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Abstract: Sufficient conditions for a Lorentzian generalized quasi-Einstein manifold (M, g, f , µ) to be
a generalized Robertson–Walker spacetime with Einstein fibers are derived. The Ricci tensor in this
case gains the perfect fluid form. Likewise, it is proven that a (λ, n + m)-Einstein manifold (M, g, w)

having harmonic Weyl tensor,
(
∇jw

)
(∇mw)Cjklm = 0 and ∇lw∇lw < 0 reduces to a perfect fluid

generalized Robertson–Walker spacetime with Einstein fibers. Finally, (M, g, w) reduces to a perfect
fluid manifold if ϕ = −m∇(ln w) is a ϕ(Ric)-vector field on M and to an Einstein manifold if ψ = ∇w
is a ψ(Ric)-vector field on M. Some consequences of these results are considered.

Keywords: (λ, n + m)-Einstein manifolds; generalized quasi-Einstein manifold; perfect fluid; torse-
forming vector fields

MSC: 53C20; 53C25

1. Introduction

A complete Riemannian manifold (Mn, g, w) satisfying

(Hw)kl = ∇k∇lw =
w
m
(Rkl − λgkl) (1)

is called a (λ, n + m)-Einstein manifold where Hw is the Hessian tensor of a smooth positive
function w on M and Rkl is the Ricci tensor [1]. It is assumed that M w = λw whenever
m = 1 [1]. This concept widely generalizes the concept of Einstein manifolds which plays a
significant role in general relativity. The Ricci tensor of those manifolds is proportional to
the metric tensor. The beauty of Einstein spacetimes is that they serve as exact solutions of
the Einstein field equations.

A (λ, n + m)-Einstein manifold reduces to an Einstein manifold if w is constant. A

function f may be defined on M by e−
f
m = w and consequently Equation (1) becomes

Rkl +∇k∇l f − 1
m
∇k f∇l f = λgkl . (2)

The left-hand side is called m-Bakry–Emery–Ricci tensor Ricm
f , m > 0, that is, a natural

extension of the Ricci tensor. The tensor Ricm
f is a constant multiple of the metric tensor g.

Therefore, these manifolds are called m-quasi-Einstein manifolds (see [2]). The definition
of m-quasi-Einstein manifolds is quite different in some articles, such as in [3,4]. More
generally, a complete Riemannian manifold identified by
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Rkl +∇k∇l f − µ∇k f∇l f = λgkl (3)

is called a generalized quasi-Einstein manifold (M, g, f , µ) where µ, λ ∈ R. A generalized
quasi-Einstein manifold is Einstein if f is constant, is an m-quasi-Einstein manifold if µ = 1

m ,
and is a gradient Ricci soliton given that µ = 0 (or m tends to infinity). This new function f
will later allow us to translate results from one structure to another.

A remarkable property of (λ, n + m)-Einstein manifolds is that, for an integer m, an
Einstein warped product manifold of dimension n + m has a (λ, n + m)-Einstein base man-
ifold whose dimension is n. The name (λ, n + m)-Einstein resides in this property. The
significance of (λ, n + m)-Einstein manifolds is the beauty of Einstein manifolds which
are warped product manifolds. Arthur Besse posted a question about the existence of
non-trivial Einstein warped product manifolds. Since then, Einstein manifolds with the
structure of warped product manifolds have been extensively considered in the literature.
Generalized quasi-Einstein manifolds (M, g, f , µ) are very important generalizations of
gradient Ricci solitons [5–7]. Furthermore, the above two structures serve as two impor-
tant generalizations of Einstein’s spacetime which is an exact solution to Einstein’s field
equations.

Quasi-Einstein manifolds were first introduced in 1991 by Defever and Deszcz [8] (see
also [9–11]) as manifolds whose Ricci tensor satisfies the condition

Rkl = αukul + βgkl . (4)

Here α, β are scalars and uk is a 1-form [12–18]. A perfect fluid spacetime is pictured as
a Lorentzian quasi-Einstein manifold given that uk is a unit time-like vector field [14,19,20].
These manifolds emerged during the investigation of Einstein’s field equation. For example,
Robertson–Walker spacetimes are quasi-Einstein manifolds.

