
2(N + 1)

+ N
∞

∑
k=1

B2kX2k

(2k + N)(2k)!
= DN(X).

8. Application: Debye Model and the Heat Capacity in Solids

An important problem in solid state physics is the determination of heat capacity
using quantum treatments [1,31]. The integral expression (32) is associated to this question
through a model proposed by Debye [1]. According to this model, the internal energy in
solids is given as a function of the absolute temperature T, by

U = 3NkBTD3

(
ΘD
T

)
, (69)

with the usual notation for Debye functions, i.e., D3

(
ΘD
T

)
= D3

(
1, ΘD

T

)
; that is, the

parameter α is set to be 1. Here, kB is the Boltzmann constant, ΘD is called the Debye
temperature and N the number of particles in the system.

Using (49), and with the notation X = ΘD/T, one obtains

D3(X) = −3X
4
− 18

X3 ζ(4)

+
18
X3

[
Li4
(

eX
)
− X Li3

(
eX
)
+ 1

2 X2 Li2
(

eX
)
− 1

6 X3Li1
(

eX
)]

. (70)

The expressions (70) and (71) below, are analytical expressions for the Debye function
D3

(
ΘD
T

)
≡ D2(X), complementing the original Formula (1).

The analysis of (70) as T → 0 (X → ∞) is not easy to obtain directly from here. An
analysis of this limiting behavior, based on the new expression (52), is presented next.
Keeping the the same notation as before, start with

D3(X) =
18
X3 ζ(4) − 18

X3 Li4
(

e−X
)
− 18

X2 Li3
(

e−X
)
− 9

X
Li2
(

e−X
)
− 3Li1

(
e−X

)
. (71)

The limiting behavior of this representation is described next. Observe that in the limiting
case T → 0 (X → ∞), the asymptotic behavior is much simpler to obtain from (71) than
from the classical (70).
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8.1. Asymptotic Limits

The classical approach to study limiting behavior of these functions is usually based
on their integral representations. These procedures are valid in some specific limits (high
and low temperatures). An alternative procedure, based on the analytical expressions
presented in this work, is described next. The new formulae permit the analysis of limiting
high and low temperatures, reproducing in a unified manner the results of [7,8]. A general
form of the asymptotic expansion appearing in (73) may be found in [7] (p. 285, formula
12.36). This can be verified directly: start with the integral representation for DN(X) in (1)
and expand the integrand to produce

DN(X) =
N

XN

∫ X

0

tN

et − 1
dt

=
N

XN

∞

∑
k=0

Bk
k!

∫ X

0
tN−1+k dt (72)

=
N

XN

∞

∑
k=0

Bk
k!

XN+k

N + k
.

Now N = 3 gives (73).
The asymptotic behavior is stated next.

• As T → ∞,

D3

(
ΘD
T

)
≈ 1− 3

8
ΘD
T

+
1

20

(
ΘD
T

)2
− 1

1680

(
ΘD
T

)4
+ O

(
T−6

)
. (73)

• As T → 0

D3

(
ΘD
T

)
≈ 18(

ΘD
T

)3 ζ(4). (74)

In the analysis of this last formula, the behavior of the polylogaritmic function
Lin

(
e−ΘD/T

)
� 1 as T → 0 obtained from the power series expansion

Lin

(
e−

ΘD
T

)
= e−ΘD/T +

1
2n e−2ΘD/T +

1
3n e−3ΘD/T + · · · (75)

shows that this contribution is negligible in relation to 18ζ(4)
(

ΘD
T

)−3
. This expansion

comes directly from the series definition of the polylogarithm function. From these approx-
imations, it follows that the internal energy satisfies

• As T → ∞

U ≈ 3NkBT − 9
8

NkBΘD +
3

20
NkB

(
Θ2

D
T

)
− 1

560
NkB

(
Θ4

D
T3

)
. (76)

• As T → 0

U ≈ 3
5

π4

Θ3
D

NkBT4. (77)

These results are in agreement with the results appearing in the literature [7,8].

8.2. Heat Capacity

This time one employs the relation cV =
(

∂U
∂T

)
V

. The limiting behaviors are now

• For T → ∞
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cV ≈ 3NkB −
3
20

NkB

(
ΘD
T

)2
+

3
560

NkB

(
ΘD
T

)4
+ O

(
T−6

)
. (78)

• For T → 0

cV ≈
12π4

5

(
T

ΘD

)3
NkB. (79)

The analytical expressions for the Debye functions presented in this work now produce
results valid for arbitrary temperature. From (69), and with the notation X = ΘD/T, the
value cV is given by

cV = −12
5

π4NkBX−3 + 216NkBX−3Li4
(

eX
)
− 216NkBX−2Li3

(
eX
)

+108NkBX−1Li2
(

eX
)
− 36NkBLi1

(
eX
)
+ 9NkBX

(
eX

1− eX

)
,

and using the result in (71), it follows that

cV =
12
5

π4NkBX−3 − 216NkBX−3Li4
(

e−X
)
− 216NkBX−2Li3

(
e−X

)
−108NkBX−1Li2

(
e−X

)
− 36NkBLi1

(
e−X

)
− 9NkBX

(
e−X

1− e−X

)
.

9. Conclusions

Analytic expressions for the Debye functions are produced using the method of
brackets. These expressions differ from the classical integral representations and are given
as sums of the polylogarithm functions. The results presented here reproduce formulas
developed in [6]. The new expressions produced in this work, provide an efficient manner
to evaluate limiting behaviors at both high and low temperatures.
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