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Abstract: The problem of optimizing an objective function that exists within the constraints of equality
and inequality is addressed by nonlinear programming (NLP). A linear program exists if all of the
functions are linear; otherwise, the problem is referred to as a nonlinear program. The development
of highly efficient and robust linear programming (LP) algorithms and software, the advent of high-
speed computers, and practitioners’ wider understanding and portability of mathematical modeling
and analysis have all contributed to LP’s importance in solving problems in a variety of fields.
However, due to the nature of the nonlinearity of the objective functions and any of the constraints,
several practical situations cannot be completely explained or predicted as a linear program. Efforts
to overcome such nonlinear problems quickly and efficiently have made rapid progress in recent
decades. The past century has seen rapid progress in the field of nonlinear modeling of real-world
problems. Because of the uncertainty that exists in all aspects of nature and human life, these models
must be viewed through a system known as a fuzzy system. In this article, a new fuzzy model is
proposed to address the vagueness presented in the nonlinear programming problems (NLPPs). The
proposed model is described; its mathematical formulation and detailed computational procedure are
shown with numerical illustrations by employing trapezoidal fuzzy membership functions (TFMFs).
Here, the computational procedure has an important role in acquiring the optimum result by utilizing
the necessary and sufficient conditions of the Lagrangian multipliers method in terms of fuzziness.
Additionally, the proposed model is based on the previous research in the literature, and the obtained
optimal result is justified with TFMFs. A model performance evaluation was completed with different
set of inputs, followed by a comparison analysis, results and discussion. Lastly, the performance
evaluation states that the efficiency level of the proposed model is of high impact. The code to solve the
model is implemented in LINGO, and it comes with a collection of built-in solvers for various problems.

Keywords: nonlinear optimization; fuzzy nonlinear programming problem; Lagrangian multiplier
method in terms of fuzziness; fuzzy numbers; trapezoidal membership functions; ranking index

MSC: 90C05; 90C30; 90C70; 90C90

1. Introduction

NLP typically describes rather more significant challenges than LP. The situation is
perhaps always difficult if all of the constraints are linear and the objective function is
nonlinear. For example, the feasible set may or may not be convex, and the optimum result
could be placed within the feasible set, on its boundary, or at its vertex. For the most part,
the scientific programming issue manages the ideal use or distribution of constrained assets
to meet the ideal goal. The fuzzy NLP issue is valuable in taking care of issues due to the
uncertain, emotional nature of the problematic definition, or due to its precise arrangement.
In this case, an objective function must improve while working within certain constraints.
Ref [1] introduced the theory of fuzzy and fuzzy decision-making, and the right decision
used in decision problems to attain the optimum result [2]. In certain real-life situations, the
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decisions are ambiguous, and preliminary attempts at the choices are required to formulate
a suitable model or cases to be analyzed. Similarly, we include fuzziness in our models
of such situations in order to suggest approaches for dealing with fuzzy data [3]. An
optimum solution in LP satisfies both the constraints and the objective function. Similarly,
this problem has an objective function, and decision variables with fuzziness are presented
in the constraints, including the coefficients in the form of fuzzy [3–5]. If the objective or
limitations are nonlinear, at that point we think of it as an NLPP. In this model, to tackle such
a nonlinear optimization problem, we begin with the necessary and sufficient conditions
of the Lagrangian multipliers method with a fuzziness to obtain an optimum solution.
However, this is carried out by employing TFMFs and their mathematical calculations. A
fuzzy model is offered to the general NLPP, which helps to handle the vagueness and also
justifies the obtained optimum solution within the description of MFs [5–7]. Furthermore,
the proposed computational procedure was carried out in numerical illustration in two
distinct ways: the first problem has been considered with fuzzy MFs, and the second
one offered with a robust ranking index. Accordingly, the MF has been considered as a
trapezoidal fuzzy number (TFN), which is linear and general, and preferably any kind of
fuzzy number will handle the model effectively depending on its suitability. Finally, the
evaluation of the optimal results for the mentioned two cases reveals the newness and
cost-effectiveness of a fuzzy model, addressing the ambiguity and providing significantly
more optimum values.

2. Literature Survey

This section highlights certain identified research work collections of existing fuzzy
NLP, as shown below:

Tang and Wang [8] have suggested a nonsymmetric methodology for NLP with penalty
coefficients in the form of fuzzy. This work also attempted to establish a structured model
to solve the problem, and to classify the existing resources and limitations in the form
of fuzzy, which is a type of nonlinear MF. Tang et al. [9] implemented an approach to
the genetic algorithm for a penalty function and gradient search, and outlined a different
hybrid genetic algorithmic approach to NLP. Fung et al. [10] extended the hybrid genetic
algorithm and demonstrated essential strategies to apply to NLPPs involving all types
of constraints. Sarimveis and Nikolakopoulos [11] offered an approach for constrained
penalty weight optimization problems based on the LUDE algorithm. Syau and Lee [12]
discussed the difficulties in fuzzy convex optimization as well as illustrations of multiob-
jective programming. Chen [13] preferred Yager’s ranking index method to develop an
optimization approach for constructing cost-based queueing decision problems by MFs
with fuzzy numbers. Qin et al. [14] suggested an interval parameter NL model for manag-
ing stream water quality in a fuzzy situation. Fuzzy programming and interval procedures
are combined in a common outline to report the fuzziness of nonlinear constraints on
both sides. Kassem [15] devised a method for assessing the stability of optimal results
to NL multiobjective optimization problems. Ravi Sankar et al. [16] suggested a method
for optimizing an NL objective function that employs a genetic algorithm with coefficients
and constraints that are under fuzziness. Abd-El-Wahed et al. [17] addressed a hybrid model
which combines two heuristic optimization techniques and standard algorithms. Jameel and
Sadeghi [18] discussed fuzzy NLPPs with some suitable numerical problems and evaluated
them by comparing the crisp problem, attempting to show a more precise outcome.

Fuzzy programming techniques are likely to have a broader range of applications for
nonlinear optimization and also stochastic optimization, specifically for allocation problems
in supply chain management. A genetic algorithm technique has been used to illustrate the
nonlinear transportation problem as an improved version of their previous findings for
linear transportation problems, which obtained feasibility due to chromosome structures
and genetic operators [19]. An innovative application for nonlinear network flow problems
has been presented, which is strong enough to handle mixed-integer nonlinear optimization
problems that incorporate a nonlinear transportation problem with the best solution [20].
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An optimization algorithm for identifying the appropriate global solution for the problems
with random noisy variables is described. Further MATLAB execution has been completed
for nonlinear and stochastic problems with various test functions [21]. A suitable model
has been developed, and the choice of the most appropriate optimization algorithms
is essential in achieving cost-effective solutions to the nonlinear discrete transportation
problem on mixed integer programming for both linear and nonlinear [22]. A rough
interval approach was proposed for the solid transportation problem to maximize profit,
with illustrative examples using LINGO with compromised solutions in various real-time
scenarios [23]. A study has been proposed for a multiobjective allocation problem with
a conveyance that follows the Weibull distribution using the stochastic approach with
uncertainties. Furthermore, the study improves the efficiency of the computational results
by demonstrating various optimization algorithms with sensitivity analysis [24]. The
scheduling problem has been construed as a stochastic optimization problem, specifically
in nonlinear programming, and then modeled in a multiobjective optimization problem
that offers suitable scheduling with various models [25]. Bi-level preferential operation
problems have been suggested, as well as a methodology for estimating the reliability
parameters by employing the nonlinear optimization with the Kuhn Tucker approach [26].
An approach has been recommended for multiobjective optimization, mainly nonlinear
supply chains under uncertainties, to obtain the lowest transportation cost while controlling
all other deterioration factors. The LINGO is also used to enhance some optimization
algorithms and data handling [27]. The outcomes are compared to a proposed approach
for the design of the lowest cost canal sections in Newton’s method, which is applied to
KKT conditions for the constrained into unconstrained NL optimization problems with
standard algorithms [28]. The fuzzy-based Lagrangian method can be described as the
digital information mechanism to support vector machines for readily accessible biomedical
data interpretation [29].

