
����������
�������

Citation: Ai, S.; Song, J.; Cai, G.

Sequence-to-Sequence Remaining

Useful Life Prediction of the Highly

Maneuverable Unmanned Aerial

Vehicle: A Multilevel Fusion

Transformer Network Solution.

Mathematics 2022, 10, 1733. https://

doi.org/10.3390/math10101733

Academic Editors: Daniel-Ioan

Curiac and Alfonso Niño

Received: 31 March 2022

Accepted: 17 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Sequence-to-Sequence Remaining Useful Life Prediction of the
Highly Maneuverable Unmanned Aerial Vehicle: A Multilevel
Fusion Transformer Network Solution
Shaojie Ai 1,2 , Jia Song 1,2,* and Guobiao Cai 1,3

1 School of Astronautics, Beihang University, Beijing 100191, China; aishaojie@buaa.edu.cn (S.A.);
cgb@buaa.edu.cn (G.C.)

2 Aerospace Crafts Technology Institute, Beihang University, Beijing 100191, China
3 Key Laboratory of Spacecraft Design Optimization and Dynamic Simulation Technologies of Ministry of

Education, Beihang University, Beijing 100191, China
* Correspondence: songjia@buaa.edu.cn

Abstract: The remaining useful life (RUL) of the unmanned aerial vehicle (UAV) is primarily deter-
mined by the discharge state of the lithium-polymer battery and the expected flight maneuver. It
needs to be accurately predicted to measure the UAV’s capacity to perform future missions. However,
the existing works usually provide a one-step prediction based on a single feature, which cannot
meet the reliability requirements. This paper provides a multilevel fusion transformer-network-based
sequence-to-sequence model to predict the RUL of the highly maneuverable UAV. The end-to-end
method is improved by introducing the external factor attention and multi-scale feature mining
mechanism. Simulation experiments are conducted based on a high-fidelity quad-rotor UAV electric
propulsion model. The proposed method can rapidly predict more precisely than the state-of-the-art.
It can predict the future RUL sequence by four-times the observation length (32 s) with a precision of
83% within 60 ms.

Keywords: remaining useful life; sequence-to-sequence prognostics; transformer network; unmanned
aerial vehicle; lithium-polymer battery

MSC: 68T40

1. Introduction
The quad-rotor UAV (QUAV) has vertical take-off and landing capability, air hovering

capability, payload-carrying capability, and autonomous or remote control capability [1].
The distinctive advantages above make it widely used in agriculture, transportation,
and other civilian domains. At the same time, it can casually switch several flight modes at
low altitude, in a narrow, dark, or rough environment. Thus, it has the potential to replace
human beings to accomplish dangerous tasks. As the environment changes, the drone
system is subject to complex disturbances, physical limitations, and flight constraints [2].
The highly maneuverable QUAV must overcome these difficulties to ensure the ability
to respond rapidly in various working conditions [3]. To best utilize QUAV’s mission
capability, the remaining useful life (RUL) has become a necessary measurement standard
for mission planning and assessment of residual flight capability. Additionally, to account
for endurance and low mass, lithium-polymer (Li-PO) batteries with a high energy density
are generally used to power the drone. Hence, the RUL prediction based on the Li-PO
battery has attracted extensive worldwide attention and becomes a research hotspot in the
field of UAV fault prognosis and health management (PHM) [4].

The RUL of the Li-PO battery cannot be directly observed and measured. It must be
calculated from correlated measured elements [5], resulting in considerable uncertainty in
its estimation and prediction. Moreover, the flight plan is easy to make overly conservative,
which is not conducive to the use of the highly maneuverable QUAV’s mission capability.
The existing RUL prediction technology is mainly divided into the model-based method
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and data-driven method. The model-based method serves as the abstraction for making
probabilistic statements about questions of interest, i.e., Bayesian-based methods [6–8].
While the prior information can be fully used, it relies heavily on the prediction model based
on the degradation mechanism of the system. Researchers have made improvements in
modeling the probability distribution of the battery discharge process through the solvable
mathematical model [9]. However, little attention has been paid to the influence of the
strong coupling and high nonlinearity, which are significant characteristics of the UAV,
on modeling. In particular, the model mismatch in the frequent maneuvers will further
increase the uncertainty and lead to application difficulties. Contrary to the model-based
method, the data-driven method makes it possible to construct a model-free prediction
network by mining the features from the data flow, thus with obvious advantages [10].
Both classical machine learning and deep learning methods are included in the data-
driven method [11]. The classical machine learning method trains classifiers with the
best performance through advanced data-processing technology and powerful algorithm
technology [12]. In order to guarantee the precision of the algorithm, feature extraction
and pattern recognition are performed successively and separately. The kernel principal
component analysis and the hybrid neural network were combined by Miao et al. for
predicting the aircraft engine RUL [13]. Sarkar et al. [14] carried out multicollinearity
analysis screening before the sensor feature enters the fully connected neural network.
However, the sensitivity of the extracted feature is subject to the expert experience and
expertise. The extraction process is often cumbersome and time-consuming due to the high-
precision demands. Therefore it is not conducive to real-time tasks, i.e., online prediction.
On the contrary, the deep learning method independently explores the data pattern through
the neural networks to complete the learning of classification and prediction tasks, with an
end-to-end data fitting capacity.

In the field of prediction, the top deep learning baseline methods are primarily: the
long short-term memory network (LSTM-based) [15,16], the temporal convolutional net-
work (TCN-based), and the transformer network (TF-based). The LSTM-based method
takes the recurrent neural network as the basic framework and introduces the hidden state
storage mechanism to learn the sequential representation of historical data. Zhao et al. [17]
designed the bidirectional gated recurrent unit network to weight the different local features
to predict the current state of the machine. Liang et al. [18] proposed a multilevel network
based on the LSTM to predict the future readings of geo-sensors, whereas the sequential
processing of the observations leads to the inadequate representation of the early temporal
features. The TCN-based method achieves the parallel calculation using the convolutional
network architecture and can use all historical information [19]. Song et al. [20] established
a TCN-based structure with a feature-weighted optimization, achieving the weight of
multi-sensor data at different times to a certain extent during the RUL prediction process.
However, these complex weighting operations lead to omissions, such as the correlation
among sensors. Furthermore, neither of the above two methods can perform the sequence-
to-sequence prediction, as they require the input and output to have the same duration.
The transformer network (TF), as a breakthrough in deep learning, has been embraced in a
variety of areas such as natural language processing [21], computer vision [22], trajectory
forecasting [23], etc. Research has shown that TF is more effective in the aforementioned
areas where traditional deep learning methods are usually used. TF processes time sequen-
tial data in parallel through positional encoding and the self-attention mechanism, which
develops the feature-extraction ability and may process some missing observation data.
It should be noted that the joint structure of the encoder and decoder endows it with the
ability of sequence-to-sequence prediction. The prediction model proposed by Mo et al.
lacks a decoder, so it only has a nonlinear regression function [24].