Sufficient conditions for both a Lorentzian generalized quasi-Einstein manifold (M, g, f , µ)
and a Lorentzian (λ, n + m)-Einstein manifold (M, g, w) to be a generalized Robertson–Walker
spacetime with Einstein fibers are derived. The Ricci tensors of both manifolds as well as the
Hessian tensors∇k∇lw and∇k∇l f gain the perfect fluid form. Moreover, (M, g, w) reduces
to a perfect fluid manifold if ϕ = −m

w∇w is a ϕ(Ric)-vector field on M and to an Einstein
manifold if ψ = ∇w is a ψ(Ric)-vector field on M.

2. Results

Generalized quasi-Einstein manifolds (M, g, f , µ) were studied by by several authors
in recent years [21]. In [22], M. Brozos-Vasquez et al. considered conformally flat generalized
quasi-Einstein manifolds and in the Lorentzian case they proved that for µ 6= −1

n−2 and in
any point where |∇ f | 6= 0, M is locally isometric to a warped product I ×q M̄, where I is a
real interval and M̄ is an (n− 1)-dimensional fiber of constant sectional curvature.

Here, we start our results with the following lemma for later use. It is already proved
in [22] (Lemma 4).

Lemma 1. Let (M, g, f , µ) be a generalized quasi-Einstein Lorentzian manifold with divergence-
free conformal tensor. Then, ∇k f is an eigenvector of the Hessian operator given that µ 6= −1

n−2 and
∇k f∇k f < 0.

Proof. We follow the line of [22]. From the defining property of generalized quasi-Einstein
manifolds, a covariant derivative of the Ricci tensor gives

∇jRkl = −∇j∇k∇l f + µ
(
∇j∇k f

)
∇l f + µ∇k f

(
∇j∇l f

)
.

By interchanging indices, we have

∇kRjl −∇jRkl = R m
jkl ∇m f + µ

[
∇j f (∇k∇l f )−∇k f

(
∇j∇l f

)]
= R m

jkl ∇m f + µ
[
∇j f (−Rkl + λgkl)−∇k f

(
−Rjl + λgjl

)]
.
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If the divergence of the conformal curvature tensor vanishes, one obtains

∇kRjl −∇jRkl =
1

2(n− 1)

[
(∇kR)gjl −

(
∇jR

)
gkl

]
.

Thus,

R m
jkl ∇m f = µ

[
∇k f

(
−Rjl + λgjl

)
−∇j f (−Rkl + λgkl)

]
+

1
2(n− 1)

[
(∇kR)gjl −

(
∇jR

)
gkl

]
. (5)

Transvecting this by gjl , it is

(1− µ)Rm
k ∇m f = µ[(n− 1)λ− R]∇k f +

1
2
∇kR. (6)

Multiplying this by ∇l f yields

(1− µ)Rm
k ∇m f∇j f = µ[(n− 1)λ− R]∇j f∇k f +

1
2
∇j f∇kR.

Exchanging indices, it is

(1− µ)Rm
j ∇m f∇k f = µ[(n− 1)λ− R]∇j f∇k f +

1
2
∇k f∇jR.

Subtracting the last two equations gives

(1− µ)

n− 1

(
Rm

k ∇m f∇j f − Rm
j ∇m f∇k f

)
=

1
2(n− 1)

(
∇j f∇kR−∇k f∇jR

)
. (7)

Transvecting Equation (5) by ∇l f , one obtains

0 = µ
[
∇l f∇j f Rkl −∇l f∇k f Rjl

]
+

1
2(n− 1)

[
∇kR∇j f −∇jR∇k f

]
. (8)

Inserting this in Equation (7), it is inferred that

µ(n− 2) + 1
n− 1

(
Rm

k ∇m f∇j f − Rm
j ∇m f∇k f

)
= 0.

Since µ(n− 2) + 1 6= 0, it is

Rm
k ∇m f∇j f = Rm

j ∇m f∇k f .

Thus, if ∇k f∇k f 6= 0, we obtain Rm
k ∇m f = η∇k f , i.e., ∇k f is an eigenvector of the

Ricci tensor. From Equation (3), it is(
∇k f

)
(∇k∇l f ) =

(
λ + µ

(
∇k f∇k f

)
− η

)
∇l f .