In recent decades, it has been desirable to solve optimization models such as en-
ergy, control systems, risk management, product inventory [30], and manufacturing
processes [31]. Such specific problems are hazy and imprecise, but they can be addressed
using fuzzy logic [32]. Several studies have recommended various methods and techniques
for dealing with linear issues such as quadratic programming, solid transportation, as
well as many industrial applications under uncertainties; this begins the best approach to
addressing these types of NLPP in a cost-effective manner [33,34].

3. Preliminaries

In this section, some essential primary concepts and backgrounds are outlined in fuzzy
mathematics [5,6]. Now it seems to address a few definitions which are most required:

Definition 1 [6]. Let T = [t1, t2, t3, t4] be a trapezoidal fuzzy number with the following MF,

µT(x) =


x−t1
t2−t1

, t1 ≤ x ≤ t2

1, t2 ≤ x ≤ t3
x−t4
t3−t4

, t3 ≤ x ≤ t4

The MF µT(x) is illustrated in the Figure 1 below.
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Figure 1. Trapezoidal Membership function µT(x).

Definition 2 [6] (α cut). Let a fuzzy set T in X and any real number α in [0, 1], then the α -cut of
T, denoted by αT is the crisp set αT = {x ∈ X : µT(x) ≥ α}. For illustration, let T be a fuzzy set
whose membership function is given as above µT(x). To find the α-cut of T, where α ∈ [0, 1], let us
set the reference functions of T to each left and right.

i.e., α =
x(1) − t1

t2 − t1
& α =

x(2) − t4

t3 − t4

Expressing x to α, where x(1) = (t2 − t1)α + t1 and x(2) = t4 + (t3 − t4)α which provides
the α−cut of T is αT = [x(1), x(2)] = [(t2 − t1)α + t1, t4 + (t3 − t4)α].

Definition 3 [6] (Robust Ranking Index). The robust ranking index fulfills compensation,
consistency, and additive properties, and produces outcomes that are controlled by human perception.
If T is a fuzzy number, then the robust ranking index is measured as

R(T) =
∫ 1

0
(0.5) ∗

[
TL

α , Tu
α

]
dα

where
[
TL

α , Tu
α

]
= [x(1), x(2)] = [(t2 − t1)α + t1, t4 + (t3 − t4)α] is the α cut of the fuzzy

number T. Here the robust ranking index R(T) offers the numerical significance of T.

4. An Optimization Model for Fuzzy Nonlinear Programming

Research emphasis on fuzzy optimization issues in the area of NLP is mainly limited.
However, little attention has focused on NLP, such as within quadratic programming,
separable programming and search methods, and many others. However, apart from that,
there are several numerous forms of fuzzy NLP addressed extensively in various significant
issues, mostly in complex industrial systems. Research emphasis on problems of fuzzy
optimization in the field of NLP is generally limited. Furthermore, there is little interest in
NLP to address the vagueness of the issues. Besides this, in many real issues, many kinds
of fuzzy NLPs occur, mainly in complex manufacturing systems. This cannot be signified
and enlightened by traditional models.

Meanwhile, scientific studies on modeling techniques and enhancing approaches for
NLP in fuzzy situations are important not only from the framework of fuzzy optimization but
also in the application to the challenges. As a result, the fuzzy NL optimization model has
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been proposed in three steps: model formulation, computational procedure, and numerical
illustrations, followed by a detailed comparative analysis with results and discussions.

4.1. Formulation of the Fuzzy NLP with Equality Constraints

Fuzzy NLPP has been well-defined as the problem of finding a fuzzy vector[(
x(k)1

)
,
(

x(k)2

)
, · · · ,

(
x(k)n

)]
, where

(
x(k)j

)
, j = 1, 2, 3, · · · , n & for all k = 1, 2, 3, 4 is a

TFMF, which optimizes the objective function Z, which is a real-valued function defined by
‘n’ fuzzy variables [7][

Z(k)
]
= f

([(
x(k)1

)
,
(

x(k)2

)
, · · · ,

(
x(k)n

)])
, for all k = 1, 2, 3, 4. (1)

Under the constraints,

gi
([(

x(k)1

)
,
(

x(k)2

)
, · · · ,

(
x(k)n

)])
{≤,≥, or =}

(
b(k)i

)
, for all k = 1, 2, 3, 4 & i = 1, 2, · · · , m.

where gi′s are ‘m’ real-valued function of ‘n’ fuzzy variables and bi′s are ‘m’ fuzzy
constants, and(

x(k)j

)
≥ 0, i = 1, 2, · · · , m, j = 1, 2, 3, · · · , n , m < n & for all k = 1, 2, 3, 4.

Moreover, as stated before, it can be restated as

Maximize
[

Z(k)
]
= f

([(
x(k)1

)
,
(

x(k)2

)
, · · · ,

(
x(k)n

)])
, for all k = 1, 2, 3, 4.

Under the constraints

gi
([(

x(k)1

)
,
(

x(k)2

)
, · · · ,

(
x(k)n

)])
=
(

b(k)i

)
; for all k = 1, 2, 3, 4 & i = 1, 2, · · · , m. (2)(

x(k)j

)
≥ 0, i = 1, 2, · · · , m, j = 1, 2, 3, · · · , n , m < n & for all k = 1, 2, 3, 4. (3)

The fuzzy vector that satisfies conditions (2) and (3) is a feasible solution to the fuzzy NLP.[
X(k)

]
=
[(

x(k)1

)
,
(

x(k)2

)
, · · · ,

(
x(k)n

)]
, for all k = 1, 2, 3, 4.

4.2. Computational Procedure

This section describes the model’s computational procedure, which uses Lagrangian
necessary and sufficient conditions to find the optimum solution to a fuzzified NLPP.

Let us present the real-valued functions hi′s of n fuzzy variables such that

hi
([(

x(k)1

)
,
(

x(k)2

)
, · · · ,

(
x(k)n

)])
= gi

([(
x(k)1

)
,
(

x(k)2

)
, · · · ,

(
x(k)n

)])
−
(

b(k)i

)
,

f or all k = 1, 2, 3, 4 & i = 1, 2, · · · , m.

Then, it becomes:

Maximize
[

Z(k)
]
= f

([(
x(k)1

)
,
(

x(k)2

)
, · · · ,

(
x(k)n

)])
, for all k = 1, 2, 3, 4.

Subject to the constraints

hi
([(

x(k)1

)
,
(

x(k)2

)
, · · · ,

(
x(k)n

)])
= 0, for all k = 1, 2, 3, 4 & i = 1, 2, · · · , m.(

x(k)j

)
≥ 0, where i = 1, 2, 3, · · · , m, j = 1, 2, 3, · · · , n , m < n &

for all k = 1, 2, 3, 4 and xj′s are real− valued ‘n’ fuzzy variables.
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Consequently, it can be restated as

Maximize
[

Z(k)
]
= f

([(
x(k)1

)
,
(

x(k)2

)
, · · · ,

(
x(k)n

)])
, for all k = 1, 2, 3, 4.

hi
([(

x(k)1

)
,
(

x(k)2

)
, · · · ,

(
x(k)n

)])
= 0, for all k = 1, 2, 3, 4 & i = 1, 2, · · · , m.(

x(k)j

)
≥ 0, where i = 1, 2, 3, · · · , m, j = 1, 2, 3, · · · , n & for all k = 1, 2, 3, 4

Address the problem and represent the Lagrangian function defined to evaluate the
stationary points using the Lagrangian multiplier method (LMM).

[L(X, λ)] = f
(

xj
)
−

m

∑
i=1

λi

[
hi(xj

)]
,

where i = 1, 2, 3, · · · , m, j = 1, 2, 3, · · · , n & λi′s are ‘m’ Lagrange multiplier.
The LMM necessarily requires the following conditions:

∂L
∂xj
≡ ∂ f

∂xj
−

m
∑

i=1
λi

∂h(i)
∂xj

= 0

∂L
∂λi
≡ −

[
hi(xj

)]
= 0

for i = 1, 2, 3, · · · , m, j = 1, 2, 3, · · · , n.
The sufficiency conditions for the LMM can be stated as

HB =

∣∣∣∣ 0 M
MT N

∣∣∣∣
(m+n)×(m+n)

where m & n denotes the number of constraints and the number of variables respectively,
the matrix above is known as the Bordered Hessian matrix.