The deep learning method has also made many achievements in the QUAV RUL
prediction. The application of the Bayesian neural network was explored in [25], but its
complete dependency on the voltage makes the precision low. The driving capacity of the
battery is power load dependent, and the RUL is related to the discharge pattern, payload,
and flight mode. More features may better reflect RUL changes, but may also bring
redundancy and burden. One of the problems with the deep learning model design is how
to better integrate multi-source features [14]. When the QUAV changes maneuver quickly
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and significantly, the RUL also changes frequently, emphasizing higher requirements for
the speed and precision of the prediction algorithm. Meanwhile, the ground operator
or the automatic control program must perform dynamic mission planning according
to the RUL for a subsequent period. In addition, the predictable external factors that
have a significant impact on the future RUL, such as payload mass, should also be used
as a basis for prediction. Based on the above requirements, the improvements of the
RUL prediction algorithm required by the highly maneuverable QUAV are three-fold:
(1) enhance feature expression based on multi-source sensor data flow; (2) realize real-
time sequence-to-sequence prediction; (3) embed the feature with future time scale into
the model.

To accomplish the above improvements, this paper provides a novel TF-based ap-
proach to predict the RUL of the highly maneuverable QUAV in real-time. The fundamental
transformation of step-by-step sequential to attention-oriented parallel processing is thus
complete. The TF encoder–decoder structure is used to predict the RUL sequence in the
subsequent period. The feature layer fusion of the multi-sensor data reduces the depen-
dence to a single feature and greatly improves the prediction precision and processing
speed under various flight maneuvers. On the basis of the vanilla TF, the multi-scale
feature mining is added to realize the distributed semantic expression of multi-source
fusion with elaborate temporal characteristics. Furthermore, the external factor attention
mechanism is introduced to embed external knowledge of abrupt change factors for a TF
network. Consequently, the feasibility evaluation of the scheduled flight plan is provided,
and the construction of the end-to-end multilevel fusion TF network model is complete.
In addition, compared to the studies based on the battery discharge model, this paper
considers the influence of input saturation when the highly maneuverable QUAV is flying
in the boundary state [26].

To sum up, the main contributions of this paper can be summarized as follows:
1. A multi-scale feature mining process is designed for multi-sensor streaming data

fusion based on the TF encoder, realizing a more effective distributed semantic expres-
sion of sensitive features.

2. An external-factor-embedding layer is constructed based on the attention mechanism,
unifying the processing of features with different spatio-temporal scales.

3. An end-to-end RUL prediction method based on TF is proposed, with an accurate
estimation of the RUL future sequence in real-time.
The overall organization of the paper is as follows. After a brief introduction, an

overview of the proposed real-time QUAV RUL prediction method is given in Section 2.
The modeling of the QUAV autopilot system, together with the simulation settings are
addressed in Section 3. Section 4 details the complete TF-based RUL sequence-to-sequence
prediction approach and its application. Then, in Section 5, simulation experiments with
three different prediction durations are performed and analyzed. Finally, conclusions and
future developments are reached in Section 6.

2. Overview of the Proposed QUAV RUL Prognostic Methodology
For the highly maneuverable QUAV, the RUL represents whether it can perform

the specified maneuver missions and is determined by the cut-off voltage, as well as the
maximum input throttle. The discharge voltage and throttle are affected by the flight mode
(velocity), flight load, and battery condition. Unlike the full-cycle RUL of long-term and
slowly degraded engines and bearings, the single-flight RUL of the highly maneuverable
QUAV is no longer only related to the historical state of the aircraft, but also related to
future mission maneuvers. In the field of PHM, prognostic methods are divided into one-
step and sequence-to-sequence approaches. The former is to predict the current RUL value,
whereas the latter is to predict the RUL value for the future time period. The current RUL
will be useless if the highly maneuverable QUAV is ordered to perform a flight maneuver
beyond its capability after the next sampling period. This is because the aircraft may
crash immediately due to an untimely flight plan adjustment. Consequently, sequence-to-
sequence prediction is the only way to solve the above issues.
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In this paper, the entire RUL prediction network for the highly maneuverable QUAV
is established through two phases: offline training and online testing, as shown in Figure 1.
The aim of the offline training phase is to build a multilevel fusion TF model that can
deeply learn the battery discharge mechanism in the standard flight process. During the
actual flight, mission maneuvers are typically complex, changeable, and unknown. To meet
the massive data requirements of the deep learning algorithm, previous work has made
efforts in either the predefined programmed maneuver or the random remote control
maneuver [27]. However, the completeness still cannot be guaranteed, and much experi-
mental cost is involved. In order to balance demand and cost, simulation training data are
obtained under four standard conditions. Next, based on the simulation stop time, the RUL
is calculated adaptively as the prediction label by using the linear degradation assignment
method. Then, the historical dataset is generated by the sliding window interception,
z-score normalization, and training–testing set split. Finally, the historical data are input
into a deep learning framework to complete the offline training of the prognostic network.

Flight mode setting

Hovering

Horizonal flight

Climb & decent

Simulation 

model

RUL label 

construction

Data 

preprocessing
Historical data

Multilevel fusion TF 

training

Unseen multi-
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Figure 1. A graphic overview of the two-phase prognostic methodology.

In the online testing phase, unseen multi-sensor data are directly input into the trained
prognostic model only after normalization. At the same time, the scheduled flight plan
provides external factor data with the future time scale. In particular, after initialization,
the RUL sequence is input into the decoder. The pre-trained network performs a one-step
RUL prediction gradually and iteratively updates the decoder input within the expected
prediction duration until the prediction is complete. By now, the prediction of the RUL
sequence is complete.

It should be noted that the proposed model is run on the ground station mobile
computer both for offline training and online testing. Offline data are read through the USB
interface and stored on the SD card in the airborne computer. Online data are transmitted
in real-time via the digital radio and Bluetooth.

3. QUAV Autopilot System Modeling
The efficiency of the multi-sensor signal in the prediction of UAV flight time was

verified by Sarkar et al. [14]. Additionally, not only the influence of the cutoff voltage,
but also that of the input saturation on the RUL of the QUAV are considered in this
paper. In order to obtain the aforementioned flight data in support of the subsequent
training process, a high-fidelity QUAV simulation model is required. Both the predefined
programmed control and random remote control can be regarded as reference control
inputs, so that the QUAV autopilot system simulation model is established without losing
generality. As illustrated in Figure 2, the simulation model is composed of three parts:
propulsion model, force and moment model, and flight control model. The modeling
process of each model is detailed accordingly in a subsection below.