Thus, ∇k f is an eigenvector of the Hessian tensor and the proof is complete.

Theorem 1. Let (M, g, f , µ), n ≥ 3, be a Lorentzian quasi-Einstein with harmonic Weyl tensor,
i.e., ∇hC h

jkl = 0, and
(
∇h f

)(
∇j f

)
Cjklh = 0. Then, if ∇k f∇k f < 0 and µ 6= −1

n−2 ,

1. the Hessian ∇k∇l f and the Ricci tensor Rkl gain the perfect fluid form;
2. the unit time-like vector
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uk =
∇k f√

−(∇m f )(∇m f )

is a torse-forming vector field;
3. (M, g) is a generalized Robertson–Walker spacetime with Einstein fibers.

Proof. First, we show that the Hessian tensor and the Ricci tensor gain the perfect fluid
form. From Equation (6), we have

∇kR = 2((1− µ)η − µ(n− 1)λ + µR)∇k f . (9)

This equation with Equation (5) yields

∇m f Rjklm = −µ
[
∇k f Rjl −∇j f Rkl

]
+

(1− µ)η + µR
n− 1

[
(∇k f )gjl −

(
∇j f

)
gkl

]
. (10)

Transvecting the last equation by ∇j f , it is

∇j f∇m f Rjklm =
(1− µ)η + µR

n− 1

[
∇l f∇k f −

(
∇j f∇j f

)
gkl

]
−µ
[
η∇l f∇k f −∇j f∇j f Rkl

]
(11)

Now, define the unit time-like vector uk =
∇k f√

−(∇m f )(∇m f )
. Then, uk is a unit time-like

vector field and the above equation becomes

ujumRjklm = −µ[ηuluk + Rkl ] +
(1− µ)η + µR

n− 1
[uluk + gkl ]. (12)

The conformal curvature tensor is given by

Cjklm = Rjklm +
1

n− 2

[
gjmRkl − gkmRjl + gkl Rjm − gjl Rkm

]
− R
(n− 1)(n− 2)

[
gjmgkl − gkmgjl

]
. (13)

A straightforward calculation now gives

ujumCjklm = ujumRjklm +
1

n− 2

[
−Rkl − ukujRjl + gkl

(
ujumRjm

)
− ulumRkm

]
− R
(n− 1)(n− 2)

[−gkl − ukul ].

Equation (12) yields

ujumCjklm = −µ[ηuluk + Rkl ] +
(1− µ)η + µR

n− 1
[uluk + gkl ]

+
1

n− 2
[−Rkl − ηukul − ηgkl − ηuluk]

− R
(n− 1)(n− 2)

[−gkl − ukul ].
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Thus,

ujumCjklm =

(
−µ− 1

n− 2

)
Rkl

+

(
(1− µ)η + µR

n− 1
− 1

n− 2
η +

R
(n− 1)(n− 2)

)
gkl

+

(
−µη +

(1− µ)η + µR
n− 1

− 2
n− 2

η +
R

(n− 1)(n− 2)

)
ukul .

A straightforward calculation now gives the coefficient of gkl as

(1− µ)η + µR
n− 1

− 1
n− 2

η +
R

(n− 1)(n− 2)

=
η

n− 1
+
−µη + µR

n− 1
− 1

n− 2
η +

R
(n− 1)(n− 2)

=
µ(R− η)

n− 1
+

R− η

(n− 1)(n− 2)

=

(
µ +

1
n− 2

)(
R− η

n− 1

)
,

and the coefficient of ukul as

−µη +
(1− µ)η + µR

n− 1
− 2

n− 2
η +

R
(n− 1)(n− 2)

= −µη +
η

n− 1
+
−µη + µR

n− 1
− 2

n− 2
η +

R
(n− 1)(n− 2)

=
−µηn + µη − µη + µR

n− 1
+

(n− 2)η − 2(n− 1)η + R− η

(n− 1)(n− 2)

= µ
R− nη

n− 1
+

R− nη

(n− 1)(n− 2)

=

[
µ +

1
n− 2

](
R− nη

n− 1

)
.