M =

∣∣∣∣∣∣∣∣∣∣∣∣

∂h(i)
∂xj

∂h(i)
∂xj+1

∂h(i+1)

∂xj
∂h(i+1)

∂xj+1
...

∂h(i+m)

∂xj

...
∂h(i+m)

∂xj+1

· · · ∂h(i)
∂xj+n

· · · ∂h(i+1)

∂xj+n

...
· · ·

...
∂h(i+m)

∂xj+n

∣∣∣∣∣∣∣∣∣∣∣∣

N =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2L
∂x2

j

∂2L
∂xj∂xj+1

∂2L
∂xj+1∂xj

∂2L
∂x2

j+1
...

∂2L
∂xj+n∂xj

...
∂2L

∂xj+n∂xj+1

· · · ∂2L
∂xj∂xj+n

· · · ∂2L
∂xj+1∂xj+n

...
· · ·

...
∂2L

∂x2
j+n

∣∣∣∣∣∣∣∣∣∣∣∣∣
Remark

In general, the Lagrangian function L(x, λ) gives the extreme point (x0, λ0) which can
be obtained at (x0, λ0) then the extreme point x0 follows the following:

1. A maximum point if starting with the principal major determinant of order (2m + 1),
then the last (n−m) principal minor determinants of HB form an alternating sign
pattern starting with (−1)m+1.

2. A minimum point if starting with the principal minor determinant of order (2m + 1),
then the last (n−m) principal minor determinants of HB having the sign of (−1)m.
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The necessary conditions for the LMM in fuzzified form may be expressed as

[L(X, λ)] = f
(

xj
(k)
)
−∑m

i=1 λi
(k)
[

hi(xj
)(k)]

= 0,[
hi(xj

)(k)]
= 0

In a fuzzified manner, the sufficiency conditions for the LMM are as follows:

N = f
(

xj
(k)
)
−∑m

i=1 λi
(k)
[

hi(xj
)(k)]

= 0,

M =
[

hi(xj
)(k)]

= 0

where i = 1, 2, 3, · · · , m, j = 1, 2, 3, · · · , n , k = 1, 2, 3, 4 & λi′s are ‘m’ Lagrange multiplier.
Next, we determine the fuzzy MF of the above conditions.

Let A =
(

f j
(k)
)

, B =
(

λi
(k)
)

, C =
(

hi
j
(k)
)

, k = 1, 2, 3, 4

µA(x) =



x− f (1)j

f (2)j − f (1)j

for f (1)j ≤ x ≤ f (2)j

1 for f (2)j ≤ x ≤ f (3)j
x− f (4)j

f (3)j − f (4)j

for f (3)j ≤ x ≤ f (4)j

0 otherwise

µB(x) =



x−λ
(1)
i

λ
(2)
i −λ

(1)
i

for λ
(1)
i ≤ x ≤ λ

(2)
i

1 for λ
(2)
i ≤ x ≤ λ

(3)
i

x−λ
(4)
i

λ
(3)
i −λ

(4)
i

for λ
(3)
i ≤ x ≤ λ

(4)
i

0 otherwise

µC(x) =



x−hi(1)
j

hi(2)
j −hi(1)

j

for hi(1)
j ≤ x ≤ hi(2)

j

1 for hi(2)
j ≤ x ≤ hi(3)

j
x−hi(4)

j

hi(3)
j −hi(4)

j

for hi(3)
j ≤ x ≤ hi(4)

j

0 otherwise

To estimate B ∗ C′s fuzzy MF, start with the computations of α the level confidence inter-
val for B and C MFs and then proceed to B ∗ C′s MFs computation. Substitute a(α)1 and a(α)2 in
the place of x for the membership function B (i.e., µB(x)) in the first and second equations.

α =
x(α)1 −λ

(1)
i

λ
(2)
i −λ

(1)
i

⇒ x(α)1 =
(

λ
(2)
i − λ

(1)
i

)
α + λ

(1)
i ;

α =
x(α)2 −λ

(4)
i

λ
(3)
i −λ

(4)
i

⇒ x(α)2 =
(

λ
(3)
i − λ

(4)
i

)
α + λ

(4)
i

Therefore, Bα it is symbolized as the interval of confidence of B,

Bα =
[(

λ
(2)
i − λ

(1)
i

)
α + λ

(1)
i ,

(
λ
(3)
i − λ

(4)
i

)
α + λ

(4)
i

]
Similarly, the interval of confidence of C, is symbolized as Cα is

Cα =
[(

hi(2)
j − hi(1)

j

)
α + hi(1)

j ,
(

hi(3)
j − hi(4)

j

)
α + hi(4)

j

]
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Thus {Bα ∗ Cα} is referred by {Term I , Term II},where Term I & II are given below:
Term I is

= (λ
(2)
i hi(2)

j − λ
(2)
i hi(1)

j − λ
(1)
i hi(2)

j + λ
(1)
i hi(1)

j )α2 + (λ
(2)
i hi(1)

j − λ
(1)
i hi(1)

j + λ
(1)
i hi(2)

j − λ
(1)
i hi(1)

j )α + λ
(1)
i hi(1)

j

and Term II is

= (λ
(3)
i hi(3)

j − λ
(3)
i hi(4)

j − λ
(4)
i hi(3)

j + λ
(4)
i hi(4)

j )α2 + (λ
(3)
i hi(4)

j − λ
(4)
i hi(4)

j + λ
(4)
i hi(3)

j − λ
(4)
i hi(4)

j )α + λ
(4)
i hi(4)

j

Let

X = (λ
(2)
i hi(2)

j − λ
(2)
i hi(1)

j − λ
(1)
i hi(2)

j + λ
(1)
i hi(1)

j )α2 + (λ
(2)
i hi(1)

j − λ
(1)
i hi(1)

j + λ
(1)
i hi(2)

j − λ
(1)
i hi(1)

j )α + λ
(1)
i hi(1)

j

Solving for ∝ and after simplification results in

α =

−
(

λ
(1)
i hi(2)

j + λ
(2)
i hi(1)

j − 2λ
(1)
i hi(1)

j

)
±

 (
λ
(1)
i hi(2)

j + λ
(2)
i hi(1)

j − 2λ
(1)
i hi(1)

j

)2
− 4λ

(2)
i hi(2)

j λ
(1)
i hi(1)

j

+4λ
(2)
i hi(1)

j λ
(1)
i hi(1)

j + 4λ
(1)
i hi(2)

j λ
(1)
i hi(1)

j − 4λ
(1)
i hi(1)

j λ
(1)
i hi(1)

j


2
(

λ
(2)
i hi(2)

j − λ
(2)
i hi(1)

j − λ
(1)
i hi(2)

j + λ
(1)
i hi(1)

j

)
1
2

Let

X = (λ
(3)
i hi(3)

j − λ
(3)
i hi(4)

j − λ
(4)
i hi(3)

j + λ
(4)
i hi(4)

j )α2 + (λ
(3)
i hi(4)

j − λ
(4)
i hi(4)

j + λ
(4)
i hi(3)

j − λ
(4)
i hi(4)

j )α + λ
(4)
i hi(4)

j

Solving for ∝ and after simplification results in

α =

−
(

λ
(3)
i hi(4)

j + λ
(4)
i hi(3)

j − 2λ
(4)
i hi(4)

j

)
±

 (
λ
(3)
i hi(4)

j + λ
(4)
i hi(3)

j − 2λ
(4)
i hi(4)

j

)2
− 4λ

(3)
i hi(3)

j λ
(4)
i hi(4)

j

+4λ
(3)
i hi(4)

j λ
(4)
i hi(4)

j + 4λ
(4)
i hi(3)

j λ
(4)
i hi(4)

j − 4λ
(4)
i hi(4)

j λ
(4)
i hi(4)

j


2
(

λ
(3)
i hi(3)

j − λ
(3)
i hi(4)

j − λ
(4)
i hi(3)

j + λ
(4)
i hi(4)

j

)
1
2

Putting α = 0 and α = 1, then the domain of x and hence the MF of {Bα ∗ Cα} is
as follows