Mathematics 2022, 10, 1733 5 of 23

U PWMi

eR mR

mL

AEeU mUeI mI

M

T
Force & moment model

Kinematic 

model

Wind 

disturbance 

model

Ground 

reaction 

model

Attitude solution 

(Gyroscope; Accelerometer; Magnetometer)

Velocity & position estimation 

(Barometer; GPS)

Sensor Model

Measurement error

Outer loop 

controller Reference

, , , , , ,x y zh lat lon V V V   

 , , , ,p q r 

 , ,  
Inner loop 

controller

Propulsion model

Dynamic model

Battery ESC Motor Propeller

Input 

Saturation

intR

i

Energy estimation 

(Galvanometer)

Figure 2. Structure of the simulation model for the QUAV autopilot system.

3.1. The Propulsion Model
According to [5,28], the propulsion system is modeled. The state of charge (SOC) of

the Li-Po battery is strongly related to battery voltage U, discharge current i, and power
consumption P. The battery state space model is used to accurately estimate the SOC and is
established as follows: {

x(k + 1) = Φx(k) + Γu(k) + w(k)
y(k) = Hx(k) + v(k)

, (1)

where w = [ω1, ω2, ω3]
T and v are the system noise and measurement noise, respectively.

x = [Rint, SOC, E]T is the state vector; u = [1/E], y = [U] is the output vector; Φ = I3,
Γ = [0,−P, 0]T , H = [βi(Rint), βi(SOC) + βUoc(SOC), 0]; Rint is the internal resistance;
E represents the total energy; Uoc is the open circuit voltage. Suppose that a and b are
independent variables and dependent variables, respectively, and βa(b) is the implicit
expression of the functional relationships between a and b, which are defined by:

Uoc = Ud + λ1 · exp (γ1 · SOC)− λ2 · exp (γ2 · SOC)

i = Uoc−
√

U2
oc−4RintP

2Rint

, (2)

where Ud, λ1, λ2, γ1, and γ2 are drone-specific parameters.
The power consumption of a QUAV flying with the standard maneuvers is mainly

determined by the flight mode and flight velocity. Hence, the QUAV power consumption
model for hovering, climbing, descending, and horizontal flight is established as follows:

Ph = W3/2

ηh ·
√

2ρAt

Pc =
W

ηc(Vc)

(
Vc
2 +

√
V2

c
4 + W

2ρAt

)
Pd = W

ηd(Vd)

(
−Vd

2 +

√
V2

d
4 + W

2ρAt

)
Phor =

W
ηhor(Vhor)

(Vhor · sin(αv(Vhor)) + vhor)

, (3)
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where W is the total weight of the QUAV and At is the total blade area. V and η are
the velocities and efficiency factors under various flight modes, respectively. ρ is the air
density; vhor is the induced velocity during the horizontal flight; αv is the angle of attack.
The variation of η, vhor, αv with velocity can be obtained by linear fitting of the actual
flight data.

It should be noted that the battery voltage is estimated with the particle filter algorithm
based on (1).

After the battery model is established, the dynamic model of the actuator is carried out
based on the equivalent circuit. For the QUAV, a battery powers four sets of the “electric
speed controller–motor–propeller” structure. As indicated in Figure 3, the aforementioned
structures have a cross-placed pattern. For simplicity, a set of dynamic structure is presented
below. The electronic speed controller (ESC) converts the throttle signal, affected by the
control input and battery voltage, into a pulse width modulation (PWM) signal. The motor
is then driven to rotate and pushes the propeller further for the thrust force T.

The ESC working process can be described by the following formula:
σ = (Um + ImRe)/Ue

Ie = σIm

Ue = U − iRint

, (4)

where Re is the resistance of the ESC. σ is the throttle input. Ue and Ie are the input
voltage and input current, respectively. Um and Im represent the equivalent voltage and the
equivalent current, respectively.

Figure 3. A real drone referenced in the paper.

Equation (4) is followed by the motor model:

Um = fUm(Θm, M, N)
Im = f Im(Θm, M, N)

, (5)

where M is the load torque and N is the motor speed. Θm , {KV , Im0, Rm} is the motor-
specific parameter; KV represents the KV value, Im0 is the no-load current; Rm is the
resistance of the motor.

Then, the aerodynamic model of the propeller installed on the motor is established
as follows:

T = CTρ
(

N
60

)
D4

p

M = CMρ
(

N
60

)
D5

p
, (6)
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where N is the propeller speed, Ct is the propeller thrust coefficient, Cm is the propeller
torque coefficient, and Dp is the blade diameter.

3.2. The Force and Moment Model
According to [29], environmental influence has to be taken into account in modeling.

In this paper, a constant wind pattern is developed to simulate wind field interference:

Vw ∝ T. (7)

Taking into account the ground reaction force Fc, the model of the total force acting on
the QUAV is given as follows:

F = Fa + Fg + Fc + T
Fa = fFa(Vw, V)

Fc = fFc(henv, h)
, (8)

where Fa and Fg are the aerodynamic force and the force of gravity, respectively. henv
represents the ground height.

3.3. Flight Control Model
The QUAV flight controller has three main functions: altitude control, velocity control,

and attitude control. Before building the control model, it is necessary to describe the state
of the drone with the kinematic model. The state measurement is then simulated by the
sensor model to perform the closed-loop feedback. The dynamic model is represented by a
set of six-degree-of-freedom 13-state high-fidelity nonlinear equations:

V̇x = T
m (sin θ cos ψ cos φ + sin ψ sin φ)− DxV2

x
m

V̇y = T
m (sin θ cos ψ cos φ− cos ψ sin φ)− DyV2

y
m

V̇z =
T
m cos θ cos φ− g− DzV2

z
m

φ̈ =
Jy−Jz

Jx
θ̇ψ̇ + jr θ̇

Jx
(−N1 + N2 − N3 + N4) +

U2
Jx

θ̈ = Jz−Jx
Jy

φ̇ψ̇ + jr φ̇
Jy
(−N1 + N2 − N3 + N4) +

U3
Jy

ψ̈ =
Jx−Jy

Jz
φ̇θ̇ + U4

Jz

, (9)

where Vx, Vy, and Vz represent the three-axis velocity in the Earth coordinate system, Dx,
Dy, and Dz are the air-drag coefficients in the three-axis direction, m is the total mass,
g indicates the gravitational acceleration, J = diag(Jx, Jy, Jz) is the inertia tensor, and jr is
the propeller moment of inertia. U2, U3, and U4 denote the roll, pitch, and yaw moment of
the body, respectively.

The sensor observation is not only the basis of the autopilot control, but also provides
data support for the subsequent design of the prognostic algorithm. In this paper, the bat-
tery voltage and discharge current are obtained by a power module to estimate the energy
condition and are integrated for the SOC. The flight velocity and position are obtained
from a GPS and a barometer, respectively. The flight attitude is derived from a gyroscope,
accelerometer, and magnetometer. For a sensor, the measured signal can be obtained by
adding a particular Gaussian noise interference term:

z(t) = yd(t) + g(t), (10)

where yd is the system output, g = kg · yd represents the measurement error, and kg is the
noise gain.