That is,

ujumCjklm =

[
µ +

1
n− 2

][
−Rkl +

R− η

n− 1
gkl +

R− nη

n− 1
uluk

]
. (14)

The proof of the above result depends on Lemma 1, that is, this result is achieved
only assuming ∇mCjklm = 0. Apparently, Equation (14) represents the Ricci tensor of an

imperfect fluid with a shear tensor given by
[
µ + 1

n−2

]−1
ujumCjklm. If ujumCjklm = 0, then

the Ricci tensor gains the perfect fluid form

Rkl =
R− η

n− 1
gkl +

R− nη

n− 1
uluk. (15)

From the defining property (3) of the generalized quasi-Einstein manifold, one simply
obtain

Rkl +∇k∇l f − µ∇k f∇l f = λgkl
R− η

n− 1
gkl +

R− nη

n− 1
uluk +∇k∇l f − µ∇k f∇l f = λgkl .
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Thus,

∇k∇l f =

(
λ− R− η

n− 1

)
gkl −

R− nη

n− 1
uluk + µ∇k f∇l f . (16)

The Hessian operator gains the perfect fluid form too.
A covariant derivative of uk =

∇k f√
−(∇m f )(∇m f )

gives

∇juk =
∇j∇k f√

−(∇m f )(∇m f )
+

(∇k f )
(
∇j∇m f

)
(∇m f )(√

−(∇m f )(∇m f )
)3 . (17)

Inserting Equation (16) and
(
∇k f

)
(∇k∇l f ) =

(
λ + µ

(
∇k f∇k f

)
− η

)
∇l f in the

above equation, it is

∇juk =
1√

−(∇m f )(∇m f )

(
λ− R− η

n− 1

)[
gkj + ukuj

]
.

Thus, uj is a unit time-like torse-forming vector field that is also an eigenvector of the
Ricci tensor. In view of Proposition 3.7 and Theorem 5.5 of the survey [17], we have that
(M, g) is a generalized Robertson–Walker spacetime with Einstein fibers [23].

Let us discuss the converse of the above result. The Ricci tensor of a GRW spacetime
is given by

Rkl =
R− nη

n− 1
ukul +

R− η

n− 1
gkl − (n− 2)ujumulCjklm.

Assume that (M, g) is, in addition, a perfect fluid spacetime, then there is a unit
time-like vector field θl which is an eigenvector of the Ricci tensor with eigenvalue ξ
and [18]

Rkl =
R− nξ

n− 1
θkθl +

R− ξ

n− 1
gkl .

Transvecting this equation with ul , one obtains ul = ±θl and η = ξ. Thus, one gets

(n− 2)ujumCjklm = 0.

Thus, for n ≥ 3, ujumCjklm = 0. Finally, in [17], the second and third authors of the
current work proved that a perfect fluid GRW spacetime satisfies ∇hC h

jkl = 0.
For (λ, n + m)-Einstein manifolds (M, g, w) whose identifying property is Equation (1),

as stated before, we may define a function f on M by w = e−
f
m . It is

1. ∇lw = −w
m ∇l f and so ∇lw is time-like if and only if ∇l f is time-like.

2. Let uk =
∇k f√

−(∇m f )(∇m f )
and vk =

∇kw√
−(∇mw)(∇mw)

, then uk = −vk.

3. The Hessian tensors are related as follows

∇k∇lw =
−w
m
∇k∇l f +

w
m2∇k f∇l f .

4. The manifold (M, g, f , µ) where µ = 1
m is a generalized quasi-Einstein manifold.

Using these notes, we can prove Theorem 2.

Theorem 2. Let (M, g, w) be a Lorentzian (λ, n + m)-Einstein manifold having harmonic Weyl
tensor C, i.e., ∇mC m

jkl = 0, and
(
∇jw

)
(∇mw)Cjklm = 0. If ∇lw∇lw < 0, then the following

conditions hold:

1. The Hessian ∇k∇lw and the Ricci tensor Rkl gain the perfect fluid form,
2. the unit time-like vector field vk =

∇kw√
−(∇mw)(∇mw)

is torse-forming, and
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3. (M, g) is a GRW spacetime with Einstein fibers.

Bang-Yen Chen presented a great and simple characterization of GRW spacetimes
in [24] using a time-like concircular vector field. This vector field is called Chen’s vector field.