µλi hj(x) =

−
(

λ
(1)
i hi(2)

j +λ
(2)
i hi(1)

j −2λ
(1)
i hi(1)

j

)
±


(

λ
(1)
i hi(2)

j + λ
(2)
i hi(1)

j − 2λ
(1)
i hi(1)

j

)2
− 4λ

(2)
i hi(2)

j λ
(1)
i hi(1)

j

+4λ
(2)
i hi(1)

j λ
(1)
i hi(1)

j + 4λ
(1)
i hi(2)

j λ
(1)
i hi(1)

j − 4λ
(1)
i hi(1)

j λ
(1)
i hi(1)

j


2
(

λ
(2)
i hi(2)

j −λ
(2)
i hi(1)

j −λ
(1)
i hi(2)

j +λ
(1)
i hi(1)

j

)

1
2

−
(

λ
(3)
i hi(4)

j +λ
(4)
i hi(3)

j −2λ
(4)
i hi(4)

j

)
±


(

λ
(3)
i hi(4)

j + λ
(4)
i hi(3)

j − 2λ
(4)
i hi(4)

j

)2
− 4λ

(3)
i hi(3)

j λ
(4)
i hi(4)

j

+4λ
(3)
i hi(4)

j λ
(4)
i hi(4)

j + 4λ
(4)
i hi(3)

j λ
(4)
i hi(4)

j − 4λ
(4)
i hi(4)

j λ
(4)
i hi(4)

j


2
(

λ
(3)
i hi(3)

j −λ
(3)
i hi(4)

j −λ
(4)
i hi(3)

j +λ
(4)
i hi(4)

j

)

1
2

0 otherwise

Next evaluation of the FMF with the Lagrangian function of necessary condition,
which is

∂ f
∂xj
−

m

∑
i=1

λi
∂hi

∂xj
= 0 ⇒ f ′ −

m

∑
i=1

λih′i = 0

In a fuzzified manner, the necessary conditions for the LMM are as follows:

f
(

xj
(k)
)
−

m

∑
i=1

λi
(k)
[

hi(xj
)(k)′]

= 0,
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where i = 1, 2, 3, · · · , m, j = 1, 2, 3, · · · , n , k = 1, 2, 3, 4 & λi′s are ‘m’ Lagrange multiplier.
Next, we determine the fuzzy MF of the above conditions.

Let A =
(

f j
(k)
)

, B =
(

λi
(k)
)

, C =
(

hi
j
(k)
)

,

where i = 1,2,3,· · · ,m, j = 1,2,3,· · · , n & k = 1,2,3,4

µA(x) =



x− f (1)j

f (2)j − f (1)j

for f (1)j ≤ x ≤ f (2)j

1 for f (2)j ≤ x ≤ f (3)j
x− f (4)j

f (3)j − f (4)j

for f (3)j ≤ x ≤ f (4)j

0 otherwise

Now compute the confidence interval for each degree α for the MF A. By replacing
the α values in both the equations of the MF of A,

α =
x(α)1 − f ′(1)

f ′(2)− f ′(1)
⇒ a(α)1 =

(
f ′(2) − f ′(1)

)
α + f ′(1)

α =
x(α)2 − f ′(4)

f ′(3)− f ′(4)
⇒ a(α)2 =

(
f ′(3) − f ′(4)

)
α + f ′(4)

∴ {A}α =
[{(

f ′(2) − f ′(1)
)

α + f ′(1)
}

,
{(

f ′(3) − f ′(4)
)

α + f ′(4)
}]

As the MF of B ∗ C is denoted by µB∗C(x) and has been calculated previously. Next,
determine the α level intervals for the fuzzy MF ∗C, by substituting bα

1 and bα
2 in both the

equation of the MF of B ∗ C. Then MF B ∗ C is as follows

{B(∗)C}α =[{
2α2

(
λ
(2)
i hi(2)

j λ
(3)
i h′(3)i − λ

(2)
i hi(2)

j λ
(3)
i h′(4)i − λ

(2)
i hi(2)

j λ
(4)
i h′(3)i + λ

(2)
i hi(2)

j λ
(4)
i h′(4)i − λ

(2)
i hi(1)

j λ
(3)
i h′(3)i

+λ
(2)
i hi(1)

j λ
(3)
i h′(4)i + λ

(2)
i hi(1)

j λ
(4)
i h′(3)i − λ

(2)
i hi(1)

j λ
(4)
i h′(4)i − λ

(1)
i hi(2)

j λ
(3)
i h′(3)i + λ

(1)
i hi(2)

j λ
(3)
i h′(4)i +

λ
(1)
i hi(2)

j λ
(4)
i h′(3)i − λ

(1)
i hi(2)

j λ
(4)
i h′(4)i + λ

(1)
i hi(1)

j λ
(3)
i h′(3)i − λ

(1)
i hi(1)

j λ
(3)
i h′(4)i − λ

(1)
i hi(1)

j λ
(4)
i h′(3)i +

λ
(1)
i hi(1)

j λ
(4)
i h′(4)i

)
+ 2α

(
λ
(2)
i hi(1)

j λ
(3)
i h′(4)i − λ

(2)
i hi(1)

j λ
(4)
i h′(4)i + λ

(2)
i hi(1)

j λ
(4)
i h′(3)i + λ

(2)
i hi(1)

j λ
(4)
i h′(4)i

−λ
(1)
i hi(1)

j λ
(3)
i h′(4)i + λ

(1)
i hi(1)

j λ
(4)
i h′(4)i − λ

(1)
i hi(1)

j λ
(4)
i h′(3)i + λ

(1)
i hi(1)

j λ
(4)
i h′(4)i + λ

(1)
i hi(2)

j λ
(3)
i h′(4)i −

λ
(1)
i hi(2)

j λ
(4)
i h′(4)i + λ

(1)
i hi(2)

j λ
(4)
i h′(3)i − λ

(1)
i hi(2)

j λ
(4)
i h′(4)i − λ

(1)
i hi(1)

j λ
(3)
i h′(4)i + λ

(1)
i hi(1)

j λ
(4)
i h′(4)i −

λ
(1)
i hi(1)

j λ
(4)
i h′(3)i + λ

(1)
i hi(1)

j λ
(4)
i h′(4)i

)
+ λ

(1)
i hi(1)

j λ
(4)
i h′(4)i

}
,

{
2α2

(
λ
(2)
i h′(2)i λ

(3)
i hi(3)

j − λ
(2)
i h′(2)i λ

(3)
i hi(4)

j − λ
(2)
i h′(2)i λ

(4)
i hi(3)

j + λ
(2)
i h′(2)i λ

(4)
i hi(4)

j − λ
(2)
i h′(1)i λ

(3)
i hi(3)

j

+λ
(2)
i h′(1)i λ

(3)
i hi(4)

j + λ
(2)
i h′(1)i λ

(4)
i hi(3)

j − λ
(2)
i h′(1)i λ

(4)
i hi(4)

j − λ
(1)
i h′(2)i λ

(3)
i hi(3)

j + λ
(1)
i h′(2)i λ

(3)
i hi(4)

j +

λ
(1)
i h′(2)i λ

(4)
i hi(3)

j − λ
(1)
i h′(2)i λ

(4)
i hi(4)

j + λ
(1)
i h′(1)i λ

(3)
i hi(3)

j − λ
(1)
i h′(1)i λ

(3)
i hi(4)

j − λ
(1)
i h′(1)i λ

(4)
i hi(3)

j +

λ
(1)
i h′(1)i λ

(4)
i hi(4)

j

)
+ 2α

(
λ
(2)
i h′(1)i λ

(3)
i hi(4)

j − λ
(2)
i h′(1)i λ

(4)
i hi(4)