As the simple and effective PID control method is adopted, the control parameters are
tuned from the inner loop to the outer loop in the design process.
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3.4. Simulation Setup and Output
The autopilot model established by (1) shows that the battery voltage, discharge

current, SOC, load weight, and flight velocity are strongly related to the RUL. Moreover,
the throttle has a nonlinear relationship with the RUL due to the influence of input satura-
tion. Factor selection in Ref. [14] needs to rely on the manual correlation analysis, while the
deep learning methods achieve an end-to-end classification that can significantly reduce
labor and time costs. The effect of predicting the RUL sequence for the highly maneuver-
able QUAV is affected by the following two complex factors: (1) multi-sensor historical
observation signals; (2) external factors for a future duration. The former includes the
battery voltage, the discharge current, the throttle, and the SOC. Among them, the SOC is
obtained indirectly by integrating the discharge current value, and the throttle is calculated
as the efficiency ratio of the battery σ = U/Ub, where Ub is the nominal voltage. The latter
includes the total weight and the flight velocity, which are taken from the reference control
signal to simulate the scheduled flight plan for the actual flight.

The constructed high-fidelity simulation model is run to fetch the data above. Assum-
ing that there is a power loss at the beginning of each flight, the initial SOC is reduced
slightly at random as each simulation starts.

Definition 1. The flight purpose of the highly maneuverable QUAV studied in this paper is to
execute the mission maneuvers. The maximum RUL is the time from the start of the flight until the
drone cannot execute a specific instruction and is unable to maintain the hover.

Full-cycle flight data are the output sequence obtained between the start and the
automatic end of a simulation. It is considered that the RUL is reduced to 0 at the end of
the simulation. The simulation stops and the stop time is recorded as the end of life when
one of the following conditions is met: (1) the battery voltage drops to the cut-off voltage;
(2) the hover throttle exceeds the maximum throttle constrained by the minimum attitude
control capability.

4. The Proposed Method
Figure 4 provides a framework for the approach proposed in this paper. Based on the

vanilla TF offered by Google [30], we made necessary improvements to the encoder and
decoder, respectively, for the needs of the highly maneuverable QUAV. Specifically, our
multilevel fusion TF is mainly composed of the following two major parts: (1) multi-scale
multi-sensor fusion attention; (2) external factors’ influence.

Figure 4. Model illustration of the proposed multilevel fusion transformer network.
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4.1. Data Preprocessing and Notation Statement
Once the simulation data are obtained, the RUL target label must be constructed.

The RUL curve of the QUAV varies with the change of the simulation condition.

Remark 1. The initial value of the RUL sequence (first hitting time (FHT)) is the simulation time,
which is the longest time the drone can perform the current maneuver.

The influence of system degradation on a one-time flight is very slight and can be
ignored. The RUL data are generated adaptively using the linear descent assignment
method as the prediction label:

RUL(t) = min({t|σhover(t) ≥ σmax} ∪ {t|U(t) ≤ Uthr})− t, (11)

where σhover is the hovering throttle, σmax is the maximum throttle limit (input saturation),
and Uthr is the cut-off voltage.

For the i-th flight, the observations Γobs =
{

x(i)t

}0

t=−(Tobs−1)
, x(i)t =

(
xi,1

t , xi,2
t , . . . , x

i,N f
t

)
∈ RN f composed of multi-sensor signals are constructed by intercepting the acquired data

at interval Tsld. The predictions Γpred =
{

y(i)
t

}Tpred

t=1
, y(i)

t =
(

∆RULi
t, InitRULi

t

)
∈ R2 are

compose of the variation of the RUL and the initial value when prediction starts. The ex-

ternal inputs Γext =
{

ex(i)t

}Tpred

t=1
, ex(i)t =

(
exi,1

t , exi,2
t , . . . , exi,Ne

t

)
∈ RNe are compose of the

external factor signals. The size of each dataset is
⌊

RUL(0)/
(

Tobs + Tpred + Tsld

)⌋
+ 1.

After the z-score standardization, data are divided into the training set and the testing set
according to a certain proportion. It should be noted that the observations, predictions, and
external inputs form the historical dataset.

4.2. Data Embedding
The purpose of data embedding is twofold: (1) to realize the multi-sensor data fusion;

(2) to add temporal information to parallel processing. The former is realized by linear pro-
jection, and the latter is realized by “positional encoding”, both of which are indispensable.

The original input is mapped to the high-dimensional feature space by linear projection
flinear → RD to realize the distributed expression, allowing the multilevel fusion TF to
process the input features:

x̃(i,t)obs = flinear

(
x(i)t

)
= x(i)Tt Wx, (12)

where Wx is a coefficient matrix. The high-dimensional space projection operation not only
refines the spatial features of the input data, but also performs the feature layer fusion of
sensor signals and provides an input interface for TF. Although advanced signal processing
technology can map high-dimensional features, it has to perform complex time–frequency
domain feature calculation and sensitive feature selection manually. In contrast, linear
projection can complete both tasks at the same time by simply training the network, which
is of great significance.

Correspondingly, the output of the i-th flight at time t is a vector with D dimensions.
Outputs will be projected back into the prediction space through the inverse transformation
of (12), so as to realize the embedding of the predictions.

TF realizes the feature layer fusion of multi-sensor data by taking into account the
correlation of data in different spatial features at different times based on the attention
mechanism. TF can embed data both without and with “position encoding”. However,
the input is considered to be a set of vectors without sequential order in the attention layers.
Therefore, the attention layers are insensitive to temporal information. To address this
issue, “positional encoding” is added to ensure the temporal uniqueness of data. This
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operation is applied to encode each historical and future time, and a corresponding time
stamp pt =

{
pt,d
}D

d=1 is added for each input to be embedded:

ξ
(i,t)
obs = pt + x̃(i,t)obs , (13)

where the time stamp is defined as

pt,2k = sin
(

t · 10000−2k/D
)

pt,2k−1 = cos
(

t · 10000−(2k−1)/D
) , k = 1, 2, . . . , d/2

to keep the value unique in 10,000 time steps.

4.3. The Multilevel Fusion Transformer Network Model
To solve the problems where the vanilla TF is not very sensitive to temporal features

and information in the future time period is ignored, a TF-based method is proposed in this
paper. It is improved by the multilevel fusion operation, which is achieved by extracting
multi-scale temporal features and merging features with different durations.

4.3.1. The Multi-Scale Spatiotemporal Feature Mining
When the highly maneuverable QUAV carries a load with the weight limit or flies at an

extreme speed, it tends to lose control during takeoff. These are due to the input saturation
or the reduction of the driving voltage to the cut-off voltage level, resulting in an accident.
In order to shorten the blank period of the prediction at the beginning, TF is expected to
use as few observations as possible to achieve the expected effect. In this case, the temporal
information of the observation is limited. Inspired by the idea of multi-grained scanning
in deep forest [31], a multi-scale feature mining mechanism is developed in this paper.
Combined with the TF encoder, the temporal information in the embedded multi-sensor
data is deeply mined to findthe spatiotemporal channel.