Theorem 3. Let (M, g, w) be a (λ, n + m)-Einstein manifold, m > 1 be an integer, having
harmonic Weyl tensor C, i.e., ∇mC m

jkl , and
(
∇jw

)(
∇kw

)
Cjklm = 0, then (M, g) reduces to a

perfect fluid, ∇kw and the Chen vector field are eigenvectors of the Ricci tensor and one of the
following conditions holds:

1. ∇kw and the Chen vector field ζk are orthogonal where the corresponding eigenvalues ϕ and
µ satisfy

ϕ =
R− µ

n− 1
;

2. ∇kw and ζk are dependent.

Proof. Let (M, g) be a complete simply connected Riemannian manifold having harmonic
Weyl tensorW , i.e., ∇mC m

jkl , and
(
∇jw

)(
∇kw

)
Cjklm = 0. Using the above result, g is of

the form
g = dt2 + ω2(t)gL (18)

and w = w(t) where gL is an Einstein metric. Moreover, in [1] (Theorem 7.2), it is proved
that the vector field ξk = ∇kw is an eigenvector of the tensor

Pkl = Rkl − σgkl ,

where
σ =

1
m− 1

[(n− 1)λ− R],

and R is the scalar curvature of M. Then,

ξkRkl = (σ + θ)ξl , (19)

for some scalar θ and so ξk is an eigenvector of the Ricci tensor with eigenvalue ϕ = σ + θ.
In [25], the author proved that a warped product of the form (18) admits a nowhere zero
concircular vector field ζ = ω(t) ∂

∂t , i.e., ∇iζ j = ρgij (for definition and some interesting
results, see [25]). It is clear that ρ = ω̇(t). In [26] (Theorem 2.1), it is shown that ζ is an
eigenvector of the Ricci tensor. Additionally, the Ricci tensor is given by

Rkl =

(
R− µ

n− 1

)
gkl +

nµ− R
(n− 1)ω2(t)

ζkζl +
(n− 2)
ω2(t)

Cjklmζ jζm.

We note the following facts:

1. From Equation (10) in [26], it is Cjklmζ jζm = 0 if and only if Cjklmζ j = 0;
2. from Theorem 3.4 in [26], the Weyl tensor is harmonic if and only if Cjklmζ j = 0;
3. from Proposition 3.5 in [26], Cjklmζ j = 0 if and only if the Ricci tensor is quasi-Einstein.

Since the Lorentzian signature is irrelevant during their proof, we have (see also the
survey [17], Theorems 3.3 and 5.5)

Rkl =

(
R− µ

n− 1

)
gkl +

nµ− R
(n− 1)ω2(t)

ζkζl . (20)

Now, the Ricci tensor has two eigenvectors ζ = ω(t) ∂
∂t and ξ = ∇w. It is clear that

Ric(ζ, Y) = µg(ζ, Y). However,



Mathematics 2022, 10, 1731 8 of 11

ξkRkl =

(
R− µ

n− 1

)
ξl +

nµ− R
(n− 1)ω2(t)

(
ξkζk

)
ζl ,

ϕξl =

(
R− µ

n− 1

)
ξl +

nµ− R
(n− 1)ω2(t)

(
ξkζk

)
ζl ,

0 =

(
R− µ

n− 1
− ϕ

)
ξl +

nµ− R
(n− 1)ω2(t)

(
ξkζk

)
ζl .

Thus, we have the following cases:

1. The vector fields ζ and ξ have different eigenvalues and therefore

ϕ
(

ξlζ
l
)
= ξkRklζ

l = µ
(

ξkζk

)
,

that is, they are orthogonal. That is,

ϕ =
R− µ

n− 1
,

ξkRkl =

(
R− µ

n− 1

)
ξl .

2. The vector fields ζ and ξ have the same, eigenvalue i.e., µ = ϕ.

It is well known that, for n ≥ 3, the divergence of the Weyl tensor is related to the
Cotton tensor T by the formula

div(C) =
(

n− 3
n− 2

)
T ,

where
Tijk = ∇iRjk −∇jRik −

1
2(n− 1)

[
gjk∇iR− gik∇jR

]
.

Corollary 1. Let (M, g, w) be a Lorentzian (λ, n + m)- Einstein manifold where the Cotton tensor
vanishes,

(
∇jw

)(
∇kw

)
Cjklm = 0 and ∇lw∇lw < 0, then (M, g) reduces to a perfect fluid

generalized Robertson–Walker spacetime.