j + λ
(2)
i h′(1)i λ

(4)
i hi(3)

j − λ
(2)
i h′(1)i λ

(4)
i hi(4)

j

−λ
(1)
i h′(1)i λ

(3)
i hi(4)

j + λ
(1)
i h′(1)i λ

(4)
i hi(4)

j − λ
(1)
i h′(1)i λ

(4)
i hi(3)

j + λ
(1)
i h′(1)i λ

(4)
i hi(4)

j + λ
(1)
i h′(2)i λ

(3)
i hi(4)

j −

λ
(1)
i h′(2)i λ

(4)
i hi(4)

j + λ
(1)
i h′(2)i λ

(4)
i hi(3)

j − λ
(1)
i h′(2)i λ

(4)
i hi(4)

j − λ
(1)
i h′(1)j λ

(3)
i hi(4)

j + λ
(1)
i h′(1)j λ

(4)
i hi(4)

j −

λ
(1)
i h′(1)j λ

(4)
i hi(3)

j + λ
(1)
i h′(1)j λ

(4)
i hi(4)

j

)
+ λ

(1)
i h′(1)i λ

(4)
i hi(4)

j

}]
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Now, {Aα} − {(B(∗)C)α} =
{

a(α)1 − b(α)2 , a(α)2 − b(α)1

}
=

 −2A1α2 −
{

2B1 −
(

f ′(2) − f ′(1)
)

α
}
+ f ′(1) − C1,

−2A2α2 −
{

2B2 −
(

f ′(3) − f ′(4)
)

α
}
+ f ′(4) − C2


Solving for α and then putting α = 0 and α = 1 which follows the domain of x and

hence the MF of {Aα(−)Bα(∗)Cα} is as follows

µA(−)B(∗)C(x) =



−(2B1−( f ′(2)− f ′(1)))±
(
{2B1−( f ′(2)− f ′(1))}2−8A1( f ′(1)−C1)

)
4A1

1
2

,

for f ′(1) − λ
(1)
i h′(1)i ≤ x ≤ f ′(2) − λ

(2)
i h′(2)i

1, for f ′(2) − λ
(2)
i h′(2)i ≤ x ≤ f ′(3) − λ

(3)
i h′(3)i

−(2B2−( f ′(3)− f ′(4)))±
(
{2B2−( f ′(3)− f ′(4))}2−8A2( f ′(4)−C2)

)
4A2

1
2

,

for f ′(3) − λ
(3)
i h′(3)i ≤ x ≤ f ′(4) − λ

(4)
i h′(4)i

0, otherwise

where,

A1 = λ
(2)
i h′(2)i λ

(3)
i hi(3)

j − λ
(2)
i h′(2)i λ

(3)
i hi(4)

j − λ
(2)
i h′(2)i λ

(4)
i hi(3)

j + λ
(2)
i h′(2)i λ

(4)
i hi(4)

j − λ
(2)
i h′(1)i λ

(3)
i hi(3)

j +

λ
(2)
i h′(1)i λ

(3)
i hi(4)

j + λ
(2)
i h′(1)i λ

(4)
i hi(3)

j − λ
(2)
i h′(1)i λ

(4)
i hi(4)

j − λ
(1)
i h′(2)i λ

(3)
i hi(3)

j + λ
(1)
i h′(2)i λ

(3)
i hi(4)

j +

λ
(1)
i h′(2)i λ

(4)
i hi(3)

j − λ
(1)
i h′(2)i λ

(4)
i hi(4)

j + λ
(1)
i h′(1)i λ

(3)
i hi(3)

j − λ
(1)
i h′(1)i λ

(3)
i hi(4)

j − λ
(1)
i h′(1)i λ

(4)
i hi(3)

j +

λ
(1)
i h′(1)i λ

(4)
i hi(4)

j

B1 = λ
(2)
i h′(1)i λ

(3)
i hi(4)

j − λ
(2)
i h′(1)i λ

(4)
i hi(4)

j + λ
(2)
i h′(1)i λ

(4)
i hi(3)

j − λ
(2)
i h′(1)i λ

(4)
i hi(4)

j − λ
(1)
i h′(1)i λ

(3)
i hi(4)

j +

λ
(1)
i h′(1)i λ

(4)
i hi(4)

j − λ
(1)
i h′(1)i λ

(4)
i hi(3)

j + λ
(1)
i h′(1)i λ

(4)
i hi(4)

j + λ
(1)
i h′(2)i λ

(3)
i hi(4)

j − λ
(1)
i h′(2)i λ

(4)
i hi(4)

j +

λ
(1)
i h′(2)i λ

(4)
i hi(3)

j − λ
(1)
i h′(2)i λ

(4)
i hi(4)

j − λ
(1)
i h′(1)j λ

(3)
i hi(4)

j + λ
(1)
i h′(1)j λ

(4)
i hi(4)

j − λ
(1)
i h′(1)j λ

(4)
i hi(3)

j + λ
(1)
i h′(1)j λ

(4)
i hi(4)

j

C1 = λ
(1)
i h′(1)i λ

(4)
i hi(4)

j and

A2 = λ
(2)
i hi(2)

j λ
(3)
i h′(3)i − λ

(2)
i hi(2)

j λ
(3)
i h′(4)i − λ

(2)
i hi(2)

j λ
(4)
i h′(3)i + λ

(2)
i hi(2)

j λ
(4)
i h′(4)i − λ

(2)
i hi(1)

j λ
(3)
i h′(3)i +

λ
(2)
i hi(1)

j λ
(3)
i h′(4)i + λ

(2)
i hi(1)

j λ
(4)
i h′(3)i − λ

(2)
i hi(1)

j λ
(4)
i h′(4)i − λ

(1)
i hi(2)

j λ
(3)
i h′(3)i + λ

(1)
i hi(2)

j λ
(3)
i h′(4)i +

λ
(1)
i hi(2)

j λ
(4)
i h′(3)i − λ

(1)
i hi(2)

j λ
(4)
i h′(4)i + λ

(1)
i hi(1)

j λ
(3)
i h′(3)i − λ

(1)
i hi(1)

j λ
(3)
i h′(4)i − λ

(1)
i hi(1)

j λ
(4)
i h′(3)i + λ

(1)
i hi(1)

j λ
(4)
i h′(4)i

B2 = λ
(2)
i hi(1)

j λ
(3)
i h′(4)i − λ

(2)
i hi(1)

j λ
(4)
i h′(4)i + λ

(2)
i hi(1)

j λ
(4)
i h′(3)i + λ

(2)
i hi(1)

j λ
(4)
i h′(4)i − λ

(1)
i hi(1)

j λ
(3)
i h′(4)i +

λ
(1)
i hi(1)

j λ
(4)
i h′(4)i − λ

(1)
i hi(1)

j λ
(4)
i h′(3)i + λ

(1)
i hi(1)

j λ
(4)
i h′(4)i + λ

(1)
i hi(2)

j λ
(3)
i h′(4)i − λ

(1)
i hi(2)

j λ
(4)
i h′(4)i +

λ
(1)
i hi(2)

j λ
(4)
i h′(3)i − λ

(1)
i hi(2)

j λ
(4)
i h′(4)i − λ

(1)
i hi(1)

j λ
(3)
i h′(4)i + λ

(1)
i hi(1)

j λ
(4)
i h′(4)i − λ

(1)
i hi(1)

j λ
(4)
i h′(3)i + λ

(1)
i hi(1)

j λ
(4)
i h′(4)i

C2 = λ
(1)
i hi(1)

j λ
(4)
i h′(4)i .
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5. Numerical Illustration

This section outlines two illustrative examples that can be used to optimize the models for
addressing the problem of fuzzy NLP using TFMF and its mathematical calculations [5–7,32].
In Case (i), the fuzzy model explains the procedure using the MF approach, and in Case (ii),
the same problem was investigated using the robust ranking approach.

The NLP in the manner of fuzziness is as follows, and the fuzzified form of the
considered NLPP can be stated as below:

Minimize

[−1, 0, 2, 3]
(

x(k)1

)2
+ [−1, 0, 2, 3]

(
x(k)2

)2
+ [−1, 0, 2, 3]

(
x(k)3

)2
, for all k = 1, 2, 3, 4.