Once the multi-sensor input Ξobs =
{

ξ
(i)
obs

}0

t=−(Tobs−1)
∈ RT×D is obtained according

to Section 4.1, the multilevel fusion TF performs the 1D convolution on the input tensor
along the spatiotemporal dimension using the mining operator M(·; Θ). Assigning the
kernel size k and the padding size p, Θ := (k, p) determines the mining scale. For the
specific s scales, the mining operator processes the input tensor on each scale to obtain
the tensor with the spatiotemporal dimension as T̃ = T + 2p− k + 1. D mining operators
are placed simultaneously in each scale to keep the dimension of the multi-sensor feature.
After the spatiotemporal features are multi-scale refined, the elite features are selected as
the processing results:

Ξ̃obs = max
(
{M(Ξ; Θk)}2s−1

k=1

)
, s = 1, 2, . . . (14)

It should be noted that the above formula restricts the corresponding relation between
k and p: p ∈

{
p|T̃ = T, k

}
.

4.3.2. Construction of the Transformer Network Encoder–Decoder Model
The integrated TF encoder and decoder are composed of multiple basic layers with

the attention mechanism. Each basic layer has three components: multi-head self-attention
module, feed-forward module, and two residual connection modules.

The multi-head self-attention module is realized by parallel calculation of h self-
attention modules. For j self-attention modules, the trainable hyperparameters: query
tensor Qj = ξ̃WQ

j , key tensor Kj = ξ̃WK
j , and value tensor Vj = ξ̃WV

j are determined by

the query matrix WQ
j , key point matrix WK

j , and value matrix WV
j , respectively. Together,

they form the attention-based weight calculation mechanism:

Attention(Qj, Kj, Vj) = so f tmax

(
QjKT

j√
dk

)
Vj, (15)



Mathematics 2022, 10, 1733 11 of 23

where dk = D/h is the dimension of the matrix made up of hyperparameters.
After each self-attention module is calculated, the parallel attention calculation is

applied to realize the integration of information from different representation subspaces:

MultiHead(Q, K, V) = Concat
({

Attention(Qj, Kj, Vj)
}h

j=1

)
WA, (16)

where WA is the matrix of attention and Concat(·) represents the tensor concatenation.
The feed-forward module is composed of a linear transformation and the ReLU

activation function, which acts on each observation time step with the same weight:

FFN(ξ̃
(i,t)
obs ) = ReLU

(
ξ̃
(i,t)T
obs Wξ̃obs ,1 + Bξ̃obs ,1

)T
Wξ̃obs ,2 + Bξ̃obs ,2, (17)

where Wξ̃obs
and Bξ̃obs

are coefficient matrices.

4.3.3. External Factor Fusion
According to the state space model (1), the power consumption model (3), and the

simulation stop conditions, the RUL is affected by the load weight and flight velocity. These
external factors are abrupt signals, and their impact is unpredictable without symptoms.
This cannot match the prognostic demand for the highly maneuverable future flight capa-
bility. To make TF consider the strong correlation between the RUL sequences and external
factors, the external factor fusion is realized by the external decoder attention layer added
to the decoder. The purpose of the encoder in Section 4.3.2 is to create a spatiotemporal
sequence representation for embedded multi-sensor signals, so as to grant the TF network
memory. Simultaneously, its key tensor Kenc and value tensor Venc will be shared with the
decoder. External factors can be regarded as similar to multi-sensor observation features,
but located in a different temporal space. Predictability makes them work directly over the
prediction duration. Therefore, the operation in Section 4.2 is applied to the input external
factor tensors Γext for calculating Ξext = Embed(Γext) ∈ RTpred×D. In order to prevent the
predictable information from changing the attention to historical observations, features are
coupled and updated in the decoder embedding stage rather than in the encoder–decoder
attention stage:

Ξ̃pred = MultiHead(Ξext, Ξext, Ξpred). (18)

Through the external factor fusion, the learned potential representations are transmitted
to the TF, which reinforces the importance of external factors and the their network attention.

4.4. Offline Training and Online Predicting
The proposed prognosis model built in offline training learns the nonlinear functions

of the RUL with the Li-Po battery discharge failure, external factors, and multi-sensor data.
In the training process, the Adam optimizer is used for back-propagating to minimize loss
and achieve nonlinear fitting. The loss function is defined as follows:

`(θ) = PairwiseDistance(ŷi
pred, yi

pred), (19)

where θ represents the trainable hyperparameter. ŷi
pred ∈ R2 is the prediction output, and

PairwiseDistance(X, Y) represents the Euclidean distance at the pixel level. The trained
model will be directly applied to perform the online prediction, as detailed in Algorithm 1.
Precise prediction of the RUL can be accomplished in various complex flight processes of
the highly maneuverable QUAV.
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Algorithm 1 The online predicting process based on the multilevel fusion transformer net-
work.
Input: Historical dataset, observation time Tobs, prediction time Tpred, multi-sensor obser-

vations {xt}0
t=−(Tobs−1), external factors {ext}

Tpred
t=1 .

Output: RUL prediction {RULt}
Tpred
t=1

Randomly initialize the multilevel fusion TF with hyperparameter θ.
Train the prognostic network based on (19).
Initialization: the decoder input {yt}1

t=0 = [0, 0].
1: for npred = 1 to Tpred do
2: for n = 1 to npred do
3: Initialize the decoder mask tensor Menc = ones(npred, npred) (composed of “0”

and “1”: “0” representing “mask” and vice versa);
4: Mask: mask out the elements in the decoder input who ranked after n in the

temporal dimension (Menc

(
n, (n + 1) : npred

)
:= 0);

5: end for
6: Predict: calculate predictions {ŷt}

npred
t=1 according to (15)–(18);

7: Update: concatenate to update the decoder input {yt}
npred
t=0 =

[
{yt}

npred
t=0 ; ŷnpred

]
8: end for
9: Calculate RUL according to {R̂ULt}

Tpred
t=1 =

{
∑

npred
t=1 yt(1)

}Tpred

npred=1
+ {yt(2)}

Tpred
t=1

5. Simulation and Result Analysis
At the beginning of this section, the implementation details are provided as follows

to obtain the simulation results: the PC is configured with a GeForce RTX 3060 GPU and
an Intel Core i7 CPU; the autopilot model is built within the Simulink environment of
MATLAB R2020b; the prediction algorithm is programmed based on PyTorch 1.10.