The vanishing of the Cotton tensor is equivalent to dS = 0, where

Skl = Rkl −
R

2(n− 1)
gkl

is the Schouten tensor, i.e., S is a Coddazzi tensor.

Corollary 2. Let (M, g, w) be a Lorentzian (λ, n + m)-Einstein manifold where the Schouten
tensor is a Coddazzi tensor,

(
∇jw

)
(∇mw)Cjklm = 0 and ∇lw∇lw < 0, then (M, g) reduces to a

perfect fluid generalized Robertson–Walker spacetime.

A vector field ϕ on a Riemannian manifold (M, g) is called a ϕ(Ric)-vector field on M
if

∇j ϕi = γRij, (21)

where γ is constant [27].

Theorem 4. Let (M, g, w) be a Lorentzian (λ, n + m)-Einstein manifold. Then,

1. (M, g) reduces to a perfect fluid manifold if ϕ = −m
w∇w is a ϕ(Ric)-vector field on M.

2. (M, g) reduces to an Einstein manifold if ψ = ∇w is a ψ(Ric)-vector field on M.



Mathematics 2022, 10, 1731 9 of 11

Proof. Assume that ϕ = −m
w∇w is a ϕ(Ric)-vector field on (M, g). Then,

∇k∇lw =
w
m

(
1
γ
∇j ϕi − λgkl

)
,

∇j ϕi =
γm
w
∇k∇lw + γλgkl ,

= γm
(

1
w
∇k∇lw

)
+ γλgkl ,

−m∇l

[
1
w
∇kw

]
= γRkl ,

where µ is constant. Thus,

γRkl = m∇l(ln w)∇k(ln w)− m
w
∇l∇kw.

By using Equation (1), one obtains

Rkl =
λ

(γ + 1)
gkl +

m
(γ + 1)

∇l(ln w)∇k(ln w),

and consequently (M, g) is a perfect fluid manifold.
Assume now that ψ = ∇w is a ψ(Ric)-vector field on M. Then,

∇l∇kw = σRkl .

Equation (1) implies that

σRkl =
w
m

Rkl −
λw
m

gkl ,

and hence

Rkl =

(
λw

w−mσ

)
gkl .

Thus, (M, g) is an Einstein manifold.

A similar result holds for generalized quasi-Einstein manifolds.

Corollary 3. Let (M, g, f , µ) be a generalized quasi-Einstein manifold. Then,

1. (M, g) reduces to a perfect fluid manifold if ϕ = ∇ f is a ϕ(Ric)-vector field on M.
2. (M, g) reduces to an Einstein manifold if ψ = −µe−µ f∇ f is a ψ(Ric)-vector field on M.

The reader is referred to [28,29] for the definition of warped product manifolds, to [17]
for a survey on generalized Robertson–Walker spacetimes, and to [30], Chapter 16 for the
definitions of harmonic Weyl tensor and some equivalent conditions.

3. Conclusions

In this short note, two Lorentzian Einstein-like structures are considered. A Lorentzian
generalized quasi-Einstein manifold (M, g, f , µ) with ∇hC h

jkl = 0 and
(
∇h f

)(
∇j f

)
Cjklh =

0 is shown to be a GRW spacetime with Einstein fibers if ∇k f∇k f < 0 and µ 6= −1
n−2 . Like-

wise, a Lorentzian (λ, n + m)-Einstein manifold (M, g, w) admitting a harmonic conformal
curvature tensor and

(
∇jw

)
(∇mw)Cjklm = 0 is also a GRW spacetime with Einstein fibers

if ∇lw∇lw < 0. In both cases, the Ricci tensors as well as the Hessian tensors ∇k∇lw and
∇k∇l f gain the perfect fluid form. Finally, ϕ(Ric)-vector fields are investigated on both
manifolds. (M, g, w) reduces to a perfect fluid manifold if ϕ = −m

w∇w is a ϕ(Ric)-vector
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field on M and to an Einstein manifold if ψ = ∇w is a ψ(Ric)-vector field on M. Similar
results hold on (M, g, f , µ) where ϕ = ∇ f and ψ = −µe−µ f∇ f .
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