Subject to the constraints,

[2, 3, 5, 6]
(

x(k)1

)
+ [−1, 0, 2, 3]

(
x(k)2

)2
+ [0, 1, 3, 4]

(
x(k)3

)
= [12, 13, 15, 16], for all k = 1, 2, 3, 4.(

x(k)1

)
,
(

x(k)2

)
,
(

x(k)3

)
≥ 0, for all k = 1, 2, 3, 4.

5.1. Case (i): NLP with Fuzzy Membership Functions

The above NLP has been optimized with fuzziness by the necessary condition and
sufficiency conditions of Lagrangian, as discussed earlier.

In fuzzified manner, the necessary conditions for the LMM for minimizing the above
NLPP are as follows

[−2, 0, 4, 6]
(

x(k)1

)
− [2, 3, 5, 6]

(
λ(k)

)
= 0, for all k = 1, 2, 3, 4. (4)

[−2, 0, 4, 6]
(

x(k)2

)
− [−2, 0, 4, 6]

(
x(k)2

)(
λ(k)

)
= 0, for all k = 1, 2, 3, 4. (5)

[−2, 0, 4, 6]
(

x(k)3

)
− [0, 1, 3, 4]

(
λ(k)

)
= 0, for all k = 1, 2, 3, 4. (6)

[2, 3, 5, 6]
(

x(k)1

)
+ [−1, 0, 2, 3]

(
x(k)2

)2
+ [0, 1, 3, 4]

(
x(k)3

)
− [12, 13, 14, 15] = 0, for all k = 1, 2, 3, 4. (7)

The relevant computations for determining the FMFs for the first equation of the above
Lagrangian necessary conditions are as follows:

µA(∗)B (x) =



−x1+3±(x2
1−2x1+1)

1
2

2 for − 2x1 ≤ x ≤ 0

1 for 0 ≤ x ≤ 4x1

x1−5±(x2
1−2x1+1)

1
2

2 for 4x1 ≤ x ≤ 6x1

0 otherwise

µC(∗)D (x) =



−λ±(λ2−8λ+16)
1
2

2 for 2λ ≤ x ≤ 3λ

1 for 3λ ≤ x ≤ 5λ

λ+8±(λ2−8λ+16)
1
2

2 for 5λ ≤ x ≤ 6λ

0 otherwise
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Therefore,

µA(∗)B−C(∗)D(x) =



−x1+λ+3±(x2
1+λ2−2x1−8λ+17)

1
2

2 for − 2x1 − 2λ ≤ x ≤ −3λ

1 for − 3λ ≤ x ≤ 4x1 − 5λ

x1−λ−13±(x2
1+λ2−2x1−8λ+17)

1
2

2 for 4x1 − 5λ ≤ x ≤ 6x1 − 6λ

0 otherwise

Similarly for the second, third, and fourth equations, we see

µA(∗)B−C(∗)D(∗)E(x) =



−x2+3±(x2
2−2x2+4x2λ+17)

1
2

2 for − 2x2 + 2x2λ ≤ x ≤ 0

1 for 0 ≤ x ≤ 4x2 − 4x2λ

x2−5±(x2
2−2x2+4x2λ+17)

1
2

2 for 4x2 − 4x2λ ≤ x ≤ 6x2 − 6x2λ

0 otherwise

µA(∗)B−C(∗)D(x) =



−x3+λ+1±(x2
3+λ2−2x3−4λ+5)

1
2

2 for − 2x3 ≤ x ≤ −λ

1 for − λ ≤ x ≤ 4x3 − 3λ

x3−λ−11±(x2
3+λ2−2x3−4λ+5)

1
2

2 for 4x3 − 3λ ≤ x ≤ 6x3 − 4λ

0 otherwise

µA(∗)B+C(∗)D(∗)E+F(∗)G−H(x) =



−x1−x3−2x+26±(x2
1+4x2

2+x2
3−8x1−4x3+36)

1
2

2

for 2x1 − x2
2 − 12 ≤ x ≤ 3x1 + x3 − 13

1 for 3x1 + x3 − 13 ≤ x ≤ 5x1 + 2x2
2 + 3x3 − 15

x1+x3+2x−18±(x2
1+4x2

2+x2
3−8x1−4x3+36)

1
2

2

for 5x1 + 2x2
2 + 3x3 − 15 ≤ x ≤ 6x1 + 3x2

2 + 4x3 − 16

0 otherwise

The fuzzified result of the four equations are as follows:

[−2, 0, 4, 6]
(

x(k)1

)
− [2, 3, 5, 6]

(
λ(k)

)
= 0, f or all k = 1, 2, 3, 4.

[−2x1 − 2λ,−3λ, 4x1 − 5λ, 6x1 − 6λ] = 0
(8)

Similarly, the Equations (5) to (7) are as follows:

[−2x2 + 2x2λ, 0, 4x2 − 4x2λ, 6x2 − 6x2λ] = 0 (9)

[−2x3,−λ, 4x3 − 3λ, 6x3 − 4λ] = 0 (10)[
2x1 − x2

2 − 12, 3x1 + x3 − 13, 5x1 + 2x2
2 + 3x3 − 15, 6x1 + 3x2

2 + 4x3 − 16
]
= 0 (11)

Solving the above the equations results in the extreme points, they are;

Extreme point 1 : (x◦, λ◦) = [(1, 1.5, 2.5, 3), (−2, 0, 4, 6), (0, 0.5, 1.5, 2), (−1, 0, 2, 3)] (12a)

Extreme point 2 : (x◦, λ◦) = [(1, 1.5, 2.5, 3), (−2, 0, 4, 6), (0, 0.5, 1.5, 2), (−1, 0, 2, 3)] (12b)



Mathematics 2022, 10, 1743 13 of 20

Extreme point 3 : (x◦, λ◦) = [(1.4, 2.1, 3.5, 4.2), (−2,−1, 1, 2), (0, 0.7, 2.1, 2.8), (0.8, 1.1, 1.7, 2)] (12c)

By employing the sufficiency conditions to evaluate whether the extreme points are
maximum or minimum. Hence, the sufficient conditions for the LMM for minimizing the
above NLPP as

HB =

∣∣∣∣∣∣∣∣∣∣∣

[−2,−1, 1, 2] [2, 3, 5, 6] [0, 1, 3, 4]x2 [0, 1, 3, 4]

[2, 3, 5, 6] [0, 1, 3, 4] [−2,−1, 1, 2] [−2,−1, 1, 2]

[0, 1, 3, 4]x2 [−2,−1, 1, 2] [0, 1, 3, 4]− [0, 1, 3, 4]λ [−2,−1, 1, 2]

[0, 1, 3, 4] [−2,−1, 1, 2] [−2,−1, 1, 2] [0, 1, 3, 4]

∣∣∣∣∣∣∣∣∣∣∣
4×4

Extreme point 1at HB is

HB
at (i) =

∣∣∣∣∣∣∣∣∣∣∣

[−2,−1, 1, 2] [2, 3, 5, 6] [0, 2, 6, 8] [0, 1, 3, 4]

[2, 3, 5, 6] [0, 1, 3, 4] [−2,−1, 1, 2] [−2,−1, 1, 2]

[0, 2, 6, 8] [−2,−1, 1, 2] [−4,−2, 2, 4] [−2,−1, 1, 2]

[0, 1, 3, 4] [−2,−1, 1, 2] [−2,−1, 1, 2] [0, 1, 3, 4]

∣∣∣∣∣∣∣∣∣∣∣
4×4

Therefore, the sufficient condition to follow the evaluation of the above matrices of
sizes 3× 3 and 4× 4 o f

∣∣HB
∣∣. Here, the condition following the sign of the determinants is

(−1)m = −1. ∣∣∣∣∣∣∣∣∣∣∣

[−2,−1, 1, 2] [2, 3, 5, 6] [0, 2, 6, 8]

[2, 3, 5, 6] [0, 1, 3, 4] [−2,−1, 1, 2]