5.1. Performance Metrics
In order to make the performance of the RUL prediction algorithm more intuitive,

five metrics are employed in this paper. Among them, the mean absolute error (MAE),
the mean-squared error (MSE), the mean absolute percentage error (MAPE), and the
cumulative relative accuracy (CRA) are widely used, as in [32] and other works, while the
mean percentage error (MPE) is chosen according to the characteristics of the QUAV RUL
prediction [33]. These metrics are defined as follows:

MAE =
∑N

n=1|h(tn)|
N

MSE =
∑N

n=1(h(tn))
2

N

MAPE = 100%
N ∑N

n=1

∣∣∣∣∣ h(tn)

{RULt}
tn+Tpred−1
t=tn

∣∣∣∣∣
CRA = 1

N ∑N
n=1

(
1−

∣∣∣∣∣ h(tn)

{RULt}
tn+Tpred−1
t=tn

∣∣∣∣∣
)

MPE = 100%
N ∑N

n=1

(
h(tn)

{RULt}
tn+Tpred−1
t=tn

)
, (20)

where N is the total number of predictions within an entire flight, h(tn) = {R̂ULt}
tn+Tpred−1
t=tn

−{RULt}
tn+Tpred−1
t=tn

, and tn represents the start time of the n-th prediction.

In addition, the real-time performance of the prediction methods is constrained by the
following conditions: the algorithm processing time must be less than the sampling time.
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Therefore, this paper takes the algorithm processing time as the standard to measure the
real-time performance of the method and as one of the performance metrics.

5.2. Simulation Dataset Generation
Simulation parameters are fit through actual flight experiments with multiple flight

modes, variable flight velocities, and variable load masses. Based on the above, the autopilot
model mentioned in Section 2 is constructed. The real drone used in the experiment is
depicted in Figure 3, and its configurations are presented in Table 1. Except for the minimal
set of sensors incorporated into Pixhawk Series flight controllers, the real drone is equipped
with a GPS and a power module. The sensor specification is presented in Table 2. The
GPS and power module are connected to the Pixhawk 2.4.8 through serial ports for data
acquisition assurance. The PID controller is used to perform automatic control during
simulated flight. The flight control model parameters are listed in Table 3.

Table 1. Configurations and parameters of the real drone.

Item Symbol Value Units

Frame diagonal length D f 550 mm
Empty mass m0 1.357 kg
Gravitational acceleration g 9.8 N/kg

Propeller
(T-MOTOR T9545-B)

Blade diameter Dp 0.241 m

Total blade area At 0.183 m2

Propeller thrust coefficient Ct 1.016 × 10−5 kg ·m2

Propeller torque coefficient Cm 1.392 × 10−7 kg ·m2

Motor
(T-MOTOR Air Gear
350 KV920)

KV value Kv 920 rpm/V

No-load current Im0 0.5 A

Motor resistance Rm 132 mΩ

ESC
(T-MOTOR AIR 20A)

ESC resistance Re 8 mΩ

Battery
(5100mAh 4S Li-Po)

Nominal voltage Ub 12.6 V

Initial internal resistance Rint(0) 27 mΩ

Initial total energy E(0) 2.024× 105 J

Specific parameters [Ud, λ1, λ2, γ1, γ2] [11.731, 0.058, 2.524, 3.489, −7.932] NaN

Air density ρ 1.15 kg/m3

System noise w [3.46 × 105, 3.41 × 105, 13.28]T [Ω, NaN, J]T

Measurement noise v 0.33 V

Table 2. Sensor specification.

Part Package Size
(mm3)

Sampling Rate
(Hz)

Power
Consumption
(mW)

Weight (g) Accuracy Serial Interfaces
Supported

M8N 50 × 50 × 12.8 10 50 30 0.1 m/s USB, SPI, UART
MS5611 5 × 3 × 1 2000 3.3 × 10−3 0.10 1.5 mbar I2C, SPI
L3GD20 4 × 4 × 1 95 18.3 0.10 8.75 mdps I2C, SPI
MPU6000 4 × 4 × 0.9 8 13.2 0.14 2–3% I2C, SPI
PM02D 25 × 21 × 9 10 5 20 1% I2C
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Table 3. Flight control model parameters.

Item Symbol Value Units

Inertia tensor J

 0.020 0 0
0 0.020 0
0 0 0.036

 kg ·m2

Propeller moment of inertia jr 1.03× 10−4 kg ·m2

Sensor
noise
gain

GPS (M8N) kg,GPS 0.200

NaN

Barometer (MS5611) kg,baro 0.025

Gyroscope (L3GD20) kg,gyro 0.025

Accelerometer (MPU6000) kg,acc 0.030

Magnetometer (MPU6000) kg,mag 0.050

Power module (PM02D) kg,gal 0.054

The flight mode of the standard conditions is set according to the following rules: the
load mass of the drone is less than 0.5 kg; the flight space volume is 1000× 1000× 200 m3;
the horizontal flight velocity is {Vhor,x, Vhor,y} ∈ [−8, 8] m/s; the maximum descent velocity
is Vd,max = 2 m/s; the maximum climb velocity is Vc,max = 4.5 m/s; the maximum throttle
is 0.95; the cut-off voltage is 10.3 V. According to battery voltage variation characteristics
and control requirements, the simulation experiments with a sampling time of 1s provide
850 sets of flight data under four standard conditions under the influence of different
external factors mentioned above. For a certain simulation, the drone will immediately
perform a hover, climb, or descent, depending on the set flight mode, after taking off as
fast as possible. In horizontal flight conditions, the drone flies in a straight line to the
edge of space and hovers thereafter. As soon as it reaches the upper limit of the space
height under climb flight conditions, the drone will immediately descend. The flight mode
described above is visualized in Figure 5, which demonstrates that the offline training
dataset required in this paper is easy to obtain. Because there is no need for massive and
disordered experiments, the cost of labor, economy, and time are significantly reduced.
However, the small number of samples also puts forward higher requirements for the
feature extracting and learning ability of the deep learning model.

Figure 5. The QUAV trajectories of the flight mode (under the standard conditions) for generating
the historical data. The blue and yellow lines represent the hover and horizontal flight, respectively.
The red lines represent the climb flight, and the green lines represent that the QUAV climbs for a
while and then descends.

Previous studies generally adopted the battery voltage as a single feature and con-
sidered the RUL of the UAV to be 0 at the end of discharge (EOD). However, for the UAV
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flying in a high maneuver, this judgment condition is one-sided. Since there are usually
sudden and drastic maneuver changes, the drone is subjected to the current maximum
throttle that the battery can provide. Therefore, input saturation is taken as one of the
termination conditions for the drone’s useful life, for the drone cannot perform the flight
plan as scheduled in this case or is even out of control and crashes. As shown in Figure 6a,
the time when the RUL of the highly maneuverable UAV is 0 may be earlier than the time
of the EOD. Hence, it is not feasible to predict only based on the battery voltage, so the
multi-sensor feature is needed. The changes in the discharge current and throttle with time
are also depicted in Figure 6b,c, respectively, indicating that multi-sensor features have
different degrees of significant influence on the RUL. In addition, the nonlinear mapping re-
lationship between features and the RUL is very complex, which also makes the application
of the deep learning approach necessary.

(a) (b)

(c)

Figure 6. Multi-sensor signal in the historical flight data of the highly maneuverable QUAV. (a) Battery
voltage. (b) Discharge current. (c) Throttle.

As the simulation data indicate, the shortest operating time of the drone in extreme
conditions is about 49 s, and the longest time between takeoff and steady flight is ap-
proximately 30 s. Hence, based on the requirements of the margin and blank period,
the observation time of 32 s was selected. After the flight data are processed by the sliding
window with both a width and sliding distance of (32 + Tpred) s, the intercepted data will
form the historical dataset. The multi-sensor observations dimension is 32× 7; the external
factor input dimension is (32 + Tpred)× 4; the predictions’ dimension is (32 + Tpred)× 2.

The multilevel fusion TF parameters are defined as follows: the embedding size
D = 512; the multi-scale mining kernel has three scales k = 1, 2, 3; the corresponding
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padding size is p = 0, 0, 1. The encoder and decoder are composed of six basic layers,
and eight attention heads are included in each multi-head self-attention module. Dur-
ing model training, the batch size is 80, the maximum iteration is 30, and the ratio of
training to testing set size is 3:1.

By randomly selecting a sufficient number of test sets in the dataset, we externally
verified and analyzed the results of different prediction methods for different purposes.
The comparative results are shown in Table 4. The results show that the training and testing
loss of the multilevel fusion TF converges to a lower level. The proposed method has better
generalization ability.

Table 4. External validation result.

Method
One-Step Prediction

Sequence-to-Sequence Prediction

48 s 128 s

Train Loss 1 Test Loss 2 Train Loss 1 Test Loss 2 Train Loss 1 Test Loss 2

Multilevel Fusion TF 0.0398 14.9920 0.0553 24.6824 0.1034 47.3783
TF 0.0736 18.5021 0.0998 29.4287 0.1688 53.1905
Vanilla TF - - 0.1188 32.0245 - -
LSTM 0.1144 23.5549 - - - -

1 Pairwise distance. 2 Mean Euclidean distance (s2).

To prove that the trained prediction model can achieve the real-time, high-precision
RUL prediction for the highly maneuverable QUAV, a representative flight plan was
designed to evaluate the prediction performance. Subsequent sections will provide a
detailed analysis of the prediction results based on the plan shown in Figure 7.

Figure 7. The representative highly maneuverable flight plan. It should be noted that the QUAV
climbs and descends vertically, that is the horizontal displacement is depicted to show the motion
state more intuitively, but does not really exist.

Since the ground station mobile computer is resource constrained, the computational
complexity of data-driven methods should be considered. The computational complexity
of the proposed algorithm and the mainstream advanced machine learning algorithm are
calculated, respectively, and the comparative results are given as shown in Table 5. It
can be seen that the parallel processing mechanism of TF significantly reduces the time
complexity of each layer, and it is more suitable for processing sequence data. Although the
TF-based method has a slightly larger space complexity for parallel computing, it only
occupies 225.144 MB of memory under the above setting conditions, which fully meets the
storage requirements.
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Table 5. Per-layer computational complexity and minimum number of sequential operations for
different layer types. n = Tobs is the sequence length; d is the node dimension; k1 and k2 are kernel
sizes (k1 > k2); s is the random permutations (s� n).

Layer Type Computational Complexity Per Layer Sequential Operations
Time Complexity Space Complexity

Multilevel Fusion TF O((k1 + n) · n · d) O(n2) O(1)
Vanilla TF O((k2 + n) · n · d) O(n2) O(1)
LSTM O(n · d2) O(n) O(n)
GBT O(s · d2) O(s) O(n)

5.3. One-Step RUL Prediction Result
As discussed in Section 1, LSTM and other machine learning methods are unable to

reach sequence-to-sequence prediction on their own. Therefore, in order to prove the supe-
riority of the proposed method in the one-step prediction, the corresponding simulation
experiments are first performed. Among them, the TF model (without the external factor
fusion) parameters are the same as above; the LSTM consists of four hidden layers with
512 state nodes per layer. The one-step prediction results of the above methods are shown
in Figure 8a. In addition, as a representative of the machine learning method, gradient
boosted trees (GBTs) proved to have a good performance in predicting the RUL of the
QUAV. Hence, the results from [25] are cited for comparison. Detailed performance metrics
and visualizations are illustrated in Table 6 and Figure 8b, respectively.

Table 6. One-step RUL prediction performance.

Metric Multilevel Fusion TF TF LSTM GBT

MSE (s2) 3.6863 × 103 4.3887× 103 8.1377× 103 8.8324× 103

MAPE (%) 24.1185 28.3274 48.7357 52.2349
CRA 0.7588 0.7233 0.5126 0.4776

MAE (s) 75.2344 80.8965 102.1218 110.6437
Time (ms) 0.212 0.212 0.125 0.185

(a) (b)

Figure 8. The one-step prediction results. (a) Comparative results of RUL predictions. (b) The
5-dimensional radar chart for the performance comparison of prediction methods. The performance
depicted in the radar chart ranges from 0 to 1 (from low to high).
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It can be seen that the multilevel fusion TF sacrifices some rapidity, but greatly im-
proves the prognostic precision. This indicates that the proposed method has significant
advantages in learning the multi-sensor signal features. Figure 8 and Table 6 show that
both the LSTM and GBT accuracies are unsatisfactory, although their processing speed
slightly improved. However, the processing time of the proposed method in this paper
is still far less than the sampling time of 1 s, which will not cause data stack and time
delay accumulation. Therefore, the real-time requirement is fully met. Figure 8a shows
that LSTM has a poorer RUL prediction performance in the early stage of the flight with
frequent change maneuvers compared to that in the post-hover stage (after 960 s). This
is because it focuses only on the sequential features of time rather than spatiotemporal
features, so it is continually affected by the abrupt changing throttle signal throughout
the prediction process. The self-attention module allows the TF to change its attention to
different signals at different times and makes the end-to-end learning possible.

5.4. Sequence-to-Sequence RUL Prediction Result
The multi-scale feature mining and external factor fusion mechanisms designed in

this paper are for the improvement of the vanilla TF. To demonstrate their feasibility and
superiority, the RUL prediction experiment for the next 48s was carried out. The prediction
results of the above methods are presented in Figure 9a–c, and the detailed performance
metrics and visualization are provided in Table 7 and Figure 9d, respectively.

Table 7. Performance of the RUL prediction for the next 48 s.