[0, 2, 6, 8] [−2,−1, 1, 2] [−4,−2, 2, 4]

[0, 1, 3, 4] [−2,−1, 1, 2] [−2,−1, 1, 2]

∣∣∣∣∣∣∣∣∣∣∣
3×3

= −32

∣∣∣∣∣∣∣∣∣∣∣

[−2,−1, 1, 2] [2, 3, 5, 6] [0, 2, 6, 8] [0, 1, 3, 4]

[2, 3, 5, 6] [0, 1, 3, 4] [−2,−1, 1, 2] [−2,−1, 1, 2]

[0, 2, 6, 8] [−2,−1, 1, 2] [−4,−2, 2, 4] [−2,−1, 1, 2]

[0, 1, 3, 4] [−2,−1, 1, 2] [−2,−1, 1, 2] [0, 1, 3, 4]

∣∣∣∣∣∣∣∣∣∣∣
4×4

= −64

Therefore, extreme point 1 is a minimum point.
Extreme point 2 at HB is

HB
at (ii) =

∣∣∣∣∣∣∣∣∣∣∣

[−2,−1, 1, 2] [2, 3, 5, 6] [0, 2, 6, 8] [0, 1, 3, 4]

[2, 3, 5, 6] [0, 1, 3, 4] [−2,−1, 1, 2] [−2,−1, 1, 2]

−[0, 2, 6, 8] [−2,−1, 1, 2] [−4,−2, 2, 4] [−2,−1, 1, 2]

[0, 1, 3, 4] [−2,−1, 1, 2] [−2,−1, 1, 2] [0, 1, 3, 4]

∣∣∣∣∣∣∣∣∣∣∣
4×4

Similarly, extreme point 2 is also a minimum point.
Extreme point 3 at HB is

HB
at (iii) =

∣∣∣∣∣∣∣∣
[−2,−1, 1, 2] [2, 3, 5, 6] [−2,−1, 1, 2] [0, 1, 3, 4]
[2, 3, 5, 6] [0, 1, 3, 4] [−2,−1, 1, 2] [−2,−1, 1, 2]

[−2,−1, 1, 2] [−2,−1, 1, 2] [−4,−2.4, 0.8, 2.4] [−2,−1, 1, 2]
[0, 1, 3, 4] [−2,−1, 1, 2] [−2,−1, 1, 2] [0, 1, 3, 4]

∣∣∣∣∣∣∣∣
4×4
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Since the extreme point may not fulfill the sufficiency conditions of both maximum
and minimum.

Therefore, extreme point 3 is neither minimum nor maximum.
The Pictorial representation of the fuzzy vectors and the Lagrangian multiplier of the

fuzzy NLPP is demonstrated in the below Figure 2.
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Hence the optimum result of the NLPP is(
x(k)1

)
= [1.4, 2.1, 3.5, 4.2],

(
x(k)2

)
= [−2,−1, 1, 2],

(
x(k)3

)
= [0, 0.7, 2.1, 2.8] ,(

λ(k)
)
= [0.8, 1.1, 1.7, 2] &

(
Z(k)

)
= [−9.8, 0, 19.6, 29.4] , f or all k = 1, 2, 3, 4.

5.2. Case (ii): The Robust Ranking Approach for NLP with Fuzzy MFs

The NLP in the manner of fuzziness is as follows, and the fuzzified form of the
considered NLPP can be stated as below:

Minimize

[−1, 0, 2, 3]
(

x(k)1

)2
+ [−1, 0, 2, 3]

(
x(k)2

)2
+ [−1, 0, 2, 3]

(
x(k)3

)2
, for all k = 1, 2, 3, 4.

Subject to the constraints,

[2, 3, 5, 6]
(

x(k)1

)
+ [−1, 0, 2, 3]

(
x(k)2

)2
+ [0, 1, 3, 4]

(
x(k)3

)
= [12, 13, 15, 16], for all k = 1, 2, 3, 4.(

x(k)1

)
,
(

x(k)2

)
,
(

x(k)3

)
≥ 0, for all k = 1, 2, 3, 4.
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Let’s use a robust ranking approach to solve the above NLPP [6]. Further, the ranking
index of R[−1, 0, 2, 3] and its fuzzy MF are as follows

µR[−1,0,2,3] (x) =



x + 1 ,−1 ≤ x ≤ 0

1 , 0 ≤ x ≤ 2

−x + 3 , 2 ≤ x ≤ 3

0 , otherwise

The confidence interval for each degree α & the trapezoidal structures will be charac-
terized by the functions of α.

here α = x(α)1 + 1 & α = −x(α)2 + 3

Therefore,

[x(1), x(2)] =
[
TL

α,TU
α,
]
= [(t2 − t1)α + t1, t4 + (t3 − t4)α] = [α− 1 ,−α + 3]

R(T) = R[−1, 0, 2, 3] =
1∫

0
(0.5) ∗

[
TL

α,TU
α,
]
dα =

1∫
0
(0.5)(2) dα = 1

Similarly, the ranking index R[2,3,5,6] is calculated as below:

µR[2,3,5,6](x)(=)



x− 2 , 2 ≤ x ≤ 3

1 , 3 ≤ x ≤ 5

−x + 6 , 5 ≤ x ≤ 6

0 , otherwise

The confidence interval for each degree α & the trapezoidal structures will be charac-
terized by the functions of α.

Therefore, [x(1), x(2)] =
[
TL

α,TU
α,
]
= [α + 2,−α + 6]

R(T) = R[2, 3, 5, 6] =
1∫

0

(0.5) ∗
[

TL
α,T

U
α,

]
dα =

1∫
0

(0.5)(8) dα = 4

Likewise, the other ranking index has been calculated below

R(T) = R[0, 1, 3, 4] = 2 & R[12, 13, 15, 16] = 14.

Using the proposed approach in the previous section, the fuzzy NLPP can be modified
to the conventional crisp problem; the crisp problem is

Minimize Z = x1
2 + x2

2 + x3
2

Subject to the constraints,

4x1 + x2
2 + 2x1 = 14; x1, x2, x3 ≥ 0.

Now apply the existing conventional approach to the NLPP by using necessary and
sufficient conditions of the LMM and obtained the optimum solution for the above is
x1 = 2.8, x2 = 0, x3 = 1.4 λ = 1.4 & Minimum Z = 9.8.

5.3. Models Performance Evaluation with Different Sets of Inputs

This section is encapsulated to determine the efficiency of the fuzzy model and its
solutions. For this efficiency test, we have considered four different sets of inputs in fuzzy
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format and then, using the ranking function provided in the earlier section, we have
defuzzified all these inputs to obtain the equivalent crisp number. The fuzzy inputs are
available in Table 1. With the defuzzified value, we have solved the model for each set using
LINGO software and we have obtained the optimal solution for the NLPP. The results are
given in Table 1 and here it can be easily observed that for any arbitrary set of trapezoidal
fuzzy inputs, the model is solvable and gives the optimal solution. this demonstrates that
the efficiency level of the proposed model is of high impact. The code to solve the model
is implemented in LINGO, and it comes with a collection of built-in solvers for various
problems. The modeling environment is strictly aligned to the LINGO solver and because
of this interconnectivity, it transmits problems directly to memory which results in the
minimization of compatibility issues between the solver and modeling components. It uses
multiple CPU cores for model simulation, thus giving faster results.

Table 1. Optimum results comparison for a different set of fuzzy inputs with the proposed model.