Metric Multilevel Fusion TF TF Vanilla TF

MSE (s2) 6.3354× 103 2.8332 × 103 4.8163× 103

MPE (%) 1.3656 8.2388 7.6658
CRA 0.8678 0.8524 0.8371

MAE (s) 58.4723 61.3311 66.8219
Time (ms) 17.341 16.409 15.259

For the RUL, if the predicted value is greater than the real value, this will lead to
an overestimation of the QUAV remaining flight capability. That is, when the relative
errors are equal, we prefer the predicted value to be lower than the real one. Therefore,
the MPE is applied, and the smaller the value, the better. Table 7 shows that the TF error is
smaller than that of vanilla TF, indicating that the multi-scale mining mechanism achieves
a better distributed expression of the multi-sensor spatiotemporal feature. The MPE of
the multilevel fusion TF is greatly reduced compared with the others, indicating that the
attention of external factors modifies the degree of prognostic radicalization. By comparing
Figure 9a with Figure 9b, it can be found that TF cannot properly learn the trend of the RUL
when QUAV is fully loaded (high in power consumption). To explain the phenomenon,
the semi-cycle RUL curve is drawn. The curve value represents the RUL when the current
maneuver remains unchanged after the current time. The power consumption at the early
stage of flight is higher than at the later stage. If the maneuver is continued, the drone
very easily loses the mission execution ability due to the input saturation being reached.
Consequently, the semi-cycle RUL will be lower than the full-cycle RUL to some extent.
The above results in a relatively large prediction error of the network at the early stage of
flight. However, different from TF, the sequence prediction results of the proposed method
basically follow the objective truth that the life decreases with time under small maneuver
changes. In the meantime, this accounts for its relatively large MSE.
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(a) (b)

(c) (d)

Figure 9. Predictions for the next 48 s. (a) RUL predictions of the multilevel fusion transformer
network. (b) RUL predictions of the transformer network. (c) RUL predictions of the vanilla
transformer network. (d) The 5-dimensional radar chart for the performance comparison of the
aforementioned prediction methods. The performance depicted in the radar chart ranges from 0 to 1
(from low to high). The colored solid line represents the output value of the RUL prediction sequence
in the next 48 s. The point corresponding to the colored dotted line refers to the RUL prediction
start time. The network needs to obtain data from 32 s before the start time of the current time as an
input. As a result, the RUL is predicted every 10 s after the 32 s blank period to meet the maneuver
decision-making needs for the full cycle.

Due to the short prediction period, the variation of the RUL prediction sequence is
not obvious. Therefore, to further discuss the effect of external factor fusion on the RUL
prediction performance with a long prediction period, the prediction experiments for the
next 128 s were performed. The prediction results of multilevel fusion TF and its MPE with
various start times are demonstrated in Figure 10. Correspondingly, the results of TF are
presented in Figure 11.
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(a) (b)

Figure 10. Predictions of the multilevel fusion transformer network for the next 128 s. (a) RUL
predictions. (b) The MPE of RUL predictions with different start times. The colored solid line
represents the output value of the RUL prediction sequence in the next 128 s. The point corresponding
to the colored dotted line refers to the RUL prediction start time. The RUL is predicted every 10 s
after the 32 s blank period to meet the maneuver decision-making needs for the full cycle.

(a) (b)

Figure 11. Predictions of the transformer network for the next 128 s. (a) RUL predictions. (b) The
MPE of RUL predictions with different start time. The colored solid line represents the output value
of the RUL prediction sequence in the next 128s. The point corresponding to the colored dotted line
refers to the RUL prediction start time. The RUL is predicted every 10s after the 32s blank period to
meet the maneuver decision-making needs for the full cycle.

Figures 10a and 11a show that when the future maneuver changes strongly, the pro-
posed method can change the prediction output after the maneuver change in real-time.
It proves that the external factor fusion mechanism can make the TF perceive the perfor-
mance changes of the highly maneuverable QUAV in the future. Accordingly, either the
operator or fault-tolerant controller can adjust the mission planning in time. Moreover,
Figures 10b and 11b show that the proposed method has a smaller MPE, and its predicted
RUL is more reliable in the highly maneuverable flight.

In addition, according to the performance metrics in Table 8 and the visualization
in Figure 12, the multilevel fusion TF can realize the high-precision RUL sequence-to-
sequence prediction.
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Table 8. Performance of the RUL prediction for the next 128 s.

Metric
Multilevel Fusion TF TF

Single Flight 100 Flights Single Flight 100 Flights

MSE (s2) 5.0677 × 103 (5.0564± 0.2416)× 103 7.7484× 103 (7.4859± 0.3141)× 103

MPE (%) 8.7461 7.6482± 1.1790 14.9258 13.8908 ± 1.4337
CRA 0.8335 0.8428 ± 0.0064 0.8249 0.8315 ± 0.0068

MAE (s) 60.5949 59.7938± 0.7437 65.6041 64.3956 ± 1.5350

Time (ms) 80.385 72.907

Figure 12. The 5-dimensional radar chart for the performance comparison of predictions for the next
128 s. The performance depicted in the radar chart ranges from 0 to 1 (from low to high).

The disturbance and noise in the highly maneuverable flight, along with the ran-
domness of the deep learning algorithm, expose uncertainties [34]. Differences in a small
range can be found in the real RUL and predictions among each flight with the same
scheduled flight plan. Therefore, the simulation with the same plan, as shown in the figure,
was run 100 times, and the prediction results are also recorded in Table 8. To facilitate
observation and comparison, the statistical distribution of prediction performance after
normalization is plotted in Figure 13. It can be seen that the prediction performance of
the multilevel fusion TF is generally better than TF, and the fluctuation is smaller, which
proves its stronger robustness.

Figure 13. Result of RUL prediction for the next 128 s with disturbance and noise. a and b represent
the TF and multilevel fusion TF, respectively.
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6. Conclusions and Future Works
In this paper, a highly maneuverable unmanned aerial vehicle RUL sequence-to-

sequence prediction algorithm based on the multilevel fusion transformer network was
proposed. This method is an end-to-end deep learning method, which reduces the sub-
jectivity and professional knowledge requirements of feature extraction in the machine
learning method. By considering the predictable external factors, this method can realize a
sequence-to-sequence RUL prediction and predict future variations of the RUL. It has the
guiding significance for measuring the residual flight capability and mission capability of
the highly maneuverable UAV. The QUAV model based on actual flight fitted parameters
and the lithium-polymer battery discharge mechanism was used for simulation verification,
and the results show that the following novel contributions were accomplished:
1. The sequence-to-sequence RUL prediction was realized based on the transformer

network’s encoder–decoder structure, and its feasibility and real-time performance
were validated.

2. A multi-scale feature mining mechanism was designed to achieve the feature layer fu-
sion of multi-sensor signals and the distributed expression of spatio-temporal features.
Its effectiveness in improving the precision of end-to-end prediction was illustrated.

3. The external factor fusion layer was constructed to enhance the attention of the
algorithm to the predictable information with the future time scale. For the RUL
prognostic demand of the highly maneuverable UAV, the superiority of the multilevel
fusion transformer network was proven.
While the influence of external factors was considered in this paper, a limitation still

exists: the influence of the temperature change on the battery discharge was ignored. At the
same time, after long-term use, the battery’s internal resistance gradually increases. As a
result, future research will focus on the further optimization of the battery discharge model.
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