Fuzzy Input for Objective
Functions’ Coefficient

Fuzy Inputs for Coefficients
in Constiants’ and Right

Side’s Value

Optimal Objective
Value Solutions

Set-1 [2,4,7,11]; [6.5,12.3,16,19.98];
[5,9,11.5,15.07]

[4,7,10,13]; [2.5,4.9,7.9,11];
[1.2,3.4,6.7,10.5] and
[11.8,14.9,19.2,24.4]

20.3700
x1 = 1.4754,
x2 = 0.5494,
x3 = 0.5596

Set-2
[0.4,1.13,2.31,5.56];

[16.15,22.39,26.78,29.59];
[5.98,7.99,10.54,13.67]

[1.56,2.67,6.64,9.88];
[2.35,3.89,6.99,8.92];

[5.22,7.41,9.27,10.53] and
138.5768

x1 = 6.0683,
x2 = 0,

x3 = 2.3350

Set-3
[-3.35,-0.93,-4.11,8.61];
[-5.11,-1.09,-3.11,10.19],
[25.98,27.99,30.54,33.67]

[21.05,22.07,26.06,29.08],
[12.03,13.09,16.09,18.02],

[25.02,27.01,29.07,30.03] and
[12,13,14,15]

0.0178
x1 = 0.5686,

x2 = 0,
x3 = 0.0012

Set-4
[63.89,70.31,79.91,85.13];
[45.11,51.98,63.44,0.97];
[75.21,87.23,90.44,99.92]

[29.68,34.55,39.13,41.45],
[12.03,14.09,17.09,19.02],
[11.12,12.17,14.19,18.71]

and
[111.2,122.1,134.9,148.7]

412.3734
x1 = 0.9001,
x2 = 2.4381,
x3 = 0.2962

5.4. Comparison Analysis

The table below (Table 2) provides a comparison of the optimum results attained by
following the existing approach, the fuzzy MF approach, and the robust ranking approach
for the fuzzy NLPP preferred in the numerical illustration above. From the results shown
in the table, it is evident that the same results are given regardless of what existing or fuzzy
membership and ranking approaches do. It shows the newness of the proposed model
and also demonstrates that the decision-maker may use these kind of model to clear the
vagueness of any suitable problem in order to achieve the best optimum values. Based on
the above result, it is recommended to use either of the models given instead of the existing
model, namely the fuzzy MF model or robust ranking approach, which is ideal [6,7].
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Table 2. Optimum results comparison of existing and proposed models.

Optimum Values
The Existing Model Is

Based on the
Conventional Approach

The Proposed Model Is Based on the
Conventional Approach in

Terms of Fuzziness

The Proposed Model Is Based on the
Robust Ranking Approach

x1 2.8
[

x(k)1

]
; k = 1, 2, 3, 4 = [1.4, 2.1, 3.5, 4.2]

[
x(k)1

]
; k = 1, 2, 3, 4 = [1.4, 2.1, 3.5, 4.2] =

R[1.4, 2.1, 3.5, 4.2] = 2.8

x2 0
[

x(k)2

]
; k = 1, 2, 3, 4

= [−2,−1, 1, 2]

[
x(k)2

]
; k = 1, 2, 3, 4 =[−2,−1, 1, 2] =

R[−2,−1, 1, 2] = 0

x3 1.4
[

x(k)3

]
; k = 1, 2, 3, 4 =

[0, 0.7, 2.1, 2.8]

[
x(k)3

]
; k = 1, 2, 3, 4 =

[0, 0.7, 2.1, 2.8] =
R[0, 0.7, 2.1, 2.8] = 1.4

λ 1.4
[
λ(k)

]
; k = 1, 2, 3, 4 = [0.8, 1.1, 1.7, 2]

[
λ(k)

]
; k = 1, 2, 3, 4 =

[0.8, 1.1, 1.7, 2] =
R[0.8, 1.1, 1.7, 2] = 1.4

Min Z 9.8

[
Z(k)

]
; k = 1, 2, 3, 4 =

[−9.8, 0, 19.6, 29.4]

[
Z(k)

]
; k = 1, 2, 3, 4 =

[−9.8, 0, 19.6, 29.4] =
R[−9.8, 0, 19.6, 29.4] = 9.8

6. Results and Discussion

Employing the suggested model numerical illustrations demonstrate that the optimum
value of the FNLPP is [−9.8, 0, 19.6, 29.4], which might be a fresh attempt to clear the
vagueness. The optimum solution for the fuzzified NLPPs will be continuously greater
than −9.8 and less than 29.4, and the most likely outcome will be somewhere in the range
of 0 and 19.6. The varieties in cost with significance probability can be seen in Figure 3.
Additionally, obtained fuzzy optimum solutions xij might be empirically comprehended.

• The decision-maker perception, the entire value of the fuzzy NLPP, will be higher than
−9.8 and less than 29.4.

• The decision-maker for the entire fuzzy NLPP estimations are going to be bigger than
or sufficient to 0 and less than or equivalent to 19.6.

• The extent of the favors of the decision-maker for the rest of the estimations of the
entire fuzzy NLPP value has frequently been attained as below:

• Here x describes the significance of the entire NLPP, and also the perception of decision-
makers for µmin(X), where

µmin (X ) =


x+9.8

9.8 for − 9.8 ≤ x ≤ 0
1 for 0 ≤ x ≤ 19.6

x−29.4
9.8 for 19.6 ≤ x ≤ 29.4
0, otherwise



Mathematics 2022, 10, 1743 18 of 20

Mathematics 2022, 10, x FOR PEER REVIEW 19 of 21 
 

 

 

Figure 3. Pictorial representation of fuzzy optimum solution μZ(x). 

7. Conclusions 

Finally, an effort has been made to create a model that solves the problem of NLP in 

a fuzzy environment. The fuzzy version of the problem has been addressed using the 

necessary and sufficient conditions of Lagrangian multipliers in terms of fuzziness with 

the aid of a numerical illustration. This approach clarifies by solving two numerical il-

lustrations; one is using MFs, and the other, the approach of robust rankings. MFs pro-

vide a significant role in the creation of a model in a fuzzy context. Most of the research 

techniques have been discussed in establishing only the MFs for the fuzzy objectives or 

constraints. However, this approach solved the mutually contradictory complexity of the 

objectives as well as constraints using MFs. This model offers an efficient approach to 

dealing with the problems of NLP. Therefore, the optimal solution has been signified 

through fuzziness within the result and discussion. Additionally, the solution is ex-

plained by the manner of TFMs which have models of performance evaluation with dif-

ferent sets of inputs. This shows that the efficiency level of the model is of high impact. 

The code to solve the model is implemented in LINGO, and comes with a collection of 

built-in solvers for various problems. Furthermore, the comparison analysis could be a 

newly-designed effort to solve NLPs under fuzziness. The model focuses on addressing 

the decision-makers uncertainties and subjective experiences, and can help to solve deci-

sion-making issues. The model’s future scope suggests that the model be used in other 

types of NLPPs or suitable nonlinear optimization models in upcoming models, prefera-

bly optimization models, under numerous fuzzy situations. 

Author Contributions: Formal analysis, P.K.; Methodology, P.K.; Supervision, A.D.; Writ-

ing—original draft, P.K. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Figure 3. Pictorial representation of fuzzy optimum solution µZ(x).

7. Conclusions

Finally, an effort has been made to create a model that solves the problem of NLP
in a fuzzy environment. The fuzzy version of the problem has been addressed using
the necessary and sufficient conditions of Lagrangian multipliers in terms of fuzziness
with the aid of a numerical illustration. This approach clarifies by solving two numerical
illustrations; one is using MFs, and the other, the approach of robust rankings. MFs
provide a significant role in the creation of a model in a fuzzy context. Most of the research
techniques have been discussed in establishing only the MFs for the fuzzy objectives or
constraints. However, this approach solved the mutually contradictory complexity of
the objectives as well as constraints using MFs. This model offers an efficient approach
to dealing with the problems of NLP. Therefore, the optimal solution has been signified
through fuzziness within the result and discussion. Additionally, the solution is explained
by the manner of TFMs which have models of performance evaluation with different sets
of inputs. This shows that the efficiency level of the model is of high impact. The code to
solve the model is implemented in LINGO, and comes with a collection of built-in solvers
for various problems. Furthermore, the comparison analysis could be a newly-designed
effort to solve NLPs under fuzziness. The model focuses on addressing the decision-makers
uncertainties and subjective experiences, and can help to solve decision-making issues.
The model’s future scope suggests that the model be used in other types of NLPPs or
suitable nonlinear optimization models in upcoming models, preferably optimization
models, under numerous fuzzy situations.